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GENERAL ABSTRACT 

Drought is one of the major causes of severe yield losses worldwide, 

and it is considered as an important limiting factor for maize production in 

tropical areas. Maize breeding for drought tolerance is usually difficult, time 

consuming and expensive, since the hybrids need to be evaluated in several 

environments. In this context, an accurate prediction of the performance of 

untested hybrids in one or more environments is essential to maximize 

genetic gains. The main goal of this study was to evaluate the accuracy of 

genomic selection to predict the performance of untested maize single-cross 

hybrids for drought tolerance, using a statistical-genetics model that account 

for genotype-by-environment interaction, additive and dominance effects. 

Phenotypic data of five drought tolerance traits were measured in 308 single-

cross hybrids in eight trials, comprising water-stressed (WS) and well-

watered (WW) conditions over two years and two locations, in Brazil. The 

genotypes of the hybrids were inferred based on the genotypes of their 

parents (inbred lines), using SNP (Single Nucleotide Polymorphism) data 

obtained via GBS (genotyping-by-sequencing). Genomic selection analysis 

was done using GBLUP (Genomic Best Linear Unbiased Prediction) by 

fitting a factor analytic multiplicative mixed model. Our results showed 

differences in the predictive accuracy between additive (A) and 

additive+dominant (AD) models for the five traits in both water conditions. 

However, these differences were more evident under WS conditions. For 

grain yield (GY), the AD model had a predictive accuracy two times bigger 

than the A model. Using factor analytic mixed models, including additive 

and dominance effects, it was possible to investigate the stability of the 

additive and dominance effects across environments, as well as, the additive 

and dominance-by-environment interaction, with interesting applications for 

parental and hybrid selection. In addition, combining WW and WS trials 

increased the prediction accuracy of untested hybrids in WW and/or WW 

conditions. These results contribute to a better understanding about the 

genetic architecture of important traits related to drought tolerance in maize, 

and highlight the importance of dominance effects for grain yield genomic 

prediction in single-cross hybrids under both water regimes. The models 

applied in this study can be easily extended to other crops for which the 

genotypes are measured in multiple environments and the dominance effects 

exhibit an important role for heterosis. 

 

 



 

 RESUMO GERAL 

A seca é uma das principais causas de perdas de produção em todo o mundo, 

e é considerada um importante fator limitante para a produção de milho em 

áreas tropicais. Melhoramento de milho para tolerância ao estresse hídrico é 

geralmente difícil, demorado e caro, uma vez que os híbridos têm de ser 

avaliados em vários ambientes. Neste contexto, uma predição precisa do 

desempenho dos híbridos simples não avaliados em um ou mais ambientes é 

essencial para maximizar os ganhos genéticos. Objetivou-se neste trabalho 

avaliar a acurácia de predição da performance de híbridos simples não 

avaliados para tolerância à seca, com o uso de um modelo genético 

estatístico que considera os efeitos da interação genótipos por ambientes e 

efeitos aditivos e dominantes. Dados fenotípicos para cinco caracteres foram 

avaliados em 308 híbridos em oito ambientes nas condições de seca e 

irrigado em dois anos e dois locais no Brasil. Os genótipos dos híbridos 

simples foram inferidos a partir do genótipo de seus genitores (linhagens) 

com o uso de SNP (Single Nucleotide Polymorphism) via GBS (Genotyping 

by Sequencing). As análises de seleção genômica foram feitas usando o 

GBLUP (Genomic Best Linear Unbiased Prediction) por meio do modelo 

misto multiplicativo fator analítico. Diferenças foram observadas na acurácia 

preditiva para modelos aditivos (A) e aditivos+dominantes (AD) para os 

cinco caracteres avaliados nas duas condições hídricas.  No entanto, essas 

diferenças foram mais evidentes nas condições de seca. Para produção de 

grãos (GY) o modelo AD obteve uma acurácia duas vezes maior que o 

modelo A. Com o uso do modelo misto multiplicativo fator analítico com 

efeitos aditivos e dominantes, foi possível quantificar a estabilidade de 

efeitos aditivos e dominantes, bom como a interação aditiva e dominante 

entre ambientes. Esses resultados têm grande aplicação na seleção parental e 

seleção de híbridos. Além disso, combinando ambientes WW e WS houve 

um aumento na predição de híbridos simples não testados em ambas as 

condições hídricas. Esses resultados contribuem para um maior 

entendimento sobre a arquitetura genética dos caracteres estudados nas 

condições de seca e irrigado, e destaca a importância de efeitos de 

dominância na predição de híbridos simples não avaliados em ambas as 

condições híbridas. Os modelos utilizados neste estudo podem ser facilmente 

estendidos para outras culturas, em que os genótipos são avaliados em vários 

ambientes e os efeitos de dominância apresentam um papel importante para a 

heterose. 

 



 

SUMMARY 

 

CHAPTER I ............................................................................................ 11 

1. INTRODUCTION ........................................................................... 11 

2 LITERATURE REVIEW ............................................................... 14 

2.1 Breeding for drought tolerance in maize .......................................... 14 

2.2 Genotype-by-environment interaction in genomic selection ............. 15 

2.3 Partition of the genetic variance in genomic selection studies ........... 17 

2.4 Application of genomic selection in maize breeding ......................... 18 

REFERENCES ....................................................................................... 20 

CHAPTER II .......................................................................................... 26 

Genotype-by-environment interaction and genetic correlation 

between drought tolerance traits in maize via factor analytic 

multiplicative mixed models .................................................................. 26 

ABSTRACT ............................................................................................ 27 

INTRODUCTION .................................................................................. 28 

MATERIAL AND METHODS ............................................................. 30 

Genetic material .................................................................................... 30 

Phenotypic data ..................................................................................... 30 

Statistical analyses ................................................................................. 32 

Single-environment trial analyses ...................................................... 33 

Multi-environment trial analyses ....................................................... 33 

Multi-trait multi-environment trial analyses ...................................... 34 

RESULTS ................................................................................................ 35 

Single-environment trial analyses .......................................................... 35 

Multi-environment trial analyses ........................................................... 36 

Multi-trait multi-environment trial analyses ......................................... 38 

DISCUSSION .......................................................................................... 38 

CONCLUSION ....................................................................................... 42 



 

REFERENCES ....................................................................................... 43 

APPENDIX ............................................................................................. 47 

SUPPLEMENTARY INFORMATION ............................................... 53 

CHAPTER III ......................................................................................... 58 

Improving accuracies of genomic predictions for drought tolerance in 

maize by joint modeling of additive and dominance effects in multi-

environment trials ................................................................................. 58 

ABSTRACT ............................................................................................ 59 

INTRODUCTION .................................................................................. 60 

MATERIAL AND METHODS ............................................................. 63 

Phenotypic data ..................................................................................... 63 

Genotypic data ...................................................................................... 64 

Genomic relationship matrices .............................................................. 65 

Genomic selection analyses .................................................................... 66 

Multi-environment trial analyses ....................................................... 66 

Cross-validation scheme ........................................................................ 70 

RESULTS ................................................................................................ 71 

Estimates of genetic parameters using high-density SNP markers ......... 71 

Accuracy of MET-GS models for drought tolerance related traits......... 72 

GxE interaction model for additive and additive+dominance effects ..... 73 

DISCUSSION .......................................................................................... 74 

Partition of the genetic variance through SNP markers ......................... 74 

Accuracy of GS models for drought tolerance traits .............................. 76 

GxE interaction model for additive and additive+dominance effects ..... 77 

Implementation of GS for drought tolerance breeding programs in 

maize ..................................................................................................... 79 

REFERENCES ....................................................................................... 82 

SUPPLEMENTARY INFORMATION ............................................... 93



11 

CHAPTER I 

1 INTRODUCTION 

 

Genotyping techniques have been developed in a large scale and with a 

reduced cost. Associated with the development of statistical methods and 

computational resources for processing large data sets, it has been proposed a 

new approach for assisted selection for quantitative traits, known as genomic 

selection (GS) or genome wide selection (GWS) (MEUWISSEN; HAYES; 

GODDARD, 2001). Using the information of molecular markers distributed 

throughout the genome, GS determines the breeding values of selection 

candidates, based on a statistical model previously adjusted and validated in a 

training population, containing genotypic and phenotypic data. Thus, the 

selection of individuals with better performance can be made by using a model, 

with the estimated markers effects, to predict their breeding values without the 

need for phenotypic evaluations. 

The benefits of GS are more evident when traits are difficult, time 

consuming and/or expensive to measure, or when several environments need to 

be evaluated. In maize, for example, the development of drought-tolerant 

cultivars is an effective strategy to increase yield under tropical conditions, once 

the water stress is a major cause of yield losses. As drought tolerance is a 

quantitative trait and one selection cycle is normally performed per year, the use 

of GS has a huge expectation to increase genetic gains. Additionally, the use of 

appropriate GS methods can provide accurate predictions even for untested 

genotypes, resulting in a considerable progress for breeding programs, due to the 

reduced number of genotypes tested in the field, reducing the phenotyping costs 

(KRCHOV; BERNARDO, 2015).  

Many QTL (quantitative trait loci) studies have been increased the 

knowledge about the genetic architecture of drought tolerance related-traits, but 
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none QTL with large effects has been reported (RIBAULT et al., 2009). Thus, 

GS could be an interesting approach to be applied to improve genetic gains, 

since GS uses the information of molecular markers distributed throughout the 

genome. In addition, GS doesn’t require structured populations (F2, three way, 

four way, backcross, double-haploids, recombinant inbreed lines) as QTL 

mapping does, making this approach an interesting option to be applied in a 

breeding program context. Moreover, drought tolerance related traits are usually 

measured in well-watered (WW) and water-stressed (WS) experiments across 

several years and locations, which requires the inclusion of genotype-by-

environment interaction (GxE) effects in multi-environment trial (MET) 

analysis.  

Understanding GxE is one of the greatest challenges faced by plant 

breeders. For drought tolerance, breeders search for genotypes that are stable 

under WS and WW conditions. In breeding programs, genotypes are evaluated 

in multiple environments, over years and locations. Therefore, appropriate 

statistical models that account for correlations across trials and deal with 

unbalanced data needs to be used. Many statistical models have been proposed 

to understand GxE in plant breeding. Recently, some studies have shown the 

advantages of GS models that incorporate GxE (BURGUEÑO et al., 2012; 

HESLOT et al., 2014; JARQUÍN et al., 2014; LOPEZ-CRUZ et al., 2015) for 

quantitative traits. For this purpose, factor analytic multiplicative mixed models 

allow fitting flexible variance and covariance components to model genetic and 

residual correlations between environments (PIEPHO 1997, 1998; SMITH; 

CULLIS; THOMPSON, 2001). However, these studies were limited to the 

incorporation of additive effects. 

 Estimation of additive and non-additive (dominance and epistasis) 

effects helps to improve the knowledge about the genetic architecture of target 

traits and to define optimal breeding strategies. Nevertheless, orthogonal 
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partitioning of genetic variance through molecular markers or pedigree is one 

important step to accurately estimate additive and non-additive effects. This 

partition, among other things, depends on the distribution of allele frequencies 

(HILL; GODDARD; VISSCHER, 2008) and the correct parametrization for 

genomic relationship matrices (VITEZICA; VARONA; LEGARRA, 2013; DA 

et al., 2014; ZHU et al., 2015). Although some studies have shown contribution 

of dominance effects to predictive accuracy (DA et al., 2014; BOUVET et al., 

2015), most GS models have been limited to the use of additive effects. 

Recently, genomic selection has been applied for drought tolerance in 

maize (ZYOMO; BERNARDO, 2013; BEYENE et al., 2015; ZHANG et al., 

2015). However, the majority of drought-tolerance GS studies did not consider 

models to deal with GxE, additive and non-additive effects simultaneously. 

Thus, the chapters in this thesis have the goal to provide more information about 

the genetic basis of drought tolerance in maize growing under tropical 

conditions and multiple environments, using multi-environment trial analysis for 

phenotypic and genotypic data via complex linear mixed models. 
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2 LITERATURE REVIEW 

 

2.1 Breeding for drought tolerance in maize 

 

Maize (Zea mays L.) is a cereal widely used for food and feed, 

highlighted as a crop of highest yield production around the word. In developing 

countries, mainly in Africa and Asia, maize is the third most important food 

source, after wheat and rice (Food and Agriculture Organization - FAO, 2012). 

Brazil is the world's third largest maize producer, with estimated 15.9 million 

hectares of cultivated area, and total production estimated at 67 million tons for 

the 2015/2016 harvest (Companhia Nacional de Abastecimento - CONAB, 

2016). Despite the increase of 10% in the second season cultivated area, the 

grain yield production was 24.7% lower due the water stress occurred in this 

season (CONAB, 2016).  

One of the alternatives to improve crop production, mainly in areas that 

are prone to water limitation, is breeding for drought tolerance. In breeding 

programs, phenotypic selection in water-stressed environments is important to 

achieve genetic gains under drought, effectively contributing to the development 

of new cultivars with yield stability in areas that are prone to water limitation 

(LOBELL et al., 2014; COOPER et al., 2014). Grain yield is a quantitative trait, 

therefore moderate to low heritability under stress conditions is common. Thus, 

availability of space and resources is required to increase experimental precision 

and genetic gains under stressed conditions (EDMEADES et al., 1999). 

Although genetic gain for drought tolerance has been achieved through 

phenotypic selection (LOBELL et al., 2014), there are still many challenges 

about drought tolerance, such as precise phenotyping and accurate understanding 

about the genetic basis of drought-tolerance traits, that must be overcome to 

improve the response to selection (SINCLAIR, 2011; COOPER et al., 2014). In 
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addition, in Brazil, second season maize areas are larger than the first season 

one, which emphasizes the importance of drought tolerance even more, since, in 

Brazil second season maize crops are prone to additional variation in rainfall, 

which can reduce grain yield due to water limitations. 

Many QTL studies have been published, with an important role about 

the genetic architecture of target traits for drought tolerance, but none QTL with 

large effects has been reported (RIBAULT et al., 2009). Given these results, and 

due to the reduced cost of genotyping, genomic selection comes up as an 

interesting option for drought tolerance breeding programs. Recently, some 

studies have been shown the advantage of GS for drought tolerance 

improvement (ZYOMO; BERNARDO, 2013; BEYENE et al., 2015; ZHANG et 

al., 2015). Comparison of GS and selection for secondary traits were made by 

Ziyomo and Bernardo (2013), showing the advantage of GS to increase genetic 

gains. Furthermore, Zhang et al. (2015) showed the advantage of using GxE in 

GS models for drought tolerance. However, to our knowledge, for drought 

tolerance in maize, there are no GS studies that have used models that can deal 

with GxE and account for additive and dominance effects simultaneously. 

 

2.2 Genotype-by-environment interaction in genomic selection 

 

Understanding the genotype-by-environment interaction is one of the 

hardest challenge faced by plant breeders. Since, genotypes do not have 

consistent behavior in different environments, GxE could be a complicating 

factor for breeders. However, Chaves (2001) says that "the GxE should be seen 

not as a problem or an undesirable factor, which effects should be minimized in 

a breeding program. In contrast, should be seen as a natural biological 

phenomenon, and we must know it well, to better take advantage of it in the 

selection process". Thus, for breeding programs, the knowledge about GxE 
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provides valuable information to evaluate genotype stability across 

environments, select genotypes to specific environments, evaluate breeding 

zones (or mega-environments), define target environments, define breeding 

strategies and maximize genetic gains. 

Many statistical models have been proposed to understand GxE in plant 

breeding, including linear, bilinear and multivariate models (CROSSA, 2012). 

Multivariate models such as the additive main effect and multiplicative 

interaction (AMMI, GAUCH, 1988) and the GGE Biplot (YAN, 2000) have 

been widely used to evaluate genotype stability and adaptability, and to define 

breeding zones (MALOSETTI; RIBAULT; VAN EEUWIJK, 2013). Complex 

multi-trait and/or multi-environment models have been implemented in plant 

breeding for multi-environment trial analyses using mixed models (PIEPHO 

1997, 1998; SMITH; CULLIS; THOMPSON, 2001; MEYER, 2009). These 

models allow fitting flexible variance and covariance components to model 

genetic and residual correlations between traits and/or environments. 

Several modelling approaches exist to statistically explore GxE. The 

most interesting ones consider modelling the s×s matrix of genetic variance-

covariance components between the s environments evaluated. Thus, with this 

matrix structure it is possible to have a good understanding of GxE and the 

genetic architecture for breeding traits, together with estimations of all 

environment-to-environment genetic correlations. One parsimonious way to 

model this genetic variance-covariance matrix is by using a factor analytic (FA) 

structure (PIEPHO, 1997, 1998; SMITH; CULLIS; THOMPSON, 2001). The 

FA variance-covariance structure is an approximation to the unstructured (UN) 

matrix but with a reduction in the number of parameters to be estimated, 

something that is particularly relevant when the number of environments is large 

(e.g. >5). Many studies have shown that FA models are good approximations 

and that they can be easily implemented in most breeding programs (MEYER, 
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2009; CULLIS et al., 2014; SMITH et al., 2015). Another advantage of the FA 

model is that it can be extended to estimate additive and non-additive effects 

simultaneously (KELLY et al., 2009).   

Recently, several studies have shown the advantages of GS models that 

incorporate GxE (BURGUEÑO et al., 2012; HESLOT et al., 2014; JARQUÍN et 

al., 2014; LOPEZ-CRUZ et al., 2015) for quantitative traits. A GS study 

performed by Burgueño et al. (2011) showed that FA models exhibited up to 6% 

of advantage in the predictive accuracy over models that considered the same 

variance and correlation across environments. Lopez-Cruz et al. (2015) showed 

that GS models that account for GxE had greater prediction accuracy than 

models that ignores GxE. For drought tolerance, Zhang et al. (2015) showed that 

the prediction accuracy increased when GxE was incorporated in the GS models 

for grain yield. It is known that, there are high levels of GxE for most of the 

quantitative traits faced by breeders, which highlight the importance of the 

inclusion of the GxE effect in GS models when dealing with MET data. 

  

2.3 Partition of the genetic variance in genomic selection studies 

 

Most genetic analyses focus on the estimation of additive or total 

genetic effects. However, the estimation of both additive and non-additive 

effects helps to improve the understanding of the genetic basis of target traits 

and to define optimal breeding strategies. Nevertheless, estimation of these two 

effects, and their corresponding variance components, is often difficult requiring 

appropriate mating designs and large number of observations, due to the lack of 

orthogonality often observed between these effects. However, some studies have 

shown that the orthogonality and predictability of both additive and non-additive 

effects is greatly improved by the use of molecular-based relationship matrices 

(MUÑOZ et al. 2014; NAZARIAN; GEZAN, 2016). Orthogonal partitioning of 
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genetic variance through molecular markers or pedigree is one important step to 

accurately estimate additive and non-additive effects. Orthogonal partitioning of 

genetic variance depends, among other things, on the distribution of allele 

frequencies (HILL; GODDARD; VISSCHER, 2008) and the correct 

parameterization for genomic relationship matrices (VITEZICA; VARONA; 

LEGARRA, 2013; DA et al., 2014; ZHU et al., 2015). 

Most GS studies have been limited to the estimation of additive effects. 

Although few studies had applied GS using additive-dominance models 

(AZEVEDO et al., 2015; BOUVET et al., 2015), GxE models (BURGUEÑO et 

al., 2012; LOPEZ-CRUZ et al., 2015) and also models for drought tolerance in 

maize (ZIYOMO; BERNARDO, 2013; BEYENE et al., 2015; ZHANG et al., 

2015), these studies do not fit complex linear models that incorporate GxE, 

additive and dominance effects simultaneously. Thus, it is not clear whether the 

use of additive and dominance effects can increase the accuracy to predict 

untested single-cross hybrids on drought tolerance breeding programs. 

 

2.4 Application of genomic selection in maize breeding 

 

Genomic selection can be applied at least in two contexts for drought-

tolerance breeding programs in maize. First, GS can be used for parental 

selection and for successive cycles of intermating and selection within breeding 

populations (normally, biparental populations). Under this scenario, GS can be 

used to perform more than one breeding cycle per year, increasing the genetic 

gains per unit of time. A similar approach has been applied by Beyene et al. 

(2015), who showed the advantage of this GS strategy over phenotypic selection 

to increase the genetic gains in drought tolerance breeding programs. Second, 

GS can be used to predict untested hybrids, an important role in maize breeding 

programs, which allow reducing the number of tested (phenotyped) hybrids in 
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breeding programs. In both scenarios described above, time and financial 

resources can be saved in genetic breeding programs. Recently, Krchov and 

Bernardo (2015) compared the amount of financial resources that can be saved 

using GS in a breeding program when compared to phenotyping costs, given that 

the genotyping costs are currently decreasing.  

Over the recent years, many statistical models have been proposed for 

GS in plant and animal breeding. Although comparisons between different GS 

models are important, the choice of an adequate training set is one of the most 

important steps to apply GS in a breeding program. Thus, in maize breeding, 

optimizing the composition of the training set, in terms of number of lines and 

hybrids per line, could further increase the prediction accuracy of untested 

hybrids (TECHNOW et al., 2014). Moreover, biparental or multiparental 

training populations can be used for the breeding value prediction of selection 

candidates within or across breeding populations (SCHULZ-STREECK et al., 

2012). 
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ABSTRACT 

Water deficit is one of the most common causes of severe crop production losses worldwide. 

The main goal of this study was to increase knowledge about the genetic basis of drought 

tolerance in maize (Zea mays L.) grown under tropical conditions through the estimation of 

genetic parameters in water-stressed (WS) and well-watered (WW) trials. For this, multi-

environment trial and multi-trait multi-environment trial analyses were performed based on 

linear mixed models using factor analytic variance-covariance structures. A total of 308 

hybrids plus four checks were evaluated in eight trials under WS and WW conditions across 

two years and two locations in Brazil. Combinations of water regime, location and year were 

designated as trials (or environments). The measured traits were grain yield (GY), ears per 

plot (EPP), anthesis-silking interval (ASI), female flowering time (FFT) and male flowering 

time (MFT). Our results indicated that estimates of the genetic parameters under WW were 

more accurate than those under WS conditions for most of the traits, and the genetic variances 

differed across WS and WW conditions. Modest genotype-by-environment interaction (GxE) 

was observed for FFT and MFT, with genetic correlations of 0.77 and 0.80, respectively, 

showing that it would be possible to make successful selections across WW and WS 

conditions for these traits. However, the GxE between WW and WS conditions for GY, EPP 

and ASI was high, with genetic correlations of 0.54, 0.48 and 0.60, respectively, which would 

limit the selection across conditions for these traits. Multi-trait multi-environment trial 

analyses can lead to an increase in the response to selection for drought-tolerance related 

traits in maize under water limited conditions.  
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INTRODUCTION 

Drought is one of the major causes of severe yield losses worldwide, and it is 

considered an important limiting factor for maize production in tropical areas (Ribault et al., 

2009; Edmeades, 2013). In breeding programs for drought tolerance, phenotypic selection 

under water-stressed (WS) environments is important to achieve genetic gains, effectively 

contributing to the development of new cultivars with yield stability in areas that are prone to 

water limitation (Lobell et al., 2014; Cooper et al., 2014). Grain yield is a quantitative trait, 

with moderate to low heritability under WS conditions, which requires an optimum number of 

replicates and plot size to minimize experimental error and increase experimental precision 

and, consequently, genetic gains through phenotypic selection (Edmeades et al., 1999). 

Despite the successful use of phenotypic selection in maize breeding for drought tolerance 

(Lobell et al., 2014), there are still many challenges that must be overcome to improve the 

response to selection; for example, the precise phenotyping and accurate understanding of the 

genetic basis of drought tolerance-related traits (Sinclair, 2011; Cooper et al., 2014). 

Strategies to improve the response to phenotypic selection depend on knowledge 

about the genetic basis of target traits, unveiled by genotype-by-environment interactions 

(GxE), genetic correlations between traits, quantitative trait loci (QTL) mapping and genome-

wide association studies (GWAS). For maize, several studies have reported estimates of the 

genetic parameters for traits related to drought tolerance, such as grain yield, ears per plant, 

male and female flowering times, anthesis-silking interval (ASI), stay-green, plant height, and 

other physiological and root morphology traits (Ribault et al., 2009; Tuberosa, 2012; 

Edmeades, 2103; Cooper et al., 2014). Some of the above traits exhibited high heritability and 

moderate to high correlations with the grain yield (Ziyomo and Bernardo, 2013; Farfan et al., 

2015; Oyekunle et al., 2015), indicating that the selection for secondary traits may lead to 

genetic gains for grain yield under water limited conditions. 

For breeding programs, knowledge about GxE provides valuable information to 

evaluate the genotype stability across environments, select genotypes for specific 

environments, evaluate breeding zones (or mega-environments), define target environments, 

and develop breeding strategies to maximize genetic gains. Understanding GxE is one of the 

greatest challenges faced by plant breeders. For drought tolerance, breeders continually search 



29 

for genotypes that are stable under water-stressed (WS) and well-watered (WW) conditions. 

Nevertheless, finding genotypes with good performance in both WW and WS conditions is a 

difficult task, since gene expression is not expected to be consistent across different water 

regimes. For maize, recent studies have reported high levels of GxE for grain yield under WS 

and WW trials (Malosetti et al., 2013; Farfan et al., 2015). These results indicate a weak 

concordance for the genotype rankings across different environments. 

Many statistical models have been proposed to understand the GxE in plant breeding, 

including linear, bilinear and multivariate models (Crossa, 2012). Multivariate models such as 

the additive main effect and multiplicative interaction (AMMI, Gauch, 1988) and the GGE 

biplot (Yan, 2000) have been widely used to evaluate the genotype stability and adaptability 

and to define breeding zones (Malosetti et al., 2013). Complex mixed models have been used 

in plant breeding for multi-environment trial (MET) analyses (Piepho 1997, 1998; Smith et 

al., 2001; Meyer, 2009). These models allow fitting flexible variance and covariance 

components to model genetic and residual correlations between environments. 

For MET analyses, the most flexible and informative model specifies different 

covariances between pairs of environments and specific variances for each environment 

through an unstructured (UN) variance-covariance matrix for the effect of genotypes within 

environments. In this model, a genetic correlation (or covariance) between any pair of 

environments is estimated. However, the number of parameters grows rapidly as the number 

of environments increases, enabling the fitting of an UN model (Piepho, 1997, 1998; Smith et 

al., 2001). Factor analytic (FA) variance-covariance structures approximate UN models, with 

a reduction in the number of parameters needed to be estimated. In multivariate statistics, FA 

is a variable reduction technique that fits a large number of variables into a few unobserved 

variables (or factors). Many studies have shown the advantages and applications of using FA 

models in plant breeding (Kelly et al., 2007; Meyer, 2009; Cullis et al., 2014; Smith et al., 

2015). However, to our knowledge, factor analytic multiplicative mixed models have not yet 

been used to study the GxE and genetic correlations between drought tolerance traits in maize 

in the context of multi-trait and/or multi-environment trial analyses. 

In maize, some studies have reported the estimation of genetic parameters under WS 

and WW environments for different drought tolerance-related traits (Ziyomo and Bernardo, 



30 

2013; Oyekunle et al., 2015). However, field experiments in tropical areas are limited, and in 

Brazil, drought tolerance is relevant mainly for second-season crops, which are often prone to 

strong variations in rainfall, affecting the grain yield. In addition, few studies have taken full 

advantage of the machinery of complex linear mixed models, such as models that can 

simultaneously fit different genetic and residual variance components for each environment 

and/or trait and also genetic and residual correlations between pairs of environments and/or 

traits. Thus, this study was performed to improve the knowledge of the genetic basis of 

drought tolerance in maize grown under tropical conditions through the estimation of genetic 

parameters in WS and WW trials via complex linear mixed models. The specific objectives 

were (i) to estimate broad-sense heritabilities and genetic variances in single and multi-

environment trial analyses; (ii) to estimate genetic correlations between environments in 

multi-environment trial analyses to investigate the relevance of GxE; and (iii) to estimate 

genetic correlations through multi-trait multi-environment trial analyses to evaluate the trait-

to-trait genetic correlations. 

 

MATERIAL AND METHODS 

Genetic material 

A total of 308 maize hybrids were obtained from single crosses between two testers 

and 188 inbred lines, representing dent (85 lines) and flint (86 lines) heterotic groups, and 

also another group, here called group C (17 lines), which combines well with both dent and 

flint sources. A flint (L3) and another dent (L228-3) inbred line were used as testers. Fifty-

four inbred lines were crossed only with L228-3 and 14 only with L3, whereas 120 lines were 

crossed with both testers. All inbred lines were derived from the maize breeding program of 

Embrapa Maize and Sorghum in Brazil. 

 

Phenotypic data 

Field experiments were performed under well-watered (WW) and water-stressed (WS) 

conditions at two locations, Janaúba (Minas Gerais state, Brazil) and Teresina (Piauí state, 

Brazil), in 2010 and 2011, giving a total of eight trials: WWJ10, WSJ10, WWJ11, WSJ11, 

WWT10, WST10, WWT11 and WST11. Combinations of water regime, location and year 
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were designated as trials (i.e., environments). Thus, for each trial, the first two letters identify 

the water condition (WS or WW), followed by the first letter of the location (J for Janaúba or 

T for Teresina) and the last two digits of the year (10 or 11). Additional information about the 

geographic coordinates of the locations and the climatic data collected during the field 

experiments in 2010 and 2011 is provided in Figure 1. Each trial comprised the 308 maize 

single-cross hybrids randomly split into 6 sets of 80, 78, 60, 60, 15 and 15 hybrids. In the 

field, each set was augmented by four common checks (commercial maize cultivars AG7088, 

P30F35, BRS1010 and BRS1055) and was arranged in a randomized complete block design. 

Although the hybrids within each set were kept the same across trials, the hybrids and checks 

were randomly allocated to groups of plots within each set, and this allocation was different 

between replicates of the sets and between trials. The WS trials had three replicates, except 

for the sets of 15 hybrids and the sets evaluated in 2010 that had two replicates. All WW 

experiments were performed in two replicates, except in 2011, where both locations had a 

single replicate. Each plot consisted of a 4-meter row in Teresina and a 3.6-meter row in 

Janaúba, both with 0.8 meters between rows and 4 plants per meter. 

