Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/45424
Título: | Estudo por simulação Monte Carlo de um estimador robusto utilizado na inferência de um modelo binomial contaminado |
Título(s) alternativo(s): | A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model |
Palavras-chave: | Distribuição binomial Binomial contaminada Monte Carlo Robustez Binomial distribution Contaminated binomial Robustness |
Data do documento: | 2010 |
Editor: | Universidade Estadual de Londrina |
Citação: | SILVA, A. M. da; CIRILLO, M. A. Estudo por simulação Monte Carlo de um estimador robusto utilizado na inferência de um modelo binomial contaminado. Acta Scientiarum. Technology, Maringá, v. 32, n. 3, p. 303-307, 2010. DOI: 10.4025/actascitechnol.v32i3.4145. |
Resumo: | The statistical inference in binomial population is subject to gross errors of estimate, as the samples are not identically distributed. Due to this problem, this work aims to determine which is the best affinity constant (c1) that provides the best performance in the estimator, belonging to the class of E-estimators. With that purpose, the methodology used in this work was applied considering the Monte Carlo simulation method, in which different configurations described by combination of parametric values, levels of contamination and sample sizes were appraised. It was concluded that for the high probability of contamination (γ = 0.40), c1 = 0.1 is recommended in cases with large samples (n = 50 and n = 80). |
URI: | http://repositorio.ufla.br/jspui/handle/1/45424 |
Aparece nas coleções: | DEX - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Estudo por simulação Monte Carlo de um estimador robusto.pdf | 544,7 kB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons