Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/46317
Registro completo de metadados
Campo DCValorIdioma
dc.creatorPereira, Jhuly Ely Santos-
dc.date.accessioned2021-05-19T18:15:27Z-
dc.date.available2021-05-19T18:15:27Z-
dc.date.issued2021-05-19-
dc.date.submitted2021-03-31-
dc.identifier.citationPEREIRA, J. E. S. Sensoriamento remoto para a modelagem da biomassa e biodiversidade arbórea em Minas Gerais: contexto temporal e espacial. 2021. 96 p. Dissertação (Mestrado em Engenharia Florestal) – Universidade Federal de Lavras, Lavras, 2021.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/46317-
dc.description.abstractMonitoring vegetation over large territorial extensions is essential to define management strategies for ecosystem services conservation, and remote sensing by satellite is a valuable tool for this task. In this sense, it is essential to develop modeling methods based on remote sensing variables that provide reliable estimates of vegetation parameters, such as aboveground biomass and tree biodiversity, quickly and at low cost. In this work, the predictive performance of random forest models, based on spatial and temporal variables derived from the enhanced vegetation index (EVI) and the land surface temperature (LST), was evaluated to estimate the aboveground biomass (AGB) and the tree species diversity (TSD) in the tropical forests of Minas Gerais, Brazil. This dissertation is divided into two parts. In the first part (General Introduction), we tried to situate the reader in front of the research objectives, making a theoretical approach on the themes worked. In the second part, two articles were presented. In article 1 (Annual Indices of Remote Sensing for Modeling Aboveground Biomass and Biodiversity in Minas Gerais), images from the MODIS sensor were used to model AGB and TSD based on the time variation over the year in the values of EVI and LST. In Article 2 (Textural Metrics for Modeling Aboveground Biomass and Biodiversity in Minas Gerais), TM sensor images were used on board Landsat 5 to model AGB and TSD from the spatial variation of EVI and LST in the studied areas. In general, in both articles, the results indicate that the performance of the prediction models is mainly affected by the degree of complexity of the vegetation structure.pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectSensoriamento remotopt_BR
dc.subjectBiodiversidade florestalpt_BR
dc.subjectManejo florestalpt_BR
dc.subjectBiomassa vegetalpt_BR
dc.subjectRemote sensingpt_BR
dc.subjectForest biodiversitypt_BR
dc.subjectForest managementpt_BR
dc.subjectVegetable biomasspt_BR
dc.titleSensoriamento remoto para a modelagem da biomassa e biodiversidade arbórea em Minas Gerais: contexto temporal e espacialpt_BR
dc.title.alternativeRemote sensing for modeling aboveground biomass and biodiversity in Minas Gerais: the temporal and spatial contextpt_BR
dc.typedissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Florestalpt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Acerbi Junior, Fausto Weimar-
dc.contributor.advisor-co1Silveira, Eduarda Martiniano de Oliveira-
dc.contributor.advisor-co2Terra, Marcela de Castro Nunes Santos-
dc.contributor.referee1Terra, Marcela de Castro Nunes Santos-
dc.contributor.referee2Reis, Aliny Aparecida dos-
dc.description.resumoO monitoramento da vegetação em grandes extensões territoriais é imprescindível para a definição de estratégias de manejo e conservação dos serviços ecossistêmicos, e o sensoriamento remoto por satélite consiste em uma ferramenta valiosa para essa tarefa. Neste sentido, é fundamental o desenvolvimento de métodos de modelagem baseados em variáveis de sensoriamento remoto que forneçam estimativas confiáveis de parâmetros da vegetação, como biomassa e biodiversidade arbórea, com rapidez e a baixo custo. Neste trabalho foram propostos e avaliados o desempenho preditivo de modelos de florestas aleatórias baseados em variáveis espaciais e temporais derivadas do Índice de Vegetação Melhorado (EVI) e da Temperatura da Superfície Terrestre (LST) para estimar a biomassa arbórea acima do solo (AGB) e a diversidade de espécies de árvores (TSD) nas florestas tropicais de Minas Gerais, Brasil. Essa dissertação está dividida em duas partes. Na primeira parte (Introdução Geral), buscou-se situar o leitor diante dos objetivos da pesquisa, fazendo uma abordagem teórica sobre os temas trabalhados. Na segunda parte foram apresentados dois artigos. No artigo 1 (Índices Anuais de Sensoriamento Remoto na Modelagem da Biomassa e Biodiversidade Arbórea em Minas Gerais), foram utilizadas imagens do sensor MODIS para modelar a AGB e a TSD a partir da variação temporal ao longo do ano nos valores do EVI e da LST. No artigo 2 (Métricas Texturais na Modelagem da Biomassa e da Biodiversidade Arbórea em Minas Gerais), foram utilizadas imagens do sensor TM, a bordo do Landsat 5, para modelar a AGB e a TSD a partir da variação espacial do EVI e da LST nas áreas estudadas. De modo geral, em ambos os artigos, os resultados indicam que o desempenho dos modelos de predição é afetado principalmente pelo grau de complexidade da estrutura da vegetação.pt_BR
dc.publisher.departmentDepartamento de Ciências Florestaispt_BR
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6470521599492207pt_BR
Aparece nas coleções:Engenharia Florestal - Mestrado (Dissertações)



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.