Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/56323
Registro completo de metadados
Campo DCValorIdioma
dc.creatorAfridi, Muhammad Siddique-
dc.date.accessioned2023-03-24T18:59:00Z-
dc.date.available2023-03-24T18:59:00Z-
dc.date.issued2023-03-24-
dc.date.submitted2023-01-27-
dc.identifier.citationAFRIDI, M. S. One or millions: how much does a microbiologically-buffered soil withstand chemical and biological pesticides? 2023. 208 p. Tese (Doutorado em Agronomia/Fitopatologia)–Universidade Federal de Lavras, Lavras, 2023.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/56323-
dc.description.abstractDisease suppressive soil is defined as a type of soil where the pathogen cannot establish or persist, or causes only minimal damage to crops, due to the presence of specific microorganisms and their activity in the soil, despite the persistence of pathogens in the soil. Disease suppressive soils substantially contribute to plant protection against various soil-borne plant pathogens such as bacteria, fungi, oomycetes, and nematodes. The foundation of specific disease suppression in most soils affiliates commonly to soil microbial communities. Therefore, the soil microbiota of suppressive soils is considered one of the radical factors contributing to disease suppressiveness against soil-borne diseases. To date, a multitude of microbial taxa and genes have been documented as central players in participating disease suppressiveness of soils. Still, the dominant genera, their sensitivity to alien biocontrol advocacy, agrochemicals and the complexity of microbiome interactions and their underlying mechanisms remain elusive for most disease suppressive soils. The main objective of the current research is to manipulate the existing suppressive soil microbiome through the introduction of various biological control agents and agrochemicals to explore the microbiome functionality towards soil-born (root-knot) nematodes disease. Suppressive soil assay revealed that suppressive soil significantly reduced galls-1 (14.25%) and egg masses (74.85%) in relation to sterilized soil. Intriguingly suppressive soil microbiome manipulation by biological control agent Bacillus velezensis strain BMH intervened in the microbial functions and reduced its suppressiveness. BMH inoculated suppressive soil significantly increased the galls-1 and eggs-1 32% and 47.96% respectively as compared to un-inoculated suppressive soil. Interestingly, suppressive soil slurry blending with antibiotics (Streptomycin 100 ppm) and fungicide (Cyproconazole 100 ppm) significantly modulated the soil microbiome functionality. Soil slurry mixed with antibiotics (and fungicide significantly increased the number of galls-1 174.23% and 87.79% respectively as compared to the untreated slurry. Following the same pattern, antibiotics and fungicide inoculation significantly increased the number of egg masses by 276.24% and 38.17% respectively as compared to the untreated slurry. Biocontrol based on bacteria such as Quatrzo (Bacillus subtilis; Bacillus licheniformis), Biobac (Bacillus subtilis), Onix (Bacillus methylotrophicus) and Rizos(Bacillus subtilis) turbulent the soil microbiome performance and insignificantly increased the galls and eggs mass index in relation to suppressive soil. To understand and explore the intrinsic fundamental candidates of the disease suppressive soil, the research promoted to the next level and recovered the responsible candidates from the reported suppressive soil and deciphered their potential role against root-knot nematode (RKN) Meloidogyne incognita in the tomato plant. A total of 42 bacterial strains were isolated from the suppressive soil and 18 of them were identified with high potential to control M. incognita. The isolates were sequenced based on 16S rRNA and identified 6 different genera namely Bacillus, Pseudomonas, Leclercia, Paenarthrobacter, Pantoea, and Exiguobacterium. Eighteen bacteria of six different genera were selected based on preliminary screening. The plant was inoculated with strains Bacillus sp. P10, Bacillus sp. P16, Bacillus sp. P19, and Bacillus sp. P21 significantly reduced the root galling 47% and the significant average reduction of egg mass was recorded 75.5% in relation to control. Three Pseudomonas sp. P17, Pseudomonas sp. X11, and Pseudomonas sp. X18 exhibited high biocontrol efficacy and significantly reduced the galls and egg masses 54% and 75% in both trials as compared to the control. The isolates such as Leclercia sp. P12, Leclercia sp. P18 and Leclercia sp. P20 exhibited high potential and consistency in controlling gall and egg biomass index in both trials the significant reduction was observed in root galling 47% and egg biomass index 70% as compared to the untreated plants. The bacterial strain, Paenarthrobacter sp. X12 showed consistency and maintained the biocontrol