Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/56068
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Barbosa, Lucas Nunes | - |
dc.date.accessioned | 2023-02-28T16:32:30Z | - |
dc.date.available | 2023-02-28T16:32:30Z | - |
dc.date.issued | 2023-02-28 | - |
dc.date.submitted | 2020-02-29 | - |
dc.identifier.citation | BARBOSA, L. N. Distributed recommender systems on an opportunistic network environment. 2023. 59 p. Dissertação (Mestrado em Ciência da Computação)–Universidade Federal de Lavras, Lavras, 2020. | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/56068 | - |
dc.description.abstract | Mobile devices are common throughout the world, even in counties with limited internet access and even when natural disasters disrupt access to a centralized infrastructure. This access allows for the exchange of information at an incredible pace and across vast distances. However, this wealth of information can frustrate users as they become inundated with irrelevant or unwanted data. Recommender systems help alleviate this burden. The project presents a novel collaborative filtering recommender system based on an opportunistic distributed network. Collaborative filtering algorithms are widely used in many online systems. Often, the computation of these recommender systems is performed on a central server, controlled by the provider, requiring constant internet connection for gathering and computing data. However, in many scenarios, such constraints cannot be guaranteed or may not even be desired. On the proposed recommendation engine, users share information via an opportunistic network independent of a dedicated internet connection. Each node is responsible for gathering information from nearby nodes and calculating its own recommendations. Using a centralized collaborative filtering recommender as a baseline, we evaluate three simulated scenarios composed by different movement speeds and data exchange parameters. Our results show that in a relatively short time, an opportunistic distributed recommender systems can achieve results similar to a traditional centralized system. Furthermore, we noticed that the speed at which the opportunistic recommender system stabilizes depends on several factors including density of the users, movement speed and patterns of the users, and transmission strategies. On future works we will analyze new strategies and datasets, likewise, we will increase the number of users on different scenarios. | pt_BR |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | pt_BR |
dc.language | eng | pt_BR |
dc.publisher | Universidade Federal de Lavras | pt_BR |
dc.rights | acesso aberto | pt_BR |
dc.subject | Opportunistic networks | pt_BR |
dc.subject | Recommender systems | pt_BR |
dc.subject | Mobile ad hoc networks | pt_BR |
dc.subject | Redes oportunistas | pt_BR |
dc.subject | Sistema de recomendação | pt_BR |
dc.subject | Redes móveis ad hoc | pt_BR |
dc.title | Distributed recommender systems on an opportunistic network environment | pt_BR |
dc.title.alternative | Sistemas de recomendação distribuídos em um ambiente de rede oportunista | pt_BR |
dc.type | dissertação | pt_BR |
dc.publisher.program | Programa de Pós-graduação em Ciência da Computação | pt_BR |
dc.publisher.initials | UFLA | pt_BR |
dc.publisher.country | brasil | pt_BR |
dc.contributor.advisor1 | Heimfarth, Tales | - |
dc.contributor.advisor-co1 | Gemmell, Jonathan | - |
dc.contributor.referee1 | Heimfarth, Tales | - |
dc.contributor.referee2 | Gemmell, Jonathan | - |
dc.contributor.referee3 | Giacomin, João Carlos | - |
dc.contributor.referee4 | Freitas, Edison Pignaton de | - |
dc.description.resumo | Dispositivos móveis são comuns em todo o mundo, mesmo em países com acesso limitado à internet, inclusive quando desastres naturais intenrrompem o acesso a uma infraestrutura centralizada. Este acesso permite a troca de informações em um ritmo incrível e através de grandes distâncias. No entanto, essa riqueza de informações pode frustrar os usuários a medida que são inundados com dados irrelevantes ou indesejados. Os sistemas de recomendação ajudam a aliviar o peso para computar cada perfil. Este projeto apresenta uma nova abordagem de sistema de recomendação de filtragem colaborativa baseada em uma rede distribuída oportunista. Algoritmos de filtragem colaborativa são amplamente utilizados em muitos sistemas online. Geralmente, o computação desses sistemas de recomendação é realizado em um servidor central, controlado pelo provedor, exigindo conexão constante a internet para coletar e computar dados. Entretanto, em muitos cenários, essas restrições não podem ser garantidas ou mesmo desejadas. No sistema de recomendação proposto, os usuários compartilham informações por meio de uma rede oportunista independente de conexão a internet dedicada. Utilizando tecnicas de recomendação centralizada de filtragem colaborativa como base, avaliamos dois cenários simulados compostos por diferentes velocidades de movimento e parâmetros de troca de dados. Nossos resultados demonstram que, em um período de tempo relativamente curto, o sistema de recomendação distribuído em redes oportunistas podem obter resultados semelhantes a um sistema centralizado tradicional. Além disso, notamos que a velocidade com que o sistema de recomendação oportunista se estabiliza dependendo de vários fatores, incluindo densidade dos usuários, velocidade de movimento e padrões dos usuários, e estratégias de transmissão. Em trabalhos futuros analisaremos novas estratégias e conjuntos de dados, da mesma forma, aumentaremos o número de usuários adicionando diferentes cenários. | pt_BR |
dc.publisher.department | Departamento de Ciência da Computação | pt_BR |
dc.subject.cnpq | Ciência da Computação | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/3645557990926486 | pt_BR |
Aparece nas coleções: | Ciência da Computação - Mestrado (Dissertações) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO_Distributed recommender systems on an opportunistic network environment.pdf | 1,06 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.