Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/59199
Título: Análise de similaridade genômica entre diferentes coronavírus: a contribuição dos métodos K-mer e natural vector
Título(s) alternativo(s): Genomic similarity analysis among different coronaviruses: the contribution of K-mer and natural vector methods
Autores: Sáfadi, Thelma
Yotoko, Karla Suemy Clemente
Nogueira, Denismar Alves
Guimarães, Paulo Henrique Sales
Lima, Renato Ribeiro de
Fernandes, Tales Jesus
Palavras-chave: Genoma
Método livre de alinhamento
Pandemia
Free alignment method
Genome
Pandemic
Data do documento: 9-Ago-2024
Editor: Universidade Federal de Lavras
Citação: PAIVA, D. de A. Análise de similaridade genômica entre diferentes coronavírus: a contribuição dos métodos K-mer e natural vector. 2024. 65 p. Tese (Doutorado em Estatística e Experimentação Agropecuária) - Universidade Federal de Lavras, Lavras, 2024.
Resumo: Studies involving genomic sequence alignment methods have existed since the 1970s. However, the process of aligning these sequences remains relatively time-consuming and requires more powerful computers, both for analysis with viral genomes and particularly with bacterial genomes. In this regard, alignment-free methods can overcome this issue by achieving the same level of accuracy with significantly reduced analysis time. This thesis conducted studies considering two alignment-free methods, one based on k-mer and the other, Natural Vector, in viral genome classification. The k-mer method maintained precision and achieved a shorter analysis time, accurately segregating the groups corresponding to variants and lineages of SARS-CoV-2 sequences compared to the traditional alignment method. The Natural Vector method accurately classified different species of coronaviruses while also considering less time. As each method demonstrated precision and analysis time was a critical factor, it is evident that both methods complement each other in classifying new viruses: Natural Vector correctly identifies the species of coronavirus under study, while k-mer succinctly groups the viruses within the species. Swift classification of coronavirus sequences is paramount for epidemic control, especially during viral outbreaks, as analysis time is crucial in such scenarios.
Descrição: Arquivo retido, a pedido da autora, até maio de 2025.
URI: http://repositorio.ufla.br/jspui/handle/1/59199
Aparece nas coleções:Estatística e Experimentação Agropecuária - Doutorado (Teses)

Arquivos associados a este item:
Não existem arquivos associados a este item.


Este item está licenciada sob uma Licença Creative Commons Creative Commons