capability and significantly reduced the number of galls and egg biomass 57% and 89% respectively in rlation to uninoculated plant. Additionally, all six genera' volatile organic compounds (VOCs) and metabolites in cell-free supernatants had significant effects against the plant pathogens M. incognita, Fusarium oxysporum, and Rhizoctonia solani, but only five strains Pseudomonas sp. P7, Pseudomonas sp. X11, Bacillus sp. P10, Bacillus sp. P21, and Leclercia sp. P12 significantly inhibited the growth of Ralstonia solanacearum. Moreover, all bacterial isolates inherit nematicidal activities and dramatically reduced the egg hatching. These findings recommend that exogenous biological control agents, biostimulants and agrochemicals massively perturb the microbiome structure, composition, ecological and biological activities and detract or infertile the endogenous microbiota functionality. The study aimed to evaluate the biocontrol efficacy of biocontrol products against soybean cyst-nematode (SCN) employing two seed or furrow treatments under field conditions. The commercially-available biological products based on Pochonia chlamydosporua (CEPA PC-10) (Rizotec), Bacillus methylotrophicus UFPEDA 20 (Onix) and Trichoderma koningiopsis GF362 (not commercially available) were applied as seed treatment or in-furrow upon planting. The total number of females in root, cysts, eggs, J2 population (%) eggs/cyst and J2 population (%) mortality rate at 30 and 60 days after sowing as well as plant yield were assessed in two consecutive years, but no significant differences were observed between control and bioproducts applied treatments. Additionally, we evaluated the diversity and community composition of bacteria, fungi and eukaryotes in the rhizosphere soil of bioproducts treated plants and the dominant phyla in bacterial, fungal and eukaryotic community were Proteobacteria, Acidobacteria Actinobacteria, Ascomycota, Basidiomycota, Mortierellomycota, and Ascomycota, Cercozoa respectively in both consecutive years. Overall, no significant difference was observed in bacterial, fungal, and eukaryotic community's diversity in both years of data. The co-occurrence network unearthed that bacterial, fungal and eukaryotic species formed a network structure of high complexity in all bioproducts applied treatments. Our findings suggest that the introduction of exogenous beneficial microbes into field conditions is unable to modulate overall the microbial structure but the selective recruitment of key microbial taxa, some of which is also implicated in the nematode suppressiveness. The aim of this study was to analyze the effects of the biological control agent based bioproducts and chemical nematicides at different combination on root-knot nematodes and the microbial community profiling of the coffee plant rhizomicrobiome in a field trial. All the biological control products and chemical nematicide had not shown significant impact on root-knot nematodes control between control and treatments. The total number of number of galls-1 and eggs-1 and plant yield were assessed in two consecutive years, but no significant differences were observed between control and bioproducts applied treatments. Additionally, we evaluated the diversity and community composition of bacteria, fungi and eukaryotes in the rhizosphere soil of bioproducts treated plants and the dominant phyla in bacterial, fungal and community were, Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota, Mortierellomycota, and Ascomycota, Cercozoa respectively in both consecutive years. Overall, no significant difference was observed in bacterial, fungal, and eukaryotic community's diversity in both years of data. The co-occurrence network unearthed that bacterial, fungal and eukaryotic species formed a complicated network structure in all bioproducts applied treatments. Our findings assist in comprehending the introduction of exogenous beneficial microbes into field conditions that exerted selective recruitment implicated in nematode parasitism.pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectMicrobioma do solopt_BR
dc.subject16S rRNA genept_BR
dc.subjectRotação de culturaspt_BR
dc.subjectSupressividade do solopt_BR
dc.subjectSoil microbiome manipulationpt_BR
dc.subjectGene 16S rRNApt_BR
dc.subjectSoil-borne diseasept_BR
dc.subjectBiological control agent (BCA)pt_BR
dc.subjectBiopesticidespt_BR
dc.subjectSoybeanpt_BR
dc.subjectCoffeept_BR
dc.subjectSustainable disease managementpt_BR
dc.titleOne or millions: how much does a microbiologically-buffered soil withstand chemical and biological pesticides?pt_BR
dc.title.alternativeUm ou milhões: quanto um solo microbiologicamente tamponado resiste a pesticidas químicos e biológicos?pt_BR
dc.typetesept_BR
dc.publisher.programPrograma de Pós-graduação em Agronomia/Fitopatologiapt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Medeiros, Flávio Henrique Vasconcelos de-
