Please use this identifier to cite or link to this item:
Title: Intermolecular covalent interactions: nature and directionality
Keywords: Bond theory
Chalcogen bonds
Density functional calculations
Halogen bonds
Pnictogen bonds
Issue Date: 2023
Citation: SANTOS, L. de A. et al. Intermolecular covalent interactions: nature and directionality. Chemistry-A European Journal, [S.l.], v. 29, n. 14, 2023.
Abstract: Quantum chemical methods were employed to analyze the nature and the origin of the directionality of pnictogen (PnB), chalcogen (ChB), and halogen bonds (XB) in archetypal FmZ⋅⋅⋅F− complexes (Z=Pn, Ch, X), using relativistic density functional theory (DFT) at ZORA-M06/QZ4P. Quantitative Kohn-Sham MO and energy decomposition analyses (EDA) show that all these intermolecular interactions have in common that covalence, that is, HOMO−LUMO interactions, provide a crucial contribution to the bond energy, besides electrostatic attraction. Strikingly, all these bonds are directional (i.e., F−Z⋅⋅⋅F− is approximately linear) despite, and not because of, the electrostatic interactions which, in fact, favor bending. This constitutes a breakdown of the σ-hole model. It was shown how the σ-hole model fails by neglecting both, the essential physics behind the electrostatic interaction and that behind the directionality of electron-rich intermolecular interactions. Our findings are general and extend to the neutral, weaker ClI⋅⋅⋅NH3, HClTe⋅⋅⋅NH3, and H2ClSb⋅⋅⋅NH3 complexes.
Appears in Collections:DQI - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.