Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/4705
Título : Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes
Autor: Souza, A. C.
Carvalho, F. P.
Silva, C. F.
Schwan, R. F.
Dias, D. R.
Palavras-chave: Cellulases - Isolation e purification
Cellulases - Metabolism
Cryptococcus - Enzymology
Hydrolysis
Saccharum - Chemistry
Soil microbiology
Yeasts - Isolation e purification
Yeasts - Enzymology
Publicador: The Korean Society for Microbiology and Biotechnology
Data da publicação: 28-Out-2013
Referência: SOUZA, A. C. et al. Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes. Journal of Microbiology and Biotechnology, Seoul, v. 23, n. 10, p. 1403-1412, Oct. 2013.
Abstract: Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant β- glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good β-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production.
URI: http://www.ncbi.nlm.nih.gov/pubmed/23851270
http://repositorio.ufla.br/jspui/handle/1/4705
Idioma: en
Aparece nas coleções:DCA - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.