dc.contributor.referee1Souza, Jorge Teodoro de-
dc.contributor.referee2Nascimento, Luciana Cordeiro-
dc.contributor.referee3Martins, Samuel Júlio-
dc.contributor.referee4Amna-
dc.description.resumoO solo supressivo a doenças é definido como um tipo de solo onde o patógeno não pode se estabelecer ou persistir, ou causa apenas danos mínimos às culturas, devido à presença de microrganismos específicos e sua atividade no solo, apesar da persistência de patógenos no solo. Os solos supressivos a doenças contribuem substancialmente para a proteção das plantas contra vários patógenos de plantas habitantes do solo, como bactérias, fungos, oomicetos e nematóides. A base da supressão a doenças específicas na maioria dos solos geralmente está associado às suas comunidades microbianas mas sua relação com a aplicação exógena de produtos biológicos e químicos ao longo do tempo ainda não está clara. Os objetivos da pesquisa atual foram de manipular o microbioma supressivo do solo existente por meio de agentes de controle biológico e agroquímicos para explorar a funcionalidade do microbioma em relação aos nematóides parasitos Meloidogyne spp. em tomate e cafeeiro e Heterodera glycines em soja. O solo natural reduziu s as galhas-1 (14,25%) e massas de ovos (74,85%) de tomateiro em relação ao solo esterilizado. No entanto, o tratamento do solo supressivo a antibiótico (Estreptomicina 100 ppm) , fungicida (Ciproconazol 100 ppm) ou a combinação dos dois também reduziu a funcionalidade do microbioma do solo, sendo o efeito dos antibióticos ou sua combinação com o fungicida os de maior efeito na redução da supressão. De forma semelhante, o solo nativo tratado com Bacillus velezensis BMH reduziu sua supressividade, o que não aconteceu no solo esterilizado. O efeito deletério não aconteceu com o tratamento com produtos comerciais registrado para este alvo. Este solo supressivo foi então usado para determinar a contribuição de populações específicas de bactérias na supressão. Um total de 42 cepas bacterianas foram isoladas do solo supressivo e 18 delas foram identificadas com alto potencial para controlar M. incognita. Além disso, seis das bactérias promissoras produziram compostos orgânicos voláteis (VOCs) e metabólitos em sobrenadantes livres de células com efeitos de mortalidade a nematóide M. Incognita e inibição do crescimento de fungos fitopatogênicos: Fusarium oxysporum e Rhizoctonia solani. Em campo, os produtos biológicos comerciais a base de Pochonia chlamydosporua (CEPA PC-10) (Rizotec), Bacillus methylotrophicus UFPEDA 20 (Onix) e Trichoderma koningiopsis GF362 (não disponível comercialmente) foram aplicados como tratamento de sementes ou em sulco no plantio. O número total de fêmeas na raiz, cistos, ovos, população J2 (%) ovos/cisto e população J2 (%) taxa de mortalidade aos 30 e 60 dias após a semeadura, bem como o rendimento das plantas foram avaliados em dois anos consecutivos, mas não diferenças foram observadas entre os tratamentos controle e bioprodutos aplicados. Além disso, a composição da comunidade de bactérias, fungos e eucariotos no solo da rizosfera de plantas tratadas com bioprodutos e os filos dominantes na comunidade bacteriana, fúngica e eucariótica foram Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota, Basidiomycota, Mortierellomycota e Ascomycota, Cercozoa respectivamente em ambos os anos. A rede de coocorrência revelou que espécies bacterianas, fúngicas e eucarióticas formaram uma estrutura de rede de alta complexidade em todos os tratamentos com bioprodutos aplicados. De forma semelhante, em cafeeiro, a aplicação continuada de agentes de biocontrole a base de Trichoderma asperellum, Bacillus subtilis e B. Methylotrophicus, o nematicida químico cadusafós, uma combinação de ambos, resultaram em alterações do microbioma de raízes do cafeeiro. As comunidades predominantes de organismos foram Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota, Mortierellomycota e Ascomycota, Cercozoa, respectivamente em ambos os anos consecutivos e, diferentementedo observado para soja, a rede de ocorrência teve complexidade reduzida comparada ao controle quando da adoção de agentes de biocontrole. Nossas descobertas ajudam a compreender que a introdução de micróbios benéficos exógenos em condições de campo é incapaz de modular a microbiota existente e nenhum impacto significativo foi exercido por eles na remodelação do microbioma da rizosfera e propoõe marcadores que podem ser identificados para ação de recrutamento microbiano em soja e em cafeeiro.pt_BR
dc.publisher.departmentDepartamento de Fitopatologiapt_BR
dc.subject.cnpqFitopatologiapt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4905041837351327pt_BR
Aparece nas coleções:Agronomia/Fitopatologia - Doutorado (Teses)



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.