Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/50030
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Benedet, Lucas | - |
dc.creator | Nilsoon, Matheus S. | - |
dc.creator | Silva, Sérgio Henrique G. | - |
dc.creator | Pelegrino, Marcelo H. P. | - |
dc.creator | Mancini, Marcelo | - |
dc.creator | Menezes, Michele de D. | - |
dc.creator | Guilherme, Luiz Roberto G. | - |
dc.creator | Curi, Nilton | - |
dc.date.accessioned | 2022-05-26T18:50:54Z | - |
dc.date.available | 2022-05-26T18:50:54Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | BENEDET, L. et al. X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability. Anais da Academia Brasileira de Ciências, Rio de Janeiro, v. 93, n. 4, p. 2021. DOI: 10.1590/0001-3765202120200646 . | pt_BR |
dc.identifier.uri | https://doi.org/10.1590/0001-3765202120200646 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/50030 | - |
dc.description.abstract | Portable X-ray fluorescence (pXRF) spectrometry offers valuable information for prediction models of soil fertility attributes spatial variation, although this approach is yet scarce in tropical regions. This study aims to predict and build spatial variability maps of soil pH, remaining phosphorus (P-Rem), soil organic matter (SOM) and sum of bases (SB) using pXRF results through stepwise multiple linear regression (SMLR) and Random Forest (RF) in a highly variable tropical area. Composite samples from soil A horizon were collected at 90 points throughout the campus of the Federal University of Lavras, Minas Gerais, Brazil, for pH, P-Rem, SOM, SB and pXRF analyses. RF predictions showed the highest accuracies, especially for P-Rem and SB (R² values of 0.66 and 0.55, respectively). Attributes that showed higher R² in punctual predictions also exhibited higher R² in spatial predictions. Data obtained from pXRF in tandem with RF can be used to assist prediction models for soil fertility attributes, consequently enabling the digital mapping of such attributes and helping to improve the knowledge about the spatial variability of such attributes in soils of tropical climate. This technique can therefore assist in the identification and orientation of adequate management practices in tropical agricultural practices. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Academia Brasileira de Ciências | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Anais da Academia Brasileira de Ciências | pt_BR |
dc.subject | Proximal sensor | pt_BR |
dc.subject | Random forest | pt_BR |
dc.subject | Spatial prediction | pt_BR |
dc.subject | Tropical soils | pt_BR |
dc.subject | Sensor proximal | pt_BR |
dc.subject | Floresta aleatória | pt_BR |
dc.subject | Previsão espacial | pt_BR |
dc.subject | Solos tropicais | pt_BR |
dc.title | X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DCS - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.