Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/46907
Título: Challenges and Opportunities on Nonlinear State Estimation of Chemical and Biochemical Processes
Palavras-chave: State estimation
Nonlinear system
Extended Kalman filter
Moving horizon estimation
Estimação de estado
Sistema não linear
Filtro de Kalman estendido
Estimador de horizonte móvel
Data do documento: Nov-2020
Editor: Multidisciplinary Digital Publishing Institute - MDPI
Citação: ALEXANDER, R. et al. Challenges and Opportunities on Nonlinear State Estimation of Chemical and Biochemical Processes. Processes, [S. I.], v. 8, n. 11, 2020. DOI: 10.3390/pr8111462.
Resumo: This paper provides an overview of nonlinear state estimation techniques along with a discussion on the challenges and opportunities for future work in the field. Emphasis is given on Bayesian methods such as moving horizon estimation (MHE) and extended Kalman filter (EKF). A discussion on Bayesian, deterministic, and hybrid methods is provided and examples of each of these methods are listed. An approach for nonlinear state estimation design is included to guide the selection of the nonlinear estimator by the user/practitioner. Some of the current challenges in the field are discussed involving covariance estimation, uncertainty quantification, time-scale multiplicity, bioprocess monitoring, and online implementation. A case study in which MHE and EKF are applied to a batch reactor system is addressed to highlight the challenges of these technologies in terms of performance and computational time. This case study is followed by some possible opportunities for state estimation in the future including the incorporation of more efficient optimization techniques and development of heuristics to streamline the further adoption of MHE.
URI: http://repositorio.ufla.br/jspui/handle/1/46907
Aparece nas coleções:DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Challenges and Opportunities on Nonlinear State Estimation of Chemical and Biochemical Processes.pdf4,11 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons