Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/58344
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMilitani, Isabela Aparecida-
dc.creatorMancini, Daiana Teixeira-
dc.creatorCastro, Alexandre Alves de-
dc.creatorRamalho, Teodorico de Castro-
dc.date.accessioned2023-09-14T18:37:11Z-
dc.date.available2023-09-14T18:37:11Z-
dc.date.issued2023-
dc.identifier.citationMILITANI, I. A. et al. Oxidative biotransformation of organophosphotioate pesticides and acetylcholinesterase enzymatic inhibition. Letters in Drug Design & Discovery, [S.l.], 2023.pt_BR
dc.identifier.urihttps://www.eurekaselect.com/article/131425pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/58344-
dc.description.abstractIntroduction: Pesticides have lethal properties, capable of controlling or eliminating a living organism; they block the organisms' vital metabolic processes. They cause serious problems for human health, as they are highly toxic. The most used pesticides that are considered toxic are known as organophosphothioates (OP/P=S) in their commercialized form and organophosphates (OP/P=O) in their active form. These compounds have been the subject of studies on their metabolism and toxicology. According to research, these pesticides' toxicity is increased when oxidative metabolic desulfurization reactions occur, with the P=S bond being transformed into a P=O bond. This toxicity is due to the ability of OP/P=O species to inhibit the human acetylcholinesterase enzyme (HssAChE). Methods: To study the oxidative biotransformation of OP/P=S pesticides and the inhibition of the HssAChE enzyme by OP/P=S and OP/P=O using the molecular docking technique and QM/MM calculations. Results: The theoretical results showed that parathion is the compound with the greatest capacity to transform its P=S bonds into P=O bonds, thus forming the active paraoxon metabolite in the oxidative biotransformation process. In the HssAChE inhibition by OP/P=S and OP/P=O, our results showed that of all the compounds investigated, those with the highest inhibitory activities are parathion, paraoxon, malathion, diazoxon, chlorpyrifos and omethoate. Conclusion: This study was essential due to the lack of information in the literature about the oxidative biotransformation process of OP/P=S pesticides and the ability of these compounds to inhibit HssAChE. With this study, it was possible to observe that, in the oxidative biotransformation, chlorpyrifos and parathion have greater capacities to transform into their active metabolites and in the inhibition of the HssAChE enzyme, it was possible to observe that not all OF/P=O are the ones with the highest abilities to inhibit the HssAChE enzyme.pt_BR
dc.languageen_USpt_BR
dc.publisherLetters in Drug Design & Discoverypt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceLetters in Drug Design & Discoverypt_BR
dc.titleOxidative biotransformation of organophosphotioate pesticides and acetylcholinesterase enzymatic inhibitionpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DQI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.