Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/49327
Título: Quantum circuit synthesis using projective simulation
Palavras-chave: Machine learning
Reinforcement learning
Projective simulation
Quantum circuit synthesis
Data do documento: 2021
Citação: PIRES, O. M. et al. Quantum circuit synthesis using projective simulation. Inteligência Artificial, [S.l.], v. 24, n. 67, p. 90-101, 2021.
Resumo: Quantum Computing has been evolving in the last years. Although nowadays quantum algorithms performance has shown superior to their classical counterparts, quantum decoherence and additional auxiliary qubits needed for error tolerance routines have been huge barriers for quantum algorithms efficient use. These restrictions lead us to search for ways to minimize algorithms costs, i.e the number of quantum logical gates and the depth of the circuit. For this, quantum circuit synthesis and quantum circuit optimization techniques are explored. We studied the viability of using Projective Simulation, a reinforcement learning technique, to tackle the problem of quantum circuit synthesis. The agent had the task of creating quantum circuits up to 5 qubits. Our simulations demonstrated that the agent had a good performance but its capacity for learning new circuits decreased as the number of qubits increased.
URI: https://journal.iberamia.org/index.php/intartif/article/view/586
http://repositorio.ufla.br/jspui/handle/1/49327
Aparece nas coleções:DCC - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

Ferramentas do administrador