Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/55353
Título: | Optimizing flying base station connectivity by RAN slicing and reinforcement learning |
Palavras-chave: | Flying base stations Unmanned aerial vehicles (UAVs) Location optimization Wireless communication Deep-reinforcement learning Estações-bases voadoras Veículos aéreos não tripulados (VANTs) Comunicações sem fio Aprendizagem por reforço profundo |
Data do documento: | Mai-2022 |
Editor: | Institute of Electrical and Electronics Engineers (IEEE) |
Citação: | CARRILLO MELGAREJO, D. et al. Optimizing flying base station connectivity by RAN slicing and reinforcement learning. IEEE Access, [S.I.], p. 53746-53760, 2022. DOI: 10.1109/ACCESS.2022.3175487. |
Resumo: | The application of flying base stations (FBS) in wireless communication is becoming a key enabler to improve cellular wireless connectivity. Following this tendency, this research work aims to enhance the spectral efficiency of FBSs using the radio access network (RAN) slicing framework; this optimization considers that FBSs’ location was already defined previously. This framework splits the physical radio resources into three RAN slices. These RAN slices schedule resources by optimizing individual slice spectral efficiency by using a deep reinforcement learning approach. The simulation indicates that the proposed framework generally outperforms the spectral efficiency of the network that only considers the heuristic predefined FBS location, although the gains are not always significant in some specific cases. Finally, spectral efficiency is analyzed for each RAN slice resource and evaluated in terms of service-level agreement (SLA) to indicate the performance of the framework. |
URI: | http://repositorio.ufla.br/jspui/handle/1/55353 |
Aparece nas coleções: | DCC - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Optimizing flying base station connectivity by RAN slicing and reinforcement learning.pdf | 3,74 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons
Ferramentas do administrador