Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DBI - Departamento de Biologia >
DBI - Programa de Pós-graduação >
DBI - Genética e Melhoramento de Plantas - Mestrado (Dissertações) >

Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/4399

Title: Uso dos métodos AMMI e GGE biplot para análises de adaptabilidade e estabilidade de híbridos de milho e estratificação ambiental
Other Titles: The use of AMMI and GGE biplot methods for analysis of adaptability and stability of maize hybrids and environmental stratification
???metadata.dc.creator???: Oliveira, Rogério Lunezzo de
???metadata.dc.contributor.advisor1???: Von Pinho, Renzo Garcia
???metadata.dc.contributor.referee1???: Ferreira, Daniel Furtado
Carvalho, Samuel Pereira de
Keywords: Zea mays
Interação genótipo-ambiente
Análise de componentes principais
Genotype-environment interaction
Principal components analysis
???metadata.dc.date.submitted???: 27-Feb-2009
Issue Date: 9-Oct-2014
Citation: OLIVEIRA, R. L. de. Uso dos métodos AMMI e GGE biplot para análises de adaptabilidade e estabilidade de híbridos de milho e estratificação ambiental. 2009. 55 p. Dissertação (Mestrado em Genética e Melhoramento de Plantas)-Universidade Federal de Lavras, Lavras, 2009.
???metadata.dc.description.resumo???: Este trabalho foi realizado com o objetivo de avaliar a estabilidade, adaptabilidade e estratificação ambiental, por meio dos métodos AMMI e GGE biplot, utilizando dados de ensaios de avaliação de híbridos de milho, e comparar a eficiência destes métodos. Foram utilizados dados de produtividade de grãos provenientes de ensaios finais de avaliação de híbridos de milho, cedidos pela empresa Monsanto, conduzidos nos estados de Minas Gerais, São Paulo, Paraná, Goiás, Mato Grosso do Sul, Bahia e Distrito Federal. Os dados foram obtidos a partir da avaliação de vinte e três híbridos de milho em duas safras agrícolas, 2005/2006 e 2006/2007, e onze locais, quais sejam: Barreiras-BA, Brasília-DF, Chapadão do Sul-MS, Iraí de Minas-MG, José Bonifácio-SP, Passos-MG, Presidente Olegário-MG, Rio Verde-GO, Rolândia-PR, Três Corações-MG, Uberaba-MG. Os dados foram submetidos primeiro às análises de variância individual e conjunta, em seguida, às análises de adaptabilidade, estabilidade e estratificação ambiental, com base nos genótipos vencedores, por meio dos métodos AMMI e GGE biplot. O híbrido 15 foi o mais produtivo. Porém, analisando o gráfico AMMI2, o híbrido 10 foi o que apresentou a melhor combinação entre adaptabilidade e estabilidade. A análise do gráfico GGE biplot levou à escolha do híbrido 16 como sendo o que apresentou a melhor combinação entre adaptabilidade e estabilidade. Com a estratificação ambiental houve a formação de dois grupos de ambientes, nos métodos AMMI (modelo AMMI1) e GGE biplot, e três grupos no modelo AMMI2. A estratificação permitiu uma redução de até 28%, no número de locais, considerando os dois métodos. O GGE biplot captou uma porção maior da soma de quadrados de genótipo (G) + interação (GxA), quando comparado ao modelo AMMI1. Além disso, o gráfico do GGE biplot foi mais eficiente e de fácil interpretação, quando comparado ao gráfico AMMI2. Pelos resultados obtidos conclui-se que é possível reduzir o número de locais de avaliação. O agrupamento obtido pelo método GGE biplot foi semelhante ao obtido pelo modelo AMMI1. A análise GGE biplot foi mais eficiente que a análise AMMI.
This work was carried out for evaluating stability, adaptability and environmental stratification, through the AMMI and GGE biplot methods by using maize hybrids trials data evaluation and for comparing the efficiency of these methods. Grain yield data originating from final trials of maize hybrids evaluation supplied by the Monsanto company were used and the study was carried out in the states of Minas Gerais, São Paulo, Paraná, Goiás, Mato Grosso do Sul, Bahia and Distrito Federal . The data was obtained from the evaluation of twenty-three maize hybrids in two agricultural harvests, 2005/2006 and 2006/2007, and eleven sites, which were: Barreiras-BA, Brasília-DF, Chapadão do Sul-MS, Iraí de Minas-MG, José Bonifácio-SP, Passos-MG, Presidente Olegário-MG, Rio Verde-GO, Rolândia-PR, Três Corações-MG, Uberaba-MG. The data were submitted, first, to the individual and joint variance analyses. Following that, to the adaptability, stability and environmental stratification analyses, based on the winning genotypes, through the AMMI and GGE biplot methods. Hybrid 15 was the highest yielding. However, by analyzing the AMMI2 graph, hybrid 10 was the one which presented the best combination between adaptability and stability, and the GGE biplot analysis led to the choice of hybrid 16 as being that one which presented the best combination between adaptability and stability. With the environmental stratification there was the formation of two groups of environments, in the AMMI methods (model AMMI1) and GGE biplot, and three groups in the AMMI2 model. The stratification permitted a reduction of 28% in the number of sites, considering the two methods. The GGE biplot captured a larger portion of the sum of the squares of genotype(G)+ interaction (GxA) when compared to the AMMI1model. Furthermore, the GGE graph was more efficient and of easier interpretation, when compared to the AMMI2 graph. From the obtained results, it is concluded that it is possible to reduce the number of evaluation sites. The grouping obtained by the GGE biplot method was similar to that of the AMMI1 model. The GGE biplot analysis was more efficient than the AMMI analysis.
URI: http://repositorio.ufla.br/jspui/handle/1/4399
Publisher: UNIVERSIDADE FEDERAL DE LAVRAS
???metadata.dc.language???: pt_BR
Appears in Collections:DBI - Genética e Melhoramento de Plantas - Mestrado (Dissertações)

Files in This Item:

File Description SizeFormat
DISSERTAÇÃO_Uso dos métodos AMMI e GGE biplot para análises de adaptabilidade e estabilidade de híbridos de milho e estratificação ambiental.pdf266.25 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


View Statistics

 


DSpace Software Copyright © 2002-2010  Duraspace - Feedback