Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/57065
Registro completo de metadados
Campo DCValorIdioma
dc.creatorFaria, Álvaro José Gomes de-
dc.creatorSilva, Sérgio Henrique Godinho-
dc.creatorLima, Luiza Carvalho Alvarenga-
dc.creatorAndrade, Renata-
dc.creatorBotelho, Lívia-
dc.creatorMelo, Leônidas Carrijo Azevedo-
dc.creatorGuilherme, Luiz Roberto Guimarães-
dc.creatorCuri, Nilton-
dc.date.accessioned2023-06-26T16:18:02Z-
dc.date.available2023-06-26T16:18:02Z-
dc.date.issued2023-
dc.identifier.citationFARIA, Á. J. G. de et al. Rapid elemental prediction of heterogeneous tropical soils from pXRF data: a comparison of models via linear regressions and machine learning algorithms. Soil Research, [S.l.], 2023.pt_BR
dc.identifier.urihttps://www.publish.csiro.au/SR/SR22168pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/57065-
dc.description.abstractContext: USEPA 3051a is a standard analytical methodology for the extraction of inorganic substances in soils. However, these analyses are expensive, time-consuming and produce chemical residues. Conversely, proximal sensors such as portable X-ray fluorescence (pXRF) spectrometry reduce analysis time, costs and consequently offer a valuable alternative to laboratory analyses. Aim: We aimed to investigate the feasibility to predict the results of the USEPA 3051a method for 28 chemical elements from pXRF data. Methods: Samples (n = 179) representing a large area from Brazil were analysed for elemental composition using the USEPA 3051a method and pXRF scanning (Al, Ca, Cr, Cu, Fe, K, Mn, Ni, P, Pb, Sr, Ti, V, Zn and Zr). Linear regressions (simple linear regression – SLR and stepwise multiple linear regressions – SMLR) and machine learning algorithms (support vector machine – SVM and random forest – RF) were tested and compared. Modelling was developed with 70% of the data, while the remaining 30% were used for validation. Key results: Results demonstrated that SVM and RF performed better than SLR and SMLR for the prediction of Al, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Mg, Mn, Mo, P, Pb, Sn, Sr, Ti, Tl, V, Zn and Zr; R2 and RPD values ranged from 0.52 to 0.94 and 1.43 to 3.62, respectively, as well as the lowest values of RMSE and NRMSE values (0.28 to 0.70 mg kg−1). Conclusions and implications: Most USEPA 3051a results can be accurately predicted from pXRF data saving cost, time, and ensuring large-scale routine geochemical characterisation of tropical soils in an environmentally friendly way.pt_BR
dc.languageen_USpt_BR
dc.publisherCsiro Publishingpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceSoil Researchpt_BR
dc.subjectAcid digestionpt_BR
dc.subjectEnvironmental modellingpt_BR
dc.subjectPedologypt_BR
dc.subjectProximal sensorspt_BR
dc.subjectSoil analysispt_BR
dc.subjectSoil chemistrypt_BR
dc.subjectSoil variabilitypt_BR
dc.subjectUSEPA 3051apt_BR
dc.titleRapid elemental prediction of heterogeneous tropical soils from pXRF data: a comparison of models via linear regressions and machine learning algorithmspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.