The experiments were performed in a dark-red latosol and in a red-yellow argisol in 

Janaúba and Teresina, respectively. In Janaúba, the fertilization consisted of 40 kg/ha of N, 80 

kg/ha of P2O5 and 60 kg/ha of K2O at sowing and then 100 kg/ha of N applied when the 

plants had 6 complete leaves. In Teresina, 40 kg/ha of N, 80 kg/ha of P2O5 and 35 kg/ha of 

K2O were applied at sowing, 40 kg/ha of N and 35 kg/ha of K2O were applied when the plants 

had 6 complete leaves, and 40 kg/ha of N was applied when the plants had 8 complete leaves. 

For the WS experiments in Janaúba and Teresina, the water supply was interrupted before 

flowering, and the drought stress was imposed during flowering and grain filling. In both 

locations, WW conditions were ensured by applying water to completely replace water losses 

attributable to evapotranspiration based on local climatic data obtained from an automatic 

weather station. Thus, daily irrigation was maintained in the WW experiments based on the 

crop evapotranspiration index (ETc) of the previous day, which was calculated using the 

reference evapotranspiration calculated from the Penman-Monteith equation (ETo) and the 

crop coefficient (Kc) per phase. The water content in the soil was monitored up to a depth of 

0.70 m using a DIVINER 2000® probe (Sentek Sensor Technologies, Australia). In Janaúba, 
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both the WS and WW experiments were irrigated with a drip irrigation system, whereas in 

Teresina, irrigation was applied with a fixed sprinkler system (12 m x 12 m; 1.6 m3/h). The 

selection of a site-specific irrigation system was based on the field characteristics, climatic 

and topographic conditions, and soil physical and chemical properties. All experiments were 

grown from May to September in Janaúba and from September to January in Teresina for the 

two years. Both locations have a low probability of rainfall during the specified periods. 

Other agronomical practices were performed as recommended for maize crops. 

For all trials, five traits were evaluated: grain yield (GY, t/ha); number of ears per plot 

(EPP); female flowering time (FFT, days), measured as the number of days from sowing up 

to the time when silks had emerged on 50% of the plants in the plot; male flowering time 

(MFT, days), measured as the number of days from sowing up to the time when 50% of the 

plants in the plot had begun to shed pollen; and anthesis-silking interval (ASI, days), which is 

the difference in days between FFT and MFT. For the GY, all the grains of each plot were 

weighed, evaluated for moisture, corrected for 13% moisture, and converted to tons per 

hectare (t/ha), considering the differences in the plot size across trials. The EPP was corrected 

for the differences in the plot size across trials. The FFT, MFT and ASI were not corrected for 

the differences in the plot size across trials, since those traits were measured based on 50% of 

the plants in the plot. 

 

Statistical analyses 

For the available dataset, single and multi-environment trial (MET) analyses were 

performed to estimate the broad-sense heritabilities and genetic correlations between 

environments. In addition, multi-trait multi-environment trial analyses were performed to 

estimate the genetic correlation between traits. All linear mixed models were fitted using the 

statistical package ASReml-R v.3 (Buttler et al., 2009), which estimates variance components 

using the restricted maximum likelihood (REML) through the average information (AI) 

algorithm (Gilmour et al., 1995), followed by the estimation of fixed and random effects by 

solving the mixed model equations. Diagnostic plots were used to verify the presence of 

outliers and if the residuals of the fitted models were normally distributed. For the GY and 

EPP, the number of plants per plot was used as a covariate. 
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Single-environment trial analyses 

For each trait and trial, single-environment trial analyses were performed based on the 

model 

 

μ    1 2y 1 Xb Z r Z g e  [1] 

where y  is the vector of the phenotypes; μ  is the overall mean; b  is the vector of the fixed 

effects of sets; r  is the vector of the random effects of replicates (or blocks) within sets, with 

2

r( , σ )rr MVN 0 I ; g  is the vector of the random effects of hybrids, with 
2

g( , σ )gg MVN 0 I ; 

and e is the vector of the random effects of residuals, with 2

e( , σ )ee MVN 0 I . X , 
1Z and 

2Z  

represent incidence matrices for their respective effects, 1 is a vector of ones, and 
rI , 

gI  and 

eI  are identity matrices of their corresponding orders. 

 

Multi-environment trial analyses 

Distinct MET analyses were performed by combining different trials: (i) one for the 

group of four trials under WW conditions; (ii) one for the group of four trials under WS 

conditions; and (iii) another one for all evaluated trials under WW and WS conditions. The 

following generic model was fitted for each trait and group of trials: 

 

μ     1 2 1 2y 1 X s X b.s Z r.s Z g.s e  [2] 

where y  is the vector of the phenotypes; μ is the overall mean; s  is the vector of the fixed 

effects of trials; b.s  is the vector of the fixed effects of sets within trials; r.s  is the vector of 

the random effects of replicates within sets within trials, with MVN( , )r.sr.s 0 D ; g.s  is the 

vector of the random effects of hybrids within trials, with MVN( , ) gg.s 0 G I ; and e is the 

vector of residuals, with MVN( , )ee 0 D . G is a variance-covariance (VCOV) matrix for the 

effect of hybrids across trials, with dimensions of 8 x 8 or 4 x 4, when considering all 

evaluated WW and WS trials or solely the group of trials under WW or WS conditions, 
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respectively. A FA structure of order k, where k is the number of multiplicative components 

(FAk, see Appendix), was considered to model G. Dr.s and De are diagonal VCOV matrices, 

in which each trial has a specific and independent variance component for the effects of 

replicates within sets and for the residuals, respectively.   denotes the Kronecker product, 

and all other vectors and matrices were as previously defined.  

 

Multi-trait multi-environment trial analyses 

Genetic correlations between pairs of traits were estimated via multi-trait multi-

environment trial analyses by fitting two traits at a time across groups of trials. Thus, these 

analyses were performed for (i) a group of four trials under WW conditions and (ii) a group of 

four trials under WS. For this, the following model was used: 

 

μ     1 2 1 2y 1 X t X b.t Z r.t Z g.t e  [3] 

where y  is the vector of the phenotypes; μ is the overall mean; t is the vector of the fixed 

effects of trait-trial combinations, with a total of 8 combinations (2 traits x 4 trials) per group; 

b.t is the vector of the fixed effects of sets within trait-trial combinations; r.t is the vector of 

the random effects of replicates within sets and within trait-trial combinations, with 

MVN( , )r.tr.t 0 D ; g.t  is the vector of the random effects of hybrids within trait-trial 

combinations, with MVN( , ) gg.t 0 G I ; and e is the vector of residuals, with 

MVN( , ) ee 0 R D . Here, G is an 8 x 8 matrix of variances and covariances between trait-

trial combinations modeled by a FAk covariance structure. Dr.t is a diagonal matrix, in which 

each trait-trial combination has a specific and independent variance component for the effects 

of replicates within sets. R is an unstructured (UN) 2 x 2 VCOV matrix for the residuals of 

the two traits, and De is a diagonal matrix, in which each trial has a specific and independent 

component of variance for the residuals. The Kronecker product  eR D  results in an 8 x 8 

residual matrix, considering the specific variances for each trait-trial combination and the 

covariances between the pairs of trait-trial combinations. All other vectors and matrices were 

as previously defined.   
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The broad-sense heritability ( 2H ) was estimated for each trait using 

2 2 2 2 2

g g r eH =σ /(σ +σ +σ )  for model [1] and 
2 2 2 2 2

g.s g.s r.s eH =σ /(σ +σ +σ )  for model [2], where the 

bars over the components represent the simple average values across all trials. All the 

estimates were obtained considering an FA2 variance-covariance structure (see Appendix). 

Approximate standard errors were obtained through the delta method (Kendall and Stuart, 

1963), using the package nadiv (Wolak, 2012) available in the software R (R Core Team, 

2015). 

 

RESULTS 

Single-environment trial analyses 

The broad-sense heritabilities varied considerably between traits and trials (Table 1). 

For all measured traits, except in a few cases, the heritabilities were lower in the water-

stressed trials than in the well-watered ones. High to moderate heritabilities were found for 

MFT, with averages of 0.43 and 0.52 under the WS and WW trials, respectively, and similar 

results were found for FFT. The smallest values of heritabilities under WS conditions were 

found for EPP, with an average of 0.25, followed by GY, with an average of 0.29. However, 

under WW conditions, the EPP and GY also had the lowest values of heritability, with 

averages of 0.22 and 0.34, respectively. For all traits in the single-environment trial analyses, 

the estimates of the genetic variances differed significantly from zero, based on the likelihood 

ratio test (LRT, α =0.05 ). However, an exception was found for the genetic variance of the 

EPP in trial WWT11, where the estimate was zero (data not shown). These results indicate the 

presence of important and significant levels of genetic variability among the evaluated 

hybrids. 

A summary of the statistics for all traits and the percentages of yield losses attributable 

to drought stress in each location-year combination are presented in Table S1. The yield 

reductions under WS conditions differed among location-year combinations, with values 

ranging from 15.57% (WST11) to 57.24% (WST10). In Teresina, for the year 2011, the yield 

reduction under drought was lower than expected, probably because of unusual rain events 

during the field experiments (Figure 1). On average, the grain yield reduction in drought-
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stressed trials reached 43% compared to that in well-watered trials. Thus, with this level of 

grain yield reduction, it is expected that the drought stress was effectively imposed. 

 

Multi-environment trial analyses 

In the MET analyses, the broad-sense heritabilities ranged from 0.27 (EPP) to 0.43 

(MFT) for WS and from 0.18 (EPP) to 0.43 (FFT) for WW (Table 1). In both water 

conditions, the highest estimates for the heritability were observed for MFT and FFT, as also 

observed in the single-environment trial analyses. Genetic variances of lower magnitudes 

were found for the grain yield in drought-stressed trials (Table S2) when compared with those 

in WW conditions (Table S3). On the other hand, for EPP, ASI and FFT in WS environments, 

the genetic variances were greater than those observed in WW environments, except for FFT 

in trial WST11. 

For all traits, the genetic correlations between trials were fitted through an FA 

structure of order 2, which varied from 0.19 (WSJ10 vs. WST10, GY) to 0.92 (WSJ10 vs. 

WSJ11, MFT) under drought conditions (Table S2) and from 0.12 (WWT10 vs. WWT11, 

GY) to 0.94 (WWJ10 vs. WWJ11, ASI) under WW conditions (Table S3). The lowest 

average correlations were 0.43 and 0.47 for ASI and EPP under WS and 0.474 and 0.66 for 

GY and ASI under WW conditions. 

The level of GxE under WW conditions, inferred by the genetic correlation between 

pairs of trials, was higher than that under WS conditions for GY and MFT (Table 2). The 

ASI, EPP and FFT showed higher GxE interactions under WS conditions. However, higher 

levels of GxE were found under both conditions for GY and EPP, with the genetic 

correlations between pairs of trials being smaller than 0.60, when compared with the ASI, 

FFT and MFT. The ASI and FFT showed large decreases in the genetic correlations in the 

WS trials when compared with those in the WW trials. The average genetic correlation 

between the WS and WW trials ranged from 0.47 (EPP) to 0.79 (MFT). The GY, EPP and 

ASI exhibited lower genetic correlations between the WS and WW trials. 

The percentage of GxE variance explained by two factors of the FA2 VCOV structure 

in model [2] (see Appendix eq. A7), considering all trials in a joint analysis, ranged from 

56.74% (EPP) to 83.92% (FFT) (data not shown). For this, models fitted with a FA2 VCOV 
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structure estimated 23 variance-covariance parameters (24 less one constraint) against 36 of 

an unstructured VCOV model (UN). When the number of trials increases, the difference in 

the parameter estimates between the FA and UN models also increases, showing that FA 

models are parsimonious methods to address moderate to large MET studies. For this study, 

the differences between FA2 and FA3 were not significant by the LRT in the majority of 

cases (data not shown). Therefore, an FA of order 2 was used in all fitted models. 

Based on the genetic correlations between all pairs of trials estimated via model [2], it 

was possible to identify mega-environments, in which different trials grouped together 

because of the consistent levels of GxE interaction. For this purpose, biplots are an interesting 

tool to identify mega-environments or clusters of trials. Thus, the estimated loadings (after 

rotation) of each trial are presented for the first vs. second common factors, generating 

different mega-environments for the evaluated traits (Figure 2). For the ASI, FFT and MFT, 

one mega-environment with trials evaluated in Teresina and another with Janaúba trials were 

identified. However, for the GY and EPP, it was not possible to observe a tendency in the 

clustering of trials. For example, for GY, trials WWJ10 and WSJ10 formed one group, 

whereas the other trials clustered in the opposite group.  

The experimental precision, inferred through the accuracy (i.e., the square root of the 

heritability, Table 1) to predict the genetic effects of hybrids via model [2], were lower in the 

WS trials. Only the EPP and MFT exhibited higher accuracy values in the WS than in the 

WW trials. The standard errors (SE) associated with the genetic effects of hybrids, obtained 

via BLUP (Best Linear Unbiased Predictor), are shown in Figure S1 for all measured traits 

under WW and WS conditions. In general, higher SE were observed for the WS conditions, 

even for the WS trials with an additional replicate (Figure S1). The four checks, 

corresponding to the last four hybrids in the Figure S1 curves, exhibited the smallest standard 

errors, since they were present in all replicates and all sets. Based on these results, it is 

possible to observe that both the accuracy and SE reflect the existence of lower experimental 

precision under the WS trials. 
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Multi-trait multi-environment trial analyses 

The genetic correlations between pairs of traits under the WS and WW environments 

showed different magnitudes (Table 3), with higher absolute values found between traits 

under the WS conditions. Correlations ranged from -0.18 (GY vs. ASI) to 0.90 (FFT vs. 

MFT) under WW conditions and from -0.44 (GY vs. FFT) to 0.78 (FFT vs. MFT) under WS 

conditions. A high positive correlation was found between the FFT and MFT under both WS 

and WW conditions, and another was found between the GY and EPP in both water 

conditions. The GY had a moderate negative correlation with the ASI, FFT and MFT in the 

WS trials but only a small correlation with the FFT and MFT under the WW trials. The EPP 

had different patterns of correlation with the FFT and MFT across the water conditions.  

Figure S2 illustrates the genetic effects of hybrids under WW plotted against WS 

conditions. It is possible to observe a high correlation between the genetic effects predicted in 

contrasting water regimes for the FFT and MFT. On the other hand, the GY, EPP and ASI 

exhibited smaller correlations for the genetic effects predicted between WS and WW 

conditions. These results are in accordance with the levels of GxE interaction presented in 

Table 2 for the different traits, where the GY, EPP and ASI showed high to moderate levels of 

GxE interaction across water conditions. 

 

DISCUSSION 

For all traits, using single and multi-environment trial analyses, it was possible to 

observe that genetic parameters, such as the heritability, genetic variances and GxE 

interaction, significantly differed across water conditions. Higher values for the genetic 

variances of the EPP, ASI and FFT were expected under drought because those traits 

frequently exhibit enhanced expression of stress-associated genes under water-stressed 

conditions (Milkelbart et al., 2015). Differences in the heritability between single and multi-

environment trial analyses showed that selection based on a single trial was influenced by the 

GxE, which affects the response to selection. Thus, breeders should always perform 

phenotypic selection based on MET results. Moreover, these results suggested that the 

selection of the best hybrids could achieve small genetic gains for the GY in WS trials 

because of the low heritability observed for this trait under drought stress. Similar results 
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were reported by Zhang et al. (2015) using 19 biparental populations in maize, in which 

smaller heritabilities were found for the grain yield, anthesis day, and plant height under WS 

compared with WW conditions. It is important to emphasize that the accuracies were lower in 

the WS trials, even in those trials with more replicates. Experimental precision is 

indispensable for the accurate estimation of the genetic parameters, therefore, for planning 

future trials under water-stressed conditions, additional replicates are required to achieve the 

same level of accuracy found in well-watered trials. 

Low levels of GxE for the FFT and MFT showed that it was possible to make a 

successful selection of hybrids across WW and WS conditions. However, the high levels of 

GxE found between WW and WS for the GY, EPP and ASI limit the selection across 

different water conditions. These findings suggested that, at least for some evaluated traits, it 

is important to select genotypes exclusively under WS conditions when the goal is to identify 

superior drought-tolerant hybrids. For example, based on maize and soybean field trials 

performed in the USA from 1995 to 2012, Lobell et al. (2014) showed that selection under 

water-stressed environments was efficient to increase drought tolerance. In Brazil, the second-

season maize areas are larger than the first-season ones, which emphasizes the importance of 

drought tolerance, since second season maize crops are prone to additional variations in 

rainfall, which can reduce the grain yield because of water limitations. 

Modeling genetic variances-covariances (VCOV) across environments using factor 

analytic (FA) mixed models represents an efficient way to perform multi-environment trial 

(MET) analyses because FA models approximate the most complex unstructured VCOV 

model. For data sets with complex GxE, Burgueño et al. (2011) showed that using FA mixed 

models improved the predictability by up to 6% compared with models considering no 

genetic correlations between environments and assuming the homogeneity of variances across 

environments. However, under low levels of GxE, the majority of their models had a high 

predictability. Data from breeding programs are often unbalanced because different sets of 

genotypes are generally evaluated in different years and trials. In this context, the statistical 

methods appropriated to analyze unbalanced data should be used to model different variances 

and covariances between environments, such as the ones used in this study. 
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According to Smith et al. (2001), the graphical display of loadings based on two 

factors informs the genetic variance explained by these factors, which corresponds to the 

squared length of the vector for an environment, and the cosine of the angle between the 

vectors for two environments corresponds to the genetic correlation between them. Hence, 

trials close to each other in a biplot have similar biological responses for all genotypes (Figure 

2). This tool helps breeders to better define target breeding zones (i.e., mega-environments) 

and to decide when genotypes should be selected for specific environments. In this study, the 

trials located in Janaúba and the trials located in Teresina tended to group separately for the 

ASI, FFT and MFT. This result was expected because these locations are in different 

geographic regions and are exposed to different climatic conditions (see Figure 1). A similar 

study performed by Figueiredo et al. (2015) showed the efficiency of using a FA covariance 

structure in a linear mixed model framework to study GxE and to identify mega-environments 

in a maize data set based on unbalanced data from a breeding program. 

Multi-trait multi-environment trial analyses showed that the EPP, ASI, FFT and MFT 

could be used as secondary traits in the selection for maize drought tolerance in tropical 

environments. Our results were similar to a recent study on maize under WS conditions 

(Oyekunle et al., 2015), in which correlations of the EPP, ASI, FFT and MFT with the GY 

were 0.78, -0.22, -0.50 and -0.45, respectively. However, under WW conditions, the results 

reported by Oyekunle et al. (2015) differed from those found in the present study. Thus, it is 

important to highlight that the genetic correlations reported here were estimated via multi-trait 

and multi-environment trial analyses, which considered the genetic correlations between 

traits, genetic correlations between environments and the existence of heterogeneity in the 

error variances across environments, being more realistic for MET data. In addition, selecting 

for secondary traits is advantageous because their heritabilities remain high even under WS 

conditions, as observed for the FFT and MFT in this study. 

An easy way to evaluate the importance of a secondary trait is by calculating the level 

of genetic gain through indirect selection, defined as 
xy yxy y x G pΔG =i h h r σ    , where 

xyΔG  

is the indirect gain in trait y  by selection over trait x ; i is the selection intensity; yh  and xh  

are the square roots of the respective heritabilities; 
xyGr  is the genetic correlation between 
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traits; and 
ypσ  is the phenotypic standard deviation of trait y . In this study, for example, the 

genetic gain for GY by selecting over the FFT in WS conditions resulted in a value of -0.287, 

which means that a decrease of 1 day in the FFT will increase the GY by 0.287 ton/ha. Thus, 

through selection based on secondary traits, it is possible to achieve genetic gains in the GY 

under drought-stressed conditions. However, the measurement of secondary traits, such as 

ASI, FFT and MFT, can be more expensive than evaluating the GY directly. Rebetzke et al. 

(2013) commented that several secondary traits had been proposed to improve the drought 

tolerance performance, but few had been used in breeding programs as a routine practice. 

According to these authors, one reason for this is the fact that there is limited knowledge 

about the economic benefits of selecting one trait over another for a breeding program. 

The simultaneous analysis of the GY and other secondary traits can lead to an 

improvement in the response to the selection for drought tolerance. However, the advantages 

of a multi-trait over a single-trait analysis are more evident when the genetic correlations 

between traits are high and when the secondary trait has a higher heritability than the target 

trait (Mrode, 2014). Thus, based on our results from multi-trait multi-environment trial 

analyses, bivariate analyses such as GY-EPP and GY-FFT would be expected to achieve an 

increased response to the selection for drought tolerance. Then, even if these secondary traits 

are difficult and expensive to measure, information about them is relevant to improving the 

response to the selection of low-heritability target traits, such as the grain yield under drought. 

Furthermore, Malosetti et al. (2008) showed the advantages of a multi-trait multi-environment 

analysis in the context of quantitative trait locus mapping for drought tolerance-related traits 

in maize.  

Breeders select superior hybrids with stable responses across WS and WW conditions. 

This can be carried out by using the factor scores from the FA model in a biplot analysis, 

where genotypes close to the origin have stable performance across water regimes (Cullis et 

al., 2014; Smith et al., 2015). For this study, the moderate levels of GxE for the GY, EPP and 

ASI make it difficult to find stable hybrids. Moreover, for the GY, EPP and ASI, the results 

showed that there were low correlations for the genetic effects of hybrids between WS and 

WW conditions (Figure S2), which reflects the low consistency in the ranks of genotypes 

between water regimes. Modern molecular tools, such as genome-wide selection (GWS) or 
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genomic selection (GS - Meuwissen, 2001), have provided excellent results for breeding 

programs with a focus on drought tolerance (Beyene et al., 2015; Zhang et al., 2015). 

However, it is important to highlight that the use of GS does not overcome the need for good 

knowledge of the genetic basis of drought tolerance-related traits, and there is still a need for 

appropriate direct or indirect selection decisions to integrate the breeding program strategy. 

Moreover, accurate phenotypic data are required for the successful use of any breeding tool. 

The models presented in this study can be easily extended to application in future GWS 

studies. 

 

CONCLUSION  

This study demonstrated that (i) estimates of genetic parameters under WW conditions 

were more accurate than those under WS conditions for the majority of evaluated traits; (ii) 

genetic variances for the GY, EPP, ASI and FFT differed across WS and WW conditions; (iii) 

low levels of GxE were observed for the FFT and MFT, showing that it was possible to make 

successful selection across WW and WS conditions; however, the high levels of GxE found 

between WW and WS conditions for the GY, EPP and ASI would limit the indirect selection 

across different water conditions; and (iv) multi-trait multi-environment analyses, such as 

GY-EPP and GY-FFT, could achieve an increased response to selection for drought tolerance 

in maize under water limited conditions. 
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APPENDIX  

Modeling factor analytic covariance structures 

In this appendix, a compilation about FA models (Smith et al., 2001; Resende and 

Thompson, 2004; De los Campos and Gianola, 2007) is presented in order to provide more 

information about the statistical method used in this study. In the context of MET analyses, 

the genetic effect of individual i  within trial s  in an FA model can be expressed as  

is 1s 1i ks ki isμ = λ xf +...+ λ xf +δ  [A1] 

where isμ  is the genetic effect of individual i within trial s ; ksλ  is the thk factor loadings for 

trial s ; kif  is the thk factor score for the thi  individual; and isδ  is the thi  specific factor for  

trial s . Equation [A1], in matrix notation is 

sμ = (I Δ)f +δ  [A2] 

where sI  is an identity matrix of dimension sxs; ks{λ }Δ is the matrix of factor loadings; f 

is a vector of factor scores; δ  is a diagonal matrix of specific factors; and   is the Kronecker 

product. 

An important assumption is that the factor scores and specific factors are assumed to 

be independent and normally distributed as 

MVN ,
     
     

     

sIf 0 0

δ 0 ψ0
 [A3] 

where is cov (δ )ψ , which is a specific variance.  

From equation [A2], cov ( ) = 'μ ΔΔ ψ  is the variance-covariance matrix for the 

genetic effects of individuals in environment s, defined by an FAk model. Hence, under the 

above definition, equation [A2] in mixed model presented in model [2] can be written as 

3μ       1 2 1 2 sy 1 X s X b.s Z r.s Z (I Δ)f Z δ e  [A4] 

where the model terms were previously defined in the section Material and Methods. 

After estimating the variance components, and solving the mixed model equations 

from the above model, the factor scores and specific factors can be calculated as described in 

Resende and Thompson (2004) 
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1

' '
   

 sf Δ ΔΔ ψ I μ  [A5] 

 
1

' '
   

 sδ ψ ΔΔ ψ I μ  [A6]  

Here, when the number of factors k is greater than 1, constraints must be imposed on 

the factor analytic parameters to obtain a unique model (Smith et al., 2001). In an FA model 

with k factors, the number of restrictions is given by k(k-1)/2  (Smith et al., 2001). Even after 

assuming some constraints, the loadings need to have an orthonormal rotation. The factor 

rotation was performed using the Varimax rotation. 

The proportion of the GxE variance accounted for by k multiplicative terms ( sv ) can 

be calculated as  

sv  =100 [tr( ') / tr( ' )] ΔΔ ΔΔ ψ  [A7] 

where all of the terms were previously defined. 
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Table 1. Broad-sense heritabilities (
2H ) from single-environment trial analyses (model [1]) and from 

multi-environment trial analyses (model [2]) performed separately for well-watered (WW) and water-

stressed (WS) groups of trials in Janaúba (J) and Teresina (T) in 2010 (10) and 2011(11). 

Model Trial GY† EPP ASI FFT MFT 

[1] WSJ10 0.30 (0.03) 0.29 (0.03) 0.37 (0.03) 0.51 (0.03) 0.55 (0.03) 

WSJ11 0.32 (0.03) 0.28 (0.03) 0.39 (0.03) 0.46 (0.03) 0.55 (0.03) 

WST10 0.28 (0.04) 0.25 (0.05) 0.23 (0.04) 0.22 (0.04) 0.29 (0.04) 

WST11 0.24 (0.03) 0.17 (0.03) 0.22 (0.03) 0.38 (0.04) 0.33 (0.03) 

WWJ10 0.43 (0.04) 0.23 (0.05) 0.49 (0.04) 0.58 (0.03) 0.57 (0.03) 

WWJ11 0.12 (0.11) 0.41 (0.19) 0.41 (0.12) 0.60 (0.12) 0.76 (0.07) 

WWT10 0.48 (0.04) 0.27 (0.05) 0.12 (0.04) 0.12 (0.04) 0.12 (0.04) 

WWT11 0.32 (0.11) 0.00 (-)‡ 0.42 (0.15) 0.67 (0.10) 0.64 (0.11) 

[2] WS 0.29 (0.01) 0.27 (0.01) 0.28 (0.03) 0.34 (0.05) 0.43 (0.02) 

WW 0.37 (0.01) 0.18 (0.02) 0.37 (0.02) 0.43 (0.03) 0.41 (0.02) 
† GY: grain yield (t/ha); EPP: number of ears per plot; ASI: anthesis-silking interval (days); FFT: female 

flowering time (days); and MFT: male flowering time (days). Values within parentheses correspond to 

approximate standard errors. ‡ Standard errors are not presented when the parameters were bounded to zero. 
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Table 2. Average genetic correlations between well-watered (WW) and water-stressed (WS) trials 

from multi-environment trial analyses (model [2]) performed jointly for all evaluated trials. Values 

within parentheses are approximate standard errors.  

Traits Trials WW WS 

GY † 

(60.85%)‡ 

WW 0.46 (0.06) 0.53 (0.06) 

WS - 0.52 (0.07) 

EPP 

(56.74%) 

WW 0.588 (0.060) 0.47 (0.08) 

WS - 0.46 (0.16) 

ASI 

(58.23%) 

WW 0.70 (0.07) 0.60 (0.06) 

WS - 0.44 (0.07) 

FFT 

(79.09%) 

WW 0.80 (0.04) 0.76 (0.03) 

WS - 0.69 (0.03) 

MFT 

(84.61%) 

WW 0.74 (0.03) 0.79 (0.03) 

WS - 0.82 (0.04) 
† GY: grain yield (t/ha); EPP: number of ears per plot; ASI: anthesis-silking interval (days); FFT: female 

flowering time (days); and MFT: male flowering time (days). ‡ Percentage of the variance explained by two 

factors of the FA2 model. 

 

 

 

 

Table 3. Average genetic correlations between pairs of traits obtained via multi-trait multi-

environment trial analyses (model [3]) performed separately for the well-watered (WW) (above the 

diagonal) and water-stressed (WS) (below the diagonal) groups of trials. Values within parentheses are 

approximate standard errors. 

Traits GY EPP  ASI FFT MFT 

GY † - 0.31 (0.15)  -0.18 (0.09)  -0.09 (0.10)  -0.02 (0.10)  

EPP  0.70 (0.06) - -0.11 (0.18)  0.18 (0.13)  0.26 (0.12)  

ASI -0.31 (0.07) -0.30 (0.08)  - 0.41 (0.09) 0.14 (0.12)  

FFT -0.44 (0.07)  -0.37 (0.07) 0.49 (0.08) - 0.90 (0.02)  

MFT -0.31 (0.07)  -0.24 (0.08) 0.10 (0.07) 0.78 (0.03)  - 
† GY: grain yield (t/ha); EPP: number of ears per plot; ASI: anthesis-silking interval (days); FFT: female 

flowering time (days); and MFT: male flowering time (days).  
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Figure 1. Geographic coordinates of Janaúba (Minas Gerais state, Brazil) and Teresina (Piauí state, 

Brazil) and rainfall (mm), and minimum and maximum temperatures (°C) collected during the field 

experiments in 2010 and 2011.  
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Figure 2. Estimated loadings (after Varimax rotation) of each trial for the first (FA1) and second 

(FA2) common factors obtained through the multi-environment trial analyses (model [2]) performed 

jointly for well-watered (WW) and water-stressed (WS) trials conducted in Janaúba (J) and Teresina 

(T) in 2010 (10) and 2011(11). GY: grain yield (t/ha); EPP: number of ears per plot; ASI: anthesis-

silking interval (days); FFT: female flowering time (days); and MFT: male flowering time (days).   
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SUPPLEMENTARY INFORMATION 

 

Table S1. Average phenotypic values observed for well-watered (WS) and water-stressed (WS) trials 

for all measured traits in Janaúba (J) and Teresina (T) for 2010 (10) and 2011(11). Values within 

parentheses are the standard deviations. 

Trait WSJ10 WSJ11 WST10 WST11 WWJ10 WWJ11 WWT10 WWT11 

GY† 
3.47 

(1.35)  

3.34 

(1.24) 

2.86 

(1.76) 

4.88 

(1.68) 

6.59 

(1.68) 

7.11 

(1.83) 

6.69 

(1.77) 

5.78 

(2.27) 

EPP 
12.34 

(3.86) 

15.04 

(4.07) 

10.34 

(4.57) 

17.05 

(4.18) 

17.86 

(3.72) 

17.09 

(3.67) 

16.39 

(3.54) 

15.15 

(5.13) 

ASI 
1.07 

(1.83) 

2.86 

(2.24) 

4.31 

(3.98) 

2.56 

(1.03) 

0.47 

(1.26) 

0.63 

(1.38) 

2.36 

(0.79) 

2.77 

(0.68) 

FFT 
64.34 

(2.60) 

70.69 

(3.25) 

55.12 

(5.48) 

53.66 

(2.54) 

64.78 

(3.11) 

68.36 

(2.20) 

54.28 

(2.81) 

52.52 

(2.07) 

MFT 
63.28 

(1.91) 

67.84 

(2.35) 

50.66 

(2.68) 

51.10 

(2.27) 

64.30 

(3.09) 

67.72 

(1.96) 

51.91 

(2.68) 

49.75 

(1.87) 

Yield 

reduction (%) 
47.34 53.02 57.24 15.57 - - - - 

† GY: grain yield (t/ha); EPP: number de ears per plot; ASI: anthesis-silking interval (days); FFT: 

female flowering time (days); and MFT: male flowering time (days). 
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Table S2. Genetic correlations between water-stressed (WS) trials in Janaúba (J) and Teresina (T) for 

2010 (10) and 2011(11), estimated through multi-environment trial analyses (model [2]). Values on 

diagonal correspond to the genetic variances of each trial, and values in parentheses are approximate 

standard errors.  

Trait Trial WSJ10 WSJ11 WST10 WST11 

GY† 

(73.57%)‡  

WSJ10 0.38 (0.04) 0.62 (0.05) 0.19 (0.08) 0.41 (0.08) 

WSJ11  0.44 (0.05) 0.44 (0.09) 0.79 (0.06) 

WST10   0.64 (0.11) 0.72 (0.04) 

WST11    0.43 (0.06) 

EPP 

(58.93%)  

WSJ10 1.83 (0.18) 0.51 (0.05) 0.17 (0.07) 0.43 (0.08) 

WSJ11  2.52 (0.33) 0.34 (0.18) 0.77 (0.03) 

WST10   3.94 (0.67) 0.52 (0.08) 

WST11    1.09 (0.17) 

ASI 

(49.24%) 

WSJ10 1.02 (0.42) 0.67 (0.08) 0.26 (0.10) 0.40 (0.11) 

WSJ11  1.81 (0.52) 0.35 (0.12)  0.57 (0.10)  

WST10   2.83 (0.09) 0.37 (0.08)  

WST11    0.19 (0.07) 

FFT 

 (85.88%) 

WSJ10 3.61 (0.68) 0.84 (0.04) 0.42 (0.18)  0.81 (0.09)  

WSJ11  5.12 (0.60) 0.54 (0.24)  0.80 (0.02)  

WST10   4.92 (4.09) 0.66 (0.24)  

WST11    1.64 (0.24) 

MFT 

 (91.84%) 

WSJ10 1.99 (0.23) 0.92 (0.009) 0.68 (0.07) 0.85 (0.03) 

WSJ11  3.05 (0.37) 0.72 (0.07) 0.90 (0.04) 

WST10   2.09 (0.35) 0.88 (0.03) 

WST11    1.20 (0.14) 
† GY: grain yield (t/ha); EPP: number of ears per plot; ASI: anthesis-silking interval (days); FFT: female 

flowering time (days); and MFT: male flowering time (days). ‡ Percentage of the variance explained by two 

factors. 
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Table S3. Genetic correlations between well-watered (WW) trials in Janaúba (J) and Teresina (T) for 

2010 (10) and 2011(11), estimated through multi-environment trial analyses (model [2]). Values on 

diagonal correspond to the genetic variances of each trial, and values in parentheses are approximate 

standard errors.  

Trait Trial WWJ10 WWJ11 WWT10 WWT11 

GY† 

 (78.99%)‡ 

WWJ10  0.76 (0.10) 0.77 (0.09) 0.43 (0.07) 0.34 (0.10) 

WWJ11  0.50 (0.11) 0.91 (0.06) 0.25 (0.11) 

WWT10   1.38 (0.16) 0.12 (0.11) 

WWT11    0.81 (0.07) 

EPP 

(87.19%)  

WWJ10 1.27 (0.28) 0.54 (0.136) 0.76 (0.072) 0.97 (0.15) 

WWJ11  1.85 (0.59) 0.58 (0.12) 0.70 (0.53) 

WWT10   1.72 (0.33) 0.79 (0.05) 

WWT11    0.16 (0.19) 

ASI 

 (97.09%) 

WWJ10 0.64 (0.08) 0.94 (0.04) 0.66 (0.08) 0.45 (0.12) 

WWJ11  0.60 (0.11) 0.70 (0.06) 0.68 (0.14) 

WWT10   0.06 (0.01) 0.53 (0.16) 

WWT11    0.15 (0.06) 

FFT 

 (86.34%) 

WWJ10 3.00 (0.36) 0.78 (0.05) 0.76 (0.02) 0.68 (0.07) 

WWJ11  2.76 (0.63) 0.79 (0.07) 0.59 (0.09) 

WWT10   1.32 (0.22) 0.80 (0.07) 

WWT11    2.08 (0.38) 

MFT 

 (84.85%) 

WWJ10 2.08 (0.37) 0.76 (0.05) 0.69 (0.11) 0.92 (0.06) 

WWJ11  3.04 (0.30) 0.72 (0.08) 0.81 (0.02) 

WWT10   1.04 (0.26) 0.90 (0.10) 

WWT11    1.17 (0.19) 
† GY: grain yield (t/ha); EPP: number of ears per plot; ASI: anthesis-silking interval (days); FFT: female 

flowering time (days); and MFT: male flowering time (days). ‡ Percentage of the variance explained by two 

factors.
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Figure S1. Standard errors associated with the genetic effects of 308 single-cross hybrids and 4 

common checks, obtained via best linear unbiased predictor (BLUP) through the multi-environment 

trials analysis (model [2]) performed separately for well-watered (WW) and water-stressed (WS) 

trials. GY: grain yield (t/ha); EPP: number of ears per plot; ASI: anthesis-silking interval (days); FFT: 

female flowering time (days); and MFT: male flowering time (days). 
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Figure S2. Genetic effects of 308 single-cross hybrids and 4 common checks, obtained via best linear 

unbiased predictor (BLUP) through the multi-environment trials analysis (model [2]) performed 

jointly for well-watered (WW) and water-stressed (WS) trials. GY: grain yield (t/ha); EPP: number of 

ears per plot; ASI: anthesis-silking interval (days); FFT: female flowering time (days); and MFT: male 

flowering time (days). 
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ABSTRACT 

Due to the difficulties of conventional breeding for drought tolerance, the 

use of genomic selection could increase the selection efficiency and the 

genetic gain. The main goal of this study was to evaluate the accuracy of 

genomic selection to predict the performance of untested maize single-cross 

hybrids for drought tolerance, using a statistical-genetics model that account 

for genotype-by-environment interaction, additive and dominance effects. 

Phenotypic data of five drought tolerance traits were measured in 308 

hybrids in eight trials under water-stressed (WS) and well-watered (WW) 

conditions over two years and two locations in Brazil. Hybrids genotypes 

were inferred based on their parents genotypes (inbred lines) using SNP 

(single nucleotide polymorphism) data obtained via GBS (genotyping-by-

sequencing). Genomic selection analysis was done using GBLUP (Genomic 

Best Linear Unbiased Prediction) by fitting a factor analytic multiplicative 

mixed model. Differences were observed in predictive accuracy between 

additive models and additive and dominance models for the five traits in 

both water conditions. However, these differences were more evident under 

WS conditions. These results contribute to a better understanding about the 

genetic architecture of important traits evaluated under WW and WS 

conditions, and highlight the importance of dominance effects for grain 

yield genomic predictions in maize single-cross hybrids under both water 

regimes. 
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INTRODUCTION 

An accurate prediction of the performance of untested genotypes in 

one or more environments is essential to maximize genetic gains in breeding 

programs (Bernardo, 1994). Traditionally, pedigree-based analyses have 

been used to analyze field experiments and to estimate genetic parameters 

and breeding values (Nunes et al., 2008; Piepho et al., 2008). However, due 

to the decreasing costs of genotyping with thousands or millions of markers 

and the increasing costs of phenotyping (Krchov and Bernardo 2015), 

genomic selection (GS, Meuwissen et al., 2001) has been emerged as an 

alternative molecular-based method to predict yet-to-be seen genetic 

responses. The use of appropriate GS methods can provide accurate 

predictions even for untested genotypes, resulting in a considerable progress 

for breeding programs, due to the reduction in the number of field-tested 

genotypes, with a consequent reduced phenotyping costs (Krchov and 

Bernardo 2015). The benefits of GS are more evident when traits are 

difficult, time consuming and/or expensive to measure, or when several 

environments need to be evaluated.  

In breeding programs for drought tolerance, genotypes are evaluated 

under water-managed environments (such as well-watered and water-

stressed conditions), in which an effective phenotypic screening for several 

traits is often laborious and time-consuming. Thus, the release of new 

cultivars with yield stability over areas that are prone to water limitations is 

often considered a critical and challenge task (Cooper et al., 2014). In 

general, most of the drought tolerance related-traits are controlled by many 

genes of small effects and, as expected, are strongly influenced by the 

environment (Ribault et al., 2009; Zhang et al., 2015). Thus, an increased 

genetic gain is expected with GS, once it is possible to perform early 

predictions of the genetic values (untested genotypes) in a breeding program 

and, consequently, more than one selection cycle can be carried out per year 

for drought related traits, accelerating genetic gains. Comparisons between 
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GS and selection based on secondary traits were made by Ziyomo and 

Bernardo (2013), showing the advantage of GS to increase genetic gains. 

Furthermore, recently, Beyene et al. (2015) and Zhang et al. (2015) showed 

promising results for the application of GS for drought tolerance in maize. 

Among many GS approaches, genomic best linear unbiased 

prediction (GBLUP) has shown high levels of predictive accuracy, ranking 

often among the best predictive models (for further details see Heslot al., 

2012 and Resende et al., 2012). GBLUP considers an observed genomic 

relationship matrix obtained from marker information (VanRanden, 2008), 

instead of a pedigree-based relationship matrix (Henderson, 1984). The 

flexibility of GBLUP, in comparison to other GS methods, allows fitting 

complex linear mixed models, such as the ones applied to multi-

environment trials (MET) and multi-trait analysis (Meyer, 2009; Smith et 

al., 2015). Moreover, its use often results in reduced computing time and a 

better exploration of all information available.  

Most genetic analyses focus on the estimation of additive or total 

genetic effects. However, the estimation of both additive and non-additive 

effects (dominance and epistasis) helps to improve the understanding about 

the genetic architecture of target traits and to define optimal breeding 

strategies. Nevertheless, the estimation of these effects, and their 

corresponding variance components, are often difficult, requiring 

appropriate mating designs and large number of observations, due to the 

lack of orthogonality that occurs in the estimation process. However, some 

studies have shown that the orthogonality and predictability of both additive 

and non-additive effects are greatly improved by the use of molecular-based 

relationship matrices (Muñoz et al., 2014; Nazarian and Gezan 2016b). 

Orthogonal partitioning of genetic variance through molecular markers or 

pedigree is one important step to accurately estimate additive and non-

additive effects, and depends on, among other things, on the distribution of 

allele frequencies (Hill et al., 2008) and the correct parameterization for 
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genomic relationship matrices (Vitezica et al., 2013; Da et al., 2014; Zhu et 

al., 2015). Although some studies have shown contribution of dominance 

effects to predictive accuracy (Da et al., 2014; Bouvet et al., 2015), most GS 

models have been limited to the use of additive effects. 

Models that evaluate genotype-by-environment interaction (GxE) 

are critical to any plant breeding program regardless the method used for 

genomic prediction. Understanding GxE provides valuable information for 

breeders including, among others: i) evaluation of stability of genotype's 

response across environments; ii) selection of genotypes to specific 

environments; iii) evaluation/definition of breeding zones, iv) definition of 

target environments; and v) definition of strategies to maximize genetic 

gain. Recent studies have shown advantages of GS models that incorporate 

GxE (Burgueño et al., 2012; Heslot et al., 2014; Jarquín et al., 2014; Lopez-

Cruz et al., 2015) for quantitative traits; however, these studies were limited 

to the incorporation of only additive effects. 

Several modelling approaches exist to explore GxE. The most 

interesting ones consider modelling the genetic variance-covariance matrix 

across environments. Thus, with this matrix structure it is possible to better 

understand GxE and the genetic architecture of breeding traits, together with 

the estimation of all environment-to-environment genetic correlations. One 

parsimonious way to model this genetic variance-covariance matrix is by 

using a factor analytic (FA) structure (Piepho, 1997, 1998; Smith et al., 

2001). The FA variance-covariance structure is an approximation to the 

unstructured (UN) matrix but with a reduction in the number of parameters 

to be estimated, something that is particularly relevant when the number of 

environments is large (e.g. greater than 5). Many studies have shown that 

FA models are good approximations of the unstructured models and that 

they can be easily implemented in most breeding programs (Kelly et al., 

2007; Burgueño et al., 2008; Cullis et al., 2014; Smith et al., 2015). Another 
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advantage of the FA model is that it can be extended to estimate additive 

and non-additive effects simultaneously (Kelly et al., 2009).  

Applications of GS have been limited to the estimation of additive 

effects, although few research had applied GS for additive and dominance 

models (Azevedo et al., 2015; Bouvet et al., 2015), for GxE (Burgueño et 

al., 2012; Lopez-Cruz et al., 2015) and also for drought tolerance in maize 

(Ziyomo and Bernardo, 2013; Zhang et al., 2015; Beyene et al., 2015). 

However, these implementations do not fit complex linear models that 

incorporate GxE, additive and dominance effects simultaneously. So far, it 

is not clear whether the use of additive and dominance effects can increase 

the accuracy of genomic predictions in drought tolerance breeding 

programs.  

Therefore, the goals of this study were: i) to evaluate the predictive 

accuracy of single-cross maize hybrids for drought-tolerance related traits 

under two different water conditions, using a high-density SNP marker 

panel and multi-environmental trials analyses; ii) to compare the predictive 

accuracy achieved by models that account for additive (A) vs. additive and 

dominance (AD) effects; iii) to investigate the partition of the genetic 

variance based on a high-density marker panel for drought tolerance related 

traits; iv) to explore the stability of hybrids using latent regression plots in 

AD models; and v) to investigate the impact in the predictive accuracy of 

separating the training set for each water conditions (well-watered and 

water-stressed) vs. combing both water conditions in a single training set. 

 

MATERIAL AND METHODS 

Phenotypic data 

Field data comprise 308 single-cross maize hybrids evaluated in 

drought tolerance experiments for two water conditions, well-watered and 

water-stressed, at two locations in Brazil (Janaúba, Minas Gerais State, and 

Teresina, Piauí State) over two years (2010 and 2011), giving a total of 8 
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trials. Each trial comprised the 308 maize single-cross hybrids randomly 

split into 6 sets with 80, 78, 60, 60, 15 and 15 hybrids. In the field, each set 

was augmented by four common checks (commercial maize cultivars), and 

was arranged as a randomized complete block design. Although the hybrids 

within each set were kept the same across trials, hybrids and checks were 

randomly allocated to groups of plots within each set, and this allocation 

was different between replicates of sets and between trials.  

Five drought tolerance traits were evaluated: grain yield (GY, 

ton/ha); number of ears per plot (EPP); female and male flowering time 

(FFT and MFT, both in days), measured as the number of days from sowing 

up to the time when silks have emerged on 50% of the plants, and 50% of 

the plants have begun to shed pollen, respectively; and anthesis-silking 

interval (ASI, days), which corresponds to the time between FFT and MFT. 

Further details about the experimental design and field trials can be found in 

Chapter II. 

 

Genotypic data 

Genomic DNA was extracted from young leaves based on the CTAB 

method (Saghai et al., 1984). DNA samples were quantified using the 

Fluorometer Qubit® 2.0 with compatible quantification reagents, following 

the manufacturer´s instructions (Life TechnologiesTM). DNA samples were 

also evaluated on 1% agarose gel in TAE (Tris-acetate-EDTA) buffer 

stained with GelRedTM (Biotium) and recorded under white light in the 

Imager Gel Doc L-PIX (Loccus Biotecnologia). Genotyping-by-sequencing 

(GBS) was carried out by the Genomic Diversity Facility at Cornell 

University (Ithaca, NY, USA), using the standard GBS protocol (Elshire et 

al. 2011), with restriction enzyme ApeKI and 96 samples per sequencing 

lane. Burrows-Wheeler alignment (BWA) tool (Li and Durbin 2009) was 

used to align tags to the B73 reference genome (RefGen_v3). Then, single 

nucleotide polymorphisms (SNP) were called using the GBS pipeline 
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(Glaubitz et al. 2014), available in the software TASSEL v.4 (Bradbury et 

al. 2007). SNP were obtained for the 188 inbred lines and the two testers 

(two inbred lines of the total 190) used as parents of the 308 maize hybrids. 

A particular SNP marker was discarded if: (i) its minor allele frequency was 

smaller than 5%; (ii) it had more than 20% of missing genotypes; and/or 

(iii) it had more than 5% of heterozygous genotypes. After filtering, missing 

genotypes were imputed using NPUTE (Roberts et al. 2007). Then, for each 

SNP, the genotype of each hybrid was inferred based on the genotype of its 

parents (inbred line and tester). The number of SPN per chromosome ranged 

from 7.638 (chromosome 1) to 3.086 (chromosome 10), with a total of 

46,603 markers. 

 

Genomic relationship matrices 

Genetic relationships between hybrids were constructed based on the 

information from SNP markers. Additive (Ag) and dominance (Dg) genomic 

relationship matrices were calculated following the methods described by 

Yang et al. (2010) and Vitezica et al. (2013), respectively. Both methods 

consider two alleles (A and a) for a given kth marker locus. Then, Ag was 

estimated through the following equation: 

 

1
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1
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in which  is the total number of markers, pk is the observed allele 

frequency of the kth SNP, kig  and kjg  represent the number of copies of a 

given allele A for individuals i and j at SNP k, assuming values 2, 1 and 0 
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for the SNP genotypes AA, Aa and aa, respectively. The denominator is the 

sum of the SNP variances. Dg was calculated as following: 
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in which all terms were previously defined. Additive and dominance 

genomic relationship matrices were estimated using the software 

GenoMatrix (Nazarian and Gezan, 2016a), which also produces the inverse 

of the genomic relationship matrices as output. Thus, if Ag and Dg were not 

positive definite, their inverse was obtained by iterative bending methods 

(Schaeffer et al., 1989). 

Dependence between additive and dominance variances were 

evaluated as described by Muñoz et al. (2014). For this, the portions of the 

asymptotic variance-covariance matrices due to the additive and dominance 

components were used to evaluate the non-independence among variance 

components by calculating and plotting the eigenvalues of the 

corresponding correlation matrix. 

 

Genomic selection analyses 

Genomic best linear prediction (GBLUP) for additive+dominance 

effects in multi-environment trials were performed as describe below.  

 

Multi-environment trial analyses 

Several multi-environment trial analyses, combining different groups 

of trials, were carried out. Three different groups were defined: (i) all four 

trials under WW conditions; (ii) all four trials under WS conditions; and (iii) 
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all eight trials under both WW and WS conditions. The following generic 

linear mixed model was fitted for each trait and group: 

 

3μ      1 2 1 2y 1 X s X b.s Z r.s Z a.s Z d.s e  [1] 

 

where y  is the vector of phenotypes; μ  is the overall mean; s  is the vector 

of fixed effects of trials; b.s  is the vector of fixed effects of sets within 

trials; r.s  is the vector of random effects of replicates within sets within 

trials, with MVN( , )r.sr.s 0 D ; a.s  is the vector of random additive effects 

of hybrids within trials, with MVN( , )g SAa.s 0 A G ; d.s  is the vector of 

random dominance effects of hybrids within trials, with 

MVN( , )g SDd.s 0 D G ; and e  is the vector of residuals, with 

MVN( , )ee 0 R . SAG  and SDG  are variance-covariance (VCOV) matrices 

for the additive and dominance genetic effects of hybrids, across trials, with 

dimensions 4x4 for the group of trials under WW or WS conditions, and 

8x8 considering all trials. An FA model of order k  (FAk) was considered 

for the SAG  and SDG  structure, in which k  is the number of multiplicative 

components. Dr.s and eR  are diagonal VCOV matrices, where each trial has 

a different and independent variance component for the replicates within 

sets and for the residuals, respectively. The Kronecker product is denoted by 

 . The additive model is a particular case of the model [1], in which there 

is no inclusion of dominance effects. 

Under the above model, narrow-sense heritability (
2h ) and the 

proportion of the variance explained by the dominance effects (
2δ ) were 

estimated for each trait using the following expressions: 

 2 2 2 2 2 2

a.s a.s d.s r.s eh σ σ σ σ σ     and  2 2 2 2 2 2

d.s a.s d.s r.s eδ σ σ σ σ σ    , where 

the bars over the variance components represent the average variance (i.e. 
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diagonal terms) across all trials. Broad-sense heritability was estimated as 

2 2 2H = h + δ . Standard errors for 2h , 2δ  and 2H  were estimated through the 

Delta method (Kendall and Stuart, 1963), implemented in the package nadiv 

(Wolak, 2012) available in R v3.2.5 (R Core Team 2016), which estimates 

approximated standard errors of the variance components. 

For MET analysis, considering additive and dominance effects, a FA 

structure was fitted as described in Oakey et al. (2007) and Kelly et al. 

(2009), in which the vector of genetic effects ( gu ), including both additive 

and dominance effects, is defined as: 

 

=g A Du u + u   [2] 

 

where Au  and Du  are random vectors of additive and dominance effects 

within s trials, respectively. These vectors are assumed to be independent 

with a multivariate normal distribution with zero mean and VCOV matrices 

AG  and DG , respectively, where  A g SAG A G  and  D g SDG D G . 

Here, SAG  and SDG  are s x s  VCOV matrices for the additive and 

dominance genetic effects. The structure of SAG  and SDG  matrices were 

defined based on an FAk (i.e. of order k) model as: 

 

( ) T

SA A A AG Δ Δ ψ  [3] 

( ) T

SD D D DG Δ Δ ψ   [4] 

  

where, A{λ }AΔ  and D{λ }DΔ  are s x k  matrices of factor loadings 

(common factors) for the additive and dominance effects, respectively, for 

s  trials; and Aψ  and Dψ  (diagonal matrices of dimension s x s ) are specific 

factors for the additive and dominance effects, respectively. Common and 
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specific factors are assumed to be independent and normally distributed. 

Hence, under the above definitions cov( )gu  can be obtained as: 

 

cov( )

( ) ( )

   

     

g g SA g SD

T T

g A A A g D D D

u A G D G

A Δ Δ ψ D Δ Δ ψ
 [5] 

 

where all terms were previously defined.  

Under a FAk structure, adaptability and stability of genetic effects 

can be easily assessed using latent regression plots (Cullis et al., 2014; 

Smith et al., 2015). These plots show the genetic responses to each 

environment considering the genetic effects, i.e. predicted breeding values 

from marginal prediction as shown in Cullis et al. (2014), as dependent 

variables against the independent variables, the rotated estimated factor 

loadings ( rs,r =1,2...kλ ). Here we extended the regression plots proposed by 

Cullis et al. (2014) for additive effects, to dominance effects as well. Plots 

for the first and second factor were obtained using the following equations: 

 

plot FA1:  against  *

j is j 1sy u x λ    

plot FA2:  2againstx  * * *

j is 1s 1s j sy u λ f x λ    

 

where isu  is the vector of breeding values or dominance deviations of 

hybrid i within trial s, f is a vector of factors scores, and * denotes the 

vectors after rotation. The important difference here is that plot FA1 and 

FA2 were constructed for additive and dominance effects separately. 

Therefore, patterns of additive and dominance effects in terms of 

adaptability and stability can be easily identified. The rotation for factor 

loading ( λ ) and factor scores was used in order to facilitate and simplify the 

results of FA models using Varimax rotation. 
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All five traits and all linear mixed models were fitted using the 

statistical package ASReml-R v. 3 (Buttler et al., 2009) that estimates 

variance components using restricted maximum likelihood (REML) through 

the average information (AI) algorithm (Gilmour et al., 1995), followed by 

estimation of fixed and random effects by solving the mixed model 

equations. Diagnostic plots were used to verify the outliers and normality of 

the residuals. For GY and EPP, the number of plants per plot was used as a 

covariate. Model comparisons were done using the Akaike information 

criterion (AIC, Akaike, 1974). 

 

Cross-validation scheme  

Predictive accuracy was calculated as the correlation between the 

phenotype (obtained from single-environment trial analysis without 

molecular markers and considering hybrids as fixed effects) and the 

predicted genotypic effects (additive or additive+dominance). A 10-fold 

cross-validation procedure was implemented to calculate the predictive 

accuracies in which the total set of hybrids was randomly split into 10 

groups. The cross-validation procedure was performed separately for each 

trait using the MET model [1], where hybrids in the validation set were 

considered as not evaluated in any other environments (trials). Two 

different scenarios for the cross-validation scheme were implemented to 

evaluate the predictive accuracy of the measured traits: i) the training and 

validation procedures were performed separately in well-watered or water-

stressed trials (CV1), and ii) all trials, combing both watering regimes, were 

used to predict the performance of single-cross hybrids under well-watered 

and water-stressed conditions (CV2).  

 



71 

RESULTS 

Estimates of genetic parameters using high-density SNP markers 

Broad and narrow sense heritabilities varied considerably between 

WW and WS conditions (Table 1) for MET analysis (model [1]). For GY, 

ASI and FFT 2h  were lower in WS conditions. Higher values of 

heritabilities were found for FFT and MFT in both conditions. ASI showed 

2h  under WW conditions almost 2 times greater than under WS conditions. 

Similar trends were found to broad sense heritabilities ( 2H ) for ASI, with 

values of 0.339 and 0.521 under WS and WW conditions, respectively. 

Models including dominance effects exhibited a decrease in the additive 

variance component, and consequently in the narrow sense heritability ( 2h ) 

(Table 1). For example, FFT under WS conditions showed a decrease of 

almost 45% in the 2h . Only for EPP under the WW condition, the 2h  were 

almost the same for A and AD models. Similar results were found for 

single-environment trial analysis (Table S1-S5).  

For almost all traits, except GY, the proportion of the genetic 

variance explained by the dominance effects was smaller under WW than in 

WS conditions (Table 1). ASI and EPP had dominance variances under WS 

almost 44% and 32%, respectively, higher than in WW conditions. The ratio 

VA/VD ranged from 1.36 (GY) to 4.69 (MFT) under WS conditions, and 

from 1.36 (GY) to 7.98 (ASI) under WW conditions. MFT showed smaller 

proportions of dominance effects in the genetic variance for both conditions, 

compared to other traits. 

The dependency between additive and dominance genomic 

relationship matrices for GY are presented in Figure 1. A small dependency 

between Ag and Dg can be observed when compared with a hypothetical 

situation of orthogonality (diagonal line, Figure 1). Similar trends were 

observed for the other traits (Figure S1). However, in WWJ11 and WWT11 

trial, where unreplicated trials were used to evaluate hybrids under WW 
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conditions, the dependency between Ag and Dg was higher for the secondary 

traits (ASI, EPP, FFT and MFT). Probably, it is due to the smaller 

experimental precision, which can be inferred by the square root of the 

broad sense heritability, observed for these trials. Moreover, the AIC 

criterion showed that the inclusion of dominance effects in general 

improved the model fitted compared to model A, being the AD the best 

model in all the cases (Table 1). 

 

Accuracy of MET-GS models for drought tolerance related traits 

Predictive accuracy was different across WW and WS conditions 

(CV1, Table 2). In general, under WW conditions, the predictive accuracy 

was higher, ranging from 0.391 (GY) to 0.688 (FFT) and from 0.474 (GY) 

to 0.723 (FFT) for models A and AD, respectively (CV1, Table 2). For GY, 

an increase of 17.5% and 51.8% in the predictive accuracy were observed 

when the dominance effects were included in the GS model under WW and 

WS conditions, respectively. FFT and EPP under WS showed an increase of 

19.67% and 9.56%, respectively, when the dominance effects were 

accounted. However, ASI and MFT under WS conditions, and ASI, MFT, 

FFT and EPP under WW conditions, do not exhibited much increase (lower 

than 5%) with the inclusion of dominance effects in the MET-GS model. 

Differences in the predictive accuracies were observed between GY 

and the secondary traits (CV1, Table 2). For all secondary traits, models AD 

under WW conditions resulted in a predictive accuracy higher than 0.64, 

which was at least 25% higher than the predictive accuracy observed for 

GY. On the other hand, under WS conditions, the differences between the 

predictive accuracies obtained for secondary traits and GY were smaller 

than 10% for models AD, whereas for models including solely additive 

effects those differences were more evident, almost two times greater than 

the predictive accuracy observed for GY (CV1, Table 2). 
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An increase in the predictive accuracy was observed when the 

hybrids performance was predicted in both conditions simultaneously (CV2, 

Table 2). In general, higher predictive accuracies were observed under WW 

compared to WS conditions, considering models A or AD, except for GY 

that exhibited a higher predictive accuracy under WS conditions when using 

the model AD. The benefits of considering both conditions simultaneously 

to predict hybrids performance were more evident under WS conditions, 

with predictive accuracies ranging from 0.49 (EPP) to 0.63 (MFT). For GY, 

under WS conditions, the predictive accuracy increased up to 15% when 

using model AD. However, for EPP, the use of model AD resulted in a little 

decrease in the predictive accuracies in both WW and WS conditions. FFT 

and MFT showed little increments when using model AD under WW 

conditions.  

 

GxE interaction model for additive and additive+dominance effects 

Additive and dominance genetic correlations estimated through FA 

models are shown in Figure 2. The additive genetic correlations ranged from 

0.41 (WS_GY) to 0.83 (WS_MFT) and the dominance genetic correlations 

ranged from 0.08 (WS_ASI) to 0.69 (WS_MFT). Based on the additive and 

dominance genetic correlations across environments, it is possible to 

observe that the dominance effects exhibited a more evident interaction with 

environments, except for WS_EPP and WS_GY. The additive effects 

showed low levels of interaction with environments for MFT in both water 

conditions, with correlations greater than 0.75. However, the dominance 

genetic correlations, under WW for EPP, ASI, FFT and MFT, and under 

WS for ASI showed values of low magnitude or equal to zero (Table 1). 

Stability responses of some superior hybrids are shown in (Table 3). 

Values close to the origin (FA1 and FA2 close to zero) indicate a stable 

performance of a given hybrid across WW and WS conditions. The stability 

for best hybrids varied between additive and dominant effects. For example, 
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the hybrid 11 showed only stable additive effects, whereas the hybrid 211 

exhibited only stable dominance effects. Figures 3 show the latent 

regression plots, for the first and second factors, for the additive and 

dominance effects. For hybrid 211, as suggested by the latent regression, the 

additive effects increased for trials with high estimated loadings (Figure 

3A). Another example, for hybrid 11, the dominance effects increased for 

trials with high estimated loadings (Figure 3B). 

 

DISCUSSION 

To increase genomic predictions for untested hybrids in maize is a 

recurrent challenge for the successful application of genomic selection in 

breeding programs. This task requires the use of models that account for 

multi-environment data, as well as non-additive effects. Our results, based 

on tropical maize germplasm cultivated in Brazil, showed that it is possible 

to achiev high levels of predictive accuracy for untested hybrids for drought 

tolerance related traits through including GxE, additive and dominance 

effects into the genomic selection models.  

 

Partition of the genetic variance through SNP markers  

Orthogonal partitions of the genetic variance were found by genomic 

relationship matrices (Figure 1). Partitions of genetic variance into additive 

and dominance effects contribute to a better understanding about the genetic 

architecture of target traits. In maize, for instance, the knowledge about the 

genetic architecture help breeders to decide if target traits should be 

evaluated into inbred lines or hybrids. Genomic relationship matrices used 

in this study were based on the theory of quantitative genetics, where the 

covariance between additive and dominance effects is zero. This 

parameterization has been used in plants (Bouvet et al., 2015), humans (Zhu 

et al., 2015) and also in simulations studies (Da et al., 2014; Nazarian and 

Gezan, 2016b) and showed reasonable orthogonal partition of additive and 
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non-additive effects. These studies also highlighted the importance of this 

correct partition of genetic variance to better understand the genetic 

architecture of traits though GBLUP. 

Narrow sense heritabilities decreased when dominance effects were 

included into the GS models (Table 1). These decreases on narrow sense 

heritabilities were probably due to the alleles frequencies distributions (Hill 

et al., 2008). In this case, when allele frequencies are distributed towards 

extreme values, even in the presence of non-additive effects, part of these 

effects can be estimate as additive variance (Hill et al., 2008). Our findings 

that narrow sense heritabilities decreased when dominance effects were 

included in the models, corroborates the findings of Muñoz et al. (2014) and 

Bouvet et al. (2015) in pine and eucalyptus, respectively. However, to our 

knowledge, our study was the first one to incorporate GxE, additive and 

dominance effects into the genomic prediction models for drought tolerance 

traits in maize.  

Even with a small dependency between additive and dominance 

effects as showed here, the additive variance can have part of dominance 

effects, which highlight the importance of the alleles frequencies 

distribution. Therefore, even when there is no difference between A and AD 

models for the predictive accuracy for some traits, such as MFT, it is 

important to use AD models to estimate genetic parameters because these 

models can split better the composition of the genetic variance. Mainly, 

when working with a species that exhibits high heterosis, and hybrids are 

the main type of cultivar, like maize. The presence of dominance into the 

models is important to have a better and more realistic partitioning of the 

genetic variance. Thus, the narrow sense heritability can be overestimated if 

just an additive model is considered and the genetic gain may be 

overestimated as well.  
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Accuracy of GS models for drought tolerance traits 

Under WS conditions the differences in predictive accuracy between 

A and AD models were more evident (Table 2). As an example, under WS 

the AD model for GY had the predictive accuracy two times bigger than A 

model. However, under WW, for ASI, EPP, FFT and MFT, A and AD 

models had similar results. There are two possible explanations for these 

results. First, these traits had a higher heritability under WW conditions than 

under WS conditions. Da et al. (2014) showed that AD models tend to be 

less efficient when the heritabilities of the traits are high. Second, these 

traits with small differences in the predictive accuracy between A and AD 

models exhibited a smaller contribution of the dominance effects in the 

genetic variance compared to the additive effects. Recently Almeida filho et 

al. (2016) showed via simulation that the AD models were significantly 

better than A models when the ratio between the dominance variance and 

the total phenotypic variance reached 0.2. Thus, differences between A and 

AD models under WW were small for these traits probably due to the high 

heritability and the small contribution of the dominance effects to the 

genetic variance. 

Predictive accuracy increased when all trials were used in a training 

set (CV2, Table 2). This result is probably due to the use of a one-stage 

model analysis, which accounted for the genetic correlations across trials. 

For GY, the AD model resulted in an increment of 18% in the prediction 

accuracy under WS conditions. This result showed that the prediction 

accuracy of untested single-cross hybrids can be increased when WW and 

WS trials are used together for the training data set. Aeron et al. (2012) 

showed that to increase the size of training sets using unrelated individuals 

does not always result in a higher predictive accuracy. In our study, 

although the number of individuals in the training set was kept the same, 

combining the information of WW and WS trials improved the prediction 

accuracy under WW and WS conditions.  
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The genetic architecture of drought tolerance traits affects the 

prediction accuracy (Table 2). Secondary traits, such as ASI and FFT had 

higher prediction accuracies than GY in both water conditions. Selection for 

secondary traits for drought tolerance has been reported as an interesting 

way to increase genetic gains for GY (Oyekunle et al., 2015). However, 

Zyomo and Bernardo (2013) showed that GS is more efficient to increase 

genetic gains for GY than indirect selection for secondary traits on 

temperate maize. Comparisons between GS and phenotypic selection for 

drought tolerance in biparental maize populations showed that after three 

cycles of selection GS achieved greater genetic gains (Beyene et al., 2015). 

The results found in our study, suggest that it is possible to enhance the 

predictive accuracy of untested hybrids for drought tolerance traits, such as 

GY, FFT and EPP, by using AD models. 

 

GxE interaction model for additive and additive+dominance effects 

The incorporation of GxE in multi-environment trial analysis, 

provide valuable information about stability of hybrids under WW and WS 

conditions. Therefore, appropriate statistical model that account for 

correlations across trials and deal with unbalanced data needs to be used. 

Explicit models that have a main genetic effect and a genotype-by-

environment interaction effect, have the same results that implicit models 

(the effect of genotypes within environments) with compound symmetry 

structure for the variance and covariance matrices (VCOV), which means 

that explicit models consider the same variance and covariance across trials 

(Smith et al., 2011; Smith et al., 2015). Implicit models have some 

advantages: allow to consider different structures for the VCOV between 

trials (i.e unstructured or FA models). Burgueño et al. (2011) showed that 

FA models exhibited an advantage of up to 6% in the prediction accuracy 

over the models that considered the same variance and correlation across 

environments. Recently, Lopez-Cruz et al. (2015) showed that GS models 
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that account for GxE resulted in greater prediction accuracy than models 

without GxE. For drought tolerance, Zhang et al. (2015) showed that the 

prediction accuracy was increased when using a model that incorporates 

GxE for GY. It is known that there are high levels of GxE for most of the 

traits faced by breeders, which increases the importance of models that can 

deal with MET data.  

Although previous studies have applied genomic selection for 

drought tolerance in maize (Zyomo and Bernardo, 2013; Beyene et al., 

2015; Zhang et al., 2015), they did not take the advantage of using models 

that can deal with GxE and account for additive and dominance effects 

simultaneously. Our results emphasize the importance of dominance effects 

for traits such as FFT, EPP and GY under drought conditions. Also, our 

study contributes to a better understanding about the genetic architecture of 

these traits based on models that represent the reality of breeding programs, 

where genotypes are unbalanced and measured in multi-environment trials. 

Over recent years, many statistical models have been proposed for 

the application of GS in plant and animal breeding. Azevedo et al. (2015) 

compared different statistical methods for GS, incorporating additive and 

dominance effects, and concluded that GBLUP was between the best 

methods and provided an accurate prediction for the breeding values, as 

well as, for the additive and dominance effects. Factor analytic 

multiplicative mixed models showed as an efficient way to perform MET 

analysis including additive and dominance effects for GS through GBLUP. 

Based on FA models with additive and dominance effects, latent 

regression plots were done to understand GxE (Figure 3). Using these plots, 

inferences about the stability of the breeding values and the dominance 

deviation for a given hybrid can be made. Based on these findings, breeders 

can analyze the partition of the genetic variance and how GxE acts on the 

additive and dominance variance components. Also, based on these plots it 

is possible to select the hybrids with stability for the additive effects and to 
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intermate their parents (inbred lines) for the next breeding cycles. This 

approach can be easily extended to other crops, such as eucalyptus and pine, 

in which the evaluated individual is used to generate the next breeding 

cycle. Then, optimized crosses can be performed through the selection of 

the best parents with the goal of improving the expected genetic gain (Toro 

and Varona, 2010). Since in these species the dominance effects cannot pass 

from parents to the offspring over generations, increases in the genetic gains 

can be reached through the selection of the best parents based on the 

additive effects. 

 

Implementation of GS for drought tolerance breeding programs in 

maize 

 Genomic selection can be applied at least in two contexts for 

drought-tolerance breeding programs in maize. First, GS can be used for 

parental selection and for successive cycles of intermating and selection 

within breeding populations (normally, biparental populations). Under this 

scenario, GS can be used to perform more than one breeding cycle per year, 

increasing the genetic gains per unit time. A similar approach has been 

applied by Beyene et al. (2015), who showed the advantage of this GS 

strategy over phenotypic selection to increase the genetic gains in drought 

tolerance breeding programs. Second, GS can be used to predict untested 

hybrids, an important role in maize breeding programs, which allow 

reducing the number of tested (phenotyped) hybrids in breeding programs. 

In both scenarios described above, time and financial resources can be saved 

in genetic breeding programs. Recently, Krchov and Bernardo (2015) 

compared the amount of financial resources that can be saved using GS in a 

breeding program when compared to phenotyping costs, given that the 

genotyping costs are currently decreasing.  

Over the recent years, many statistical models have been proposed 

for GS in plant and animal breeding. Although comparisons between 
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different GS models are important, the choice of an adequate training set is 

one of the most important steps to apply GS in a breeding program. Thus, in 

maize breeding, optimizing the composition of the training set, in terms of 

number of lines and hybrids per line, could further increase the prediction 

accuracy of untested hybrids (TECHNOW et al., 2014). Moreover, 

biparental or multiparental training populations can be used for the breeding 

value prediction of selection candidates within or across breeding 

populations (SCHULZ-STREECK et al., 2012). 

Our findings suggest that GxE, additive and dominance effects 

should be simultaneously incorporated into the GS models in maize 

breeding programs; and that GBLUP models that account for GxE, additive 

and dominance effects can be easily used for high density SNP panels. In 

addition, these GBLUP models can be easily extended to other crops, such 

as outcrossing species, in which non-additive effects are very important. 

Through these models it is possible to select the best genotypes based on the 

performance and stability across different environments. Moreover, it is also 

possible to select the hybrids with stability for the additive effects and 

intermate their parents (inbred lines) for the next breeding cycles. Thus, 

using FA models, breeders can select superior hybrids with stable responses 

across WS and WW conditions. For a breeding program, one-stage model 

analysis may be challenge to fit, since hybrids are usually evaluated across 

many locations and years. Then, one option to solve this problem is to 

perform a two-stage model analysis (for some details about the two-stage 

model analysis see Mohring and Piepho, 2009).  

As demonstrated so far, greater prediction accuracies for the hybrids 

performance can be achieved when dominance effects are incorporated in 

the GS models for drought tolerance. Our results showed a higher 

contribution of dominance effects for GY in both water conditions, while 

for ASI, EPP and FFT, the dominance effects were more evident under WS 

condition. Furthermore, the orthogonal partition of the genetic variance was 
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performed the drought tolerance traits based on the genomic relationship 

matrices. Differences were observed in the predictive accuracy between 

models A and AD for the five evaluated traits in both water conditions. 

However, these differences were more evident under WS conditions. Using 

factor analytic mixed models, including additive and dominance effects, it 

was possible to investigate the stability of the additive and dominance 

effects across environments, as well as, the additive and dominance-by-

environment interaction, with interesting applications for parental and 

hybrid selection. In addition, combining WW and WS trials increased the 

prediction accuracy of untested hybrids. These results contribute to a better 

understanding about the genetic architecture of important traits related to 

drought tolerance under WW and WS conditions, and highlight the 

importance of dominance effects for the grain yield genomic prediction of 

maize single-cross hybrids under both water regimes. 
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Table 1. Estimates of the genetic parameters and goodness-of-fit-measures of the multi-

environment trials models (model [1]) for well-watered (WW) and water-stressed (WS) 

conditions for additive (A) and additive-dominance (AD) models. 

GY 

 
WS WW 

A AD A AD 
2h  0.345 (0.026) 0.191 (0.025) 0.397 (0.029) 0.264 (0.031) 

2δ  - 0.140 (0.017) - 0.193 (0.022) 

2H  - 0.331 (0.023) - 0.457 (0.024) 

LogL -2374.205 -2251.968 -1706.948 -1641.089 

AIC 4788.411 4567.935 3448.895 3342.178 

EPP 

2h  0.311 (0.024) 0.236 (0.024) 0.218 (0.028) 0.214 (0.028) 

2δ  - 0.114 (0.013) - 0.078 (0.024) 

2H  - 0.349 (0.021) - 0.293 (0.031) 

LogL -5187.843 -5137.087 -2768.141 -2754.757 

AIC 10415.690 10388.170 5572.281 5569.515 

ASI 

2h  0.276 (0.042) 0.235 (0.057) 0.483 (0.031) 0.463 (0.034) 

2δ  - 0.103 (0.014) - 0.058 (0.017) 

2H  - 0.339 (0.049) - 0.521 (0.029) 

LogL -3512.529 -3478.561 -681.806 -669.321 

AIC 7065.057 7021.122 1399.613 1398.642 

FFT 

2h  0.410 (0.029) 0.276 (0.028) 0.440 (0.033) 0.387 (0.033) 

2δ  - 0.092 (0.022) - 0.078 (0.015) 

2H  - 0.368 (0.027) - 0.466 (0.032) 

LogL -4962.642 -4881.973 -2344.532 -2316.392 

AIC 9965.284 9827.946 4725.065 4692.784 

MFT 

2h  0.544 (0.027) 0.399 (0.030) 0.441 (0.034) 0.375 (0.034) 

2δ  - 0.085 (0.016) - 0.075 (0.016) 

2H  - 0.485 (0.027) - 0.449 (0.033) 

LogL -3671.602 -3608.921 -2157.249 -2126.197 

AIC 7383.204 7281.842 4350.497 4312.395 

2h  narrow-sense heritability, 2δ  proportion of the total genetic variance explained by the dominance 

effects, 2H  broad-sense heritability, LogL is the likelihood of the fitted model; 2ρ
A

 and 2ρ
D

 are the 

average additive and dominance correlations between pairs of trials, respectively. Traits correspond to 

grain yield (GY, t/ha), number of ears per plot (EPP), anthesis-silking interval (ASI, days), female 

flowering time (FFT, days) and male flowering time (MFT, days). Values within parentheses are 

approximated standard errors. 
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Table 2. Predictive accuracy based on a 10-fold cross-validation (CV1 and CV2) 

procedure for five traits evaluated in WS and WW conditions, using additive (A) 

and additive+dominance (AD) models [1]. 

Predictive accuracy GY EPP ASI FFT MFT 

 -------------------------------- CV1 -------------------------------- 

WS 
A 0.245 0.501 0.549 0.494 0.613 

A+D 0.508 0.554 0.577 0.615 0.614 

WW 
A 0.391 0.625 0.639 0.688 0.633 

A+D 0.474 0.663 0.636 0.723 0.662 

  -------------------------------- CV2 -------------------------------- 

WS 
A 0.268 0.518 0.557 0.539 0.621 

A+D 0.604 0.490 0.613 0.631 0.635 

WW 
A 0.311 0.584 0.681 0.683 0.657 

A+D 0.552 0.551 0.674 0.729 0.686 
Traits considered correspond to grain yield (GY, t/ha), number de ear per plot (EPP), 

anthesis silking interval (ASI, days), female flowering time (FFT, days) and male flowering 

time (MFT, days). 

 
 

 

 

 

Table 3. Predicted factor scores for the 15 best hybrids based on grain yield (GY, 

t/ha). Factor scores are rotated with the Varimax rotation from model [1] for all 

trials.  

Hybrids 
Additive Dominance 

Factor 1 Factor 2 Factor 1 Factor 2 

11 -0.14 0.42 1.82 1.12 

42 1.44 0.71 0.92 1.58 

44 1.30 0.83 1.47 0.35 

98 1.40 1.11 1.33 0.85 

109 1.03 -0.09 0.80 2.23 

121 0.69 1.01 0.52 1.22 

133 1.16 0.73 1.38 1.25 

139 0.93 0.51 0.81 1.54 

141 1.30 0.29 0.89 1.03 

143 1.29 0.31 0.82 1.91 

182 1.27 0.28 1.22 1.35 

186 0.40 0.65 1.66 1.26 

188 1.30 0.70 0.54 1.22 

211 1.70 1.52 0.68 0.43 

285 0.71 1.25 1.62 0.62 
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Figure 1. Proportion of the genetic variance explained by the additive and dominance 

effects for grain yield (GY, t/ha), based on the eigenvalues and using model [1]. The 

diagonal represents a hypothetical situation of orthogonality between two distinct matrices.  
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Figure 2. Additive (A) and dominance (AD) correlations between pairs of trials for the five 

evaluated traits under WS and WW conditions, using A (additive) and AD (additive and 

dominance) models (model [2]). Traits correspond to grain yield (GY, t/ha), number of ears 

per plot (EPP), anthesis-silking interval (ASI, days), female flowering time (FFT, days) and 

male flowering time (MFT, days).  
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Figure 3. Latent regression plots for the first and second factors of additive effects (A). 

Latent regression plots for the first and second factors of dominance effects (B). Dots in 

blue and red represent WW and WS trials, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 

SUPPLEMENTARY INFORMATION 

 

 

 

Figure S1. Proportion of the genetic variance explained by the eigenvalues of the models 

considering additive and dominance effects for all measured traits. The diagonal represents 

a hypothetical situation of orthogonality between two distinct matrices. The traits 

considered correspond to grain yield (GY, t/ha), number de ears per plot (EPP), anthesis 

silking interval (ASI, days), female flowering time (FFT, days) and male flowering time 

(MFT, days). For each trial, the two first letters identify the water condition (WS or WW), 

followed by the first letter of location (J for Janaúba or T for Teresina) and the last two 

digits corresponds to the year (10 or 11). 
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Table S1. Estimates of the genetic parameters and goodness-of-fit-measures from 

single trial analyses. The trait considered correspond to grain yield (GY, t/ha). 

Values in parentheses are approximate standard errors. 

 A AD A AD 

 WSJ10 WWJ10 
2h  0.274 (0.044) 0.235 (0.045) 0.490 (0.050) 0.415 (0.053) 
2δ  - 0.111 (0.037) - 0.112 (0.036) 
2H  - 0.346 (0.043) - 0.527 (0.046) 

LogL -549.429 -537.187 -490.156 -469.821 

AIC 1104.858 1082.376 986.312 947.642 

 WSJ11 WWJ11 
2h  0.294 (0.046) 0.176 (0.042) 0.185 (0.086) 0.188 (0.087) 
2δ  - 0.193 (0.042) - 0.131 (0.073) 
2H  - 0.346 (0.043) - 0.319 (0.104) 

LogL -549.429 -537.187 -295.725 -290.786 

AIC 1104.858 1082.376 595.450 587.573 

 WST10 WWT10 
2h  0.234 (0.053) 0.196 (0.053) 0.460 (0.053) 0.363 (0.055) 
2δ  - 0.128 (0.053) - 0.221 (0.050) 
2H  - 0.324 (0.059) - 0.584 (0.043) 

LogL -604.768 -599.931 -623.869 -594.239 

AIC 1215.538 1207.863 1253.738 1196.478 

 WST11 WWT11 
2h  0.250 (0.043) 0.159 (0.040) 0.171 (0.067) 0.066 (0.059) 
2δ  - 0.144 (0.038) - 0.323 (0.094) 
2H  - 0.303 (0.043) - 0.389 (0.094) 

LogL -674.647 -635.490 -350.572 -341.526 

AIC 1355.295 1278.982 705.144 689.053 
2h  narrow-sense heritability, 

2δ  proportion of the total genetic variance explained by dominance, 

2H  broad-sense heritability, LogL is the likelihood of the fitted model. For each trial, the two first 

letters identify the water condition (WS or WW), followed by the first letter of location (J for Janaúba 

or T for Teresina) and the last two digits corresponds to the year (10 or 11). 
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Table S2. Estimates of the genetic parameters and goodness-of-fit-measures from 

single trial analyses. The trait considered correspond to ears per plot (EPP, t/ha). 

Values in parentheses are approximate standard errors. 

 A AD A AD 

 WSJ10 WWJ10 
2h  0.384 (0.049) 0.331 (0.051) 0.317 (0.054) 0.300 (0.055) 
2δ  - 0.064 (0.031) - 0.047 (0.036) 
2H  - 0.396 (0.047) - 0.347 (0.057) 

LogL -1239.732 -1235.195 -891.311 -889.722 

AIC 2485.504 2478.390 1788.623 1787.445 

 WSJ11 WWJ11 
2h  0.318 (0.046) 0.243 (0.045) 0.253 (0.089) 0.294 (0.087) 
2δ  - 0.115 (0.035) - 0.126 (0.090) 
2H  - 0.358 (0.042) - 0.420 (0.125) 

LogL -1519.157 -1494.454 -386.686 -385.061 

AIC 3044.314 2996.908 777.373 776.129 

 WST10 WWT10 
2h  0.225 (0.054) 0.195 (0.055) 0.236 (0.054) 0.231 (0.055) 
2δ  - 0.140 (0.054) - 0.137 (0.054) 
2H  - 0.335 (0.060) - 0.367 (0.061) 

LogL -1230.183 -1225.576 -973.507 -968.894 

AIC 2466.366 2459.153 1953.015 1945.79 

 WST11 WWT11 
2h  0.194 (0.042) 0.170 (0.042) 0.114 (0.068) 0.111 (0.059) 
2δ  - 0.082 (0.035) - 0.000 (-) 
2H  - 0.252 (0.044) - 0.111 (0.059) 

LogL -1253.852 -1247.434 -571.272 -565.517 

AIC 2513.703 2502.869 1146.545 1139.035 
2h  narrow-sense heritability, 

2δ  proportion of the total genetic variance explained by dominance, 

2H  broad-sense heritability, LogL is the likelihood of the fitted model. For each trial, the two first 

letters identify the water condition (WS or WW), followed by the first letter of location (J for Janaúba 

or T for Teresina) and the last two digits corresponds to the year (10 or 11). 
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Table S3. Estimates of the genetic parameters and goodness-of-fit-measures from 

single trial analyses. The trait considered correspond to anthesis silking interval 

(ASI, days). Values in parentheses are approximate standard errors. 

 A AD A AD 

 WSJ10 WWJ10 
2h  0.444 (0.042) 0.431 (0.044) 0.535 (0.045) 0.511 (0.044) 

2δ  - 0.035 (0.025) - 0.059 (0.032) 

2H  - 0.466 (0.042) - 0.567 (0.044) 

LogL -865.201 -863.928 -371.382 -369.194 

AIC 1736.403 1735.856 748.765 746.388 

 WSJ11 WWJ11 
2h  0.466 (0.044) 0.371 (0.040) 0.527 (0.073) 0.527 (0.073) 

2δ  - 0.116 (0.0337) - 0.007 (0.052) 

2H  - 0.487 (0.040) - 0.535 (0.090) 

LogL -1148.622 -1127.608 -238.010 -238.000 

AIC 2303.245 2263.216 480.020 482.001 

 WST10 WWT10 
2h  0.176 (0.051) 0.155 (0.053) 0.155 (0.049) 0.145 (0.049) 

2δ  - 0.126 (0.054) - 0.066 (0.045) 

2H  - 0.281 (0.062) - 0.211 (0.059) 

LogL -1143.980 -1140.427 -132.667 -131.134 

AIC 2293.960 2288.854 271.334 270.026 

 WST11 WWT11 
2h  0.277 (0.044) 0.251 (0.045) 0.248 (0.083) 0.228 (0.083) 

2δ  - 0.043 (0.028) - 0.287 (0.095) 

2H  - 0.295 (0.045) - 0.515 (0.112) 

LogL -402.327 -399.530 -5.920 -0.628 

AIC 810.654 807.061 15.840 7.250 
2h  narrow-sense heritability, 

2δ  proportion of the total genetic variance explained by dominance, 

2H  broad-sense heritability, LogL is the likelihood of the fitted model. For each trial, the two first 

letters identify the water condition (WS or WW), followed by the first letter of location (J for Janaúba 

or T for Teresina) and the last two digits corresponds to the year (10 or 11). 
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Table S4. Estimates of the genetic parameters and goodness-of-fit-measures from 

single trial analyses. The trait considered correspond to female flowering time 

(FFT, days). Values in parentheses are approximate standard errors. 

 A AD A AD 

 WSJ10 WWJ10 
2h  0.544 (0.038) 0.512 (0.041) 0.599 (0.041) 0.537 (0.046) 
2δ  - 0.055 (0.022) - 0.106 (0.033) 
2H  - 0.567 (0.036) - 0.644 (0.037) 

LogL -1227.789 -1219.396 -758.423 -741.650 

AIC 2461.579 2446.793 1522.847 1491.302 

 WSJ11 WWJ11 
2h  0.531 (0.044) 0.342 (0.046) 0.465 (0.080) 0.482 (0.076) 
2δ  - 0.170 (0.037) - 0.086 (0.066) 
2H  - 0.512 (0.039) - 0.568 (0.097) 

LogL -1495.668 -1444.274 -408.579 -406.954 

AIC 2997.336 2896.548 821.158 819.908 

 WST10 WWT10 
2h  0.197 (0.054) 0.169 (0.054) 0.210 (0.049) 0.188 (0.048) 
2δ  - 0.104 (0.049) - 0.043 (0.027) 
2H  - 0.274 (0.059) - 0.231 (0.053) 

LogL -1336.340 -1332.434 -952.937 -949.650 

AIC 2678.680 2672.868 1911.874 1907.301 

 WST11 WWT11 
2h  0.457 (0.047) 0.353 (0.042) 0.497 (0.078) 0.509 (0.068) 
2δ  - 0.103 (0.029) - 0.210 (0.063) 
2H  - 0.457 (0.045) - 0.720 (0.070) 

LogL -1041.652 -1016.160 -342.169 -324.353 

AIC 2089.305 2040.320 688.339 654.707 
2h  narrow-sense heritability, 

2δ  proportion of the total genetic variance explained by dominance, 

2H  broad-sense heritability, LogL is the likelihood of the fitted model. For each trial, the two first 

letters identify the water condition (WS or WW), followed by the first letter of location (J for Janaúba 

or T for Teresina) and the last two digits corresponds to the year (10 or 11). 
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Table S5. Estimates of the genetic parameters and goodness-of-fit-measures from 

single trial analyses. The trait considered correspond to male flowering time (MFT, 

days). Values in parentheses are approximate standard errors. 

 A AD A AD 

 WSJ10 WWJ10 

2h  0.596 (0.037) 0.518 (0.042) 
0.0564 

(0.043) 
0.488 (0.048) 

2δ  - 0.095 (0.026) - 0.129 (0.036) 
2H  - 0.614 (0.034) - 0.617 (0.037) 

LogL -906.270 -881.837 -658.286 -636.513 

AIC 1818.542 1771.676 1322.573 1281.025 

 WSJ11 WWJ11 
2h  0.603 (0.037) 0.482 (0.044) 0.529 (0.073) 0.566 (0.066) 
2δ  - 0.119 (0.031) - 0.105 (0.057) 
2H  - 0.602 (0.035) - 0.672 (0.081) 

LogL -1120.695 -1090.680 -369.899 -365.964 

AIC 2247.391 2189.360 743.798 737.928 

 WST10 WWT10 
2h  0.032 (0.053) 0.281 (0.054) 0.207 (0.049) 0.187 (0.049) 
2δ  - 0.063 (0.035) - 0.035 (0.027) 
2H  - 0.344 (0.053) - 0.222 (0.051) 

LogL -876.604 