Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/50608
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSouza, Cristiano Marcelo Pereira de-
dc.creatorVeloso, Gustavo Vieira-
dc.creatorMello, Carlos Rogério de-
dc.creatorRibeiro, Ricardo Pires-
dc.creatorSilva, Lucas Augusto Pereira da-
dc.creatorLeite, Marcos Esdras-
dc.creatorFernandes Filho, Elpídio Inácio-
dc.date.accessioned2022-07-14T21:09:13Z-
dc.date.available2022-07-14T21:09:13Z-
dc.date.issued2022-04-
dc.identifier.citationSOUZA, C. M. P. de et al. Spatiotemporal prediction of rainfall erosivity by machine learning in southeastern Brazil. Geocarto International, Hong Kong, v. 37, n. 26, v. 36, n. 26, p. 11652-11670, 2022. DOI: 10.1080/10106049.2022.2060318.pt_BR
dc.identifier.urihttps://doi.org/10.1080/10106049.2022.2060318pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/50608-
dc.description.abstractThe spatiotemporal dynamic of rainfall erosivity is essential for environmental studies and guidance to control erosion. The purpose of this study is to assess rainfall erosivity (monthly and annual), testing machine learning algorithms aided by a covariate bank for spatial prediction of rainfall erosivity in Southeastern Brazil. The modeling tested Random Forest-RF, Cubist, Support Vector Machine, Earth, and Linear Model, associated with 154 covariates (topographic, climatic, and vegetation data). However, we apply the cut-off correlation function (findcorrelation) and feature selection algorithm (Recursive Feature Elimination—RFE) to select strong covariates. Our results show that the RF algorithm was more efficient in modeling (R2 values between 0.29 and 0.82), whit the best metrics in the low rainfall period (winter). The modeling showed fluidity by selecting only 43 significant covariates due to the findcorrelation and RFE functions. The most important and frequent covariates in spatial modeling were coordinates, water deficit, topographical, and climatic data. In general, the spatial results show that the dynamics of rainfall erosivity is strongly affected by factors of air mass circulation, relief, and geographic position. Our approach is promising as it is a method capable of estimating rainfall erosivity in unsampled areas, capturing information from significant spatial covariates.pt_BR
dc.languageenpt_BR
dc.publisherTaylor & Francis Grouppt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceGeocarto Internationalpt_BR
dc.subjectRainfall intensitypt_BR
dc.subjectRandom Forestpt_BR
dc.subjectClimatic heterogeneitypt_BR
dc.subjectPrecipitation intensitypt_BR
dc.subjectIntensidade da chuvapt_BR
dc.subjectFloresta aleatóriapt_BR
dc.subjectHeterogeneidade climáticapt_BR
dc.subjectErosividade da chuvapt_BR
dc.subjectPredição espaço-temporalpt_BR
dc.titleSpatiotemporal prediction of rainfall erosivity by machine learning in southeastern Brazilpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEG - Artigos publicados em periódicos
DRH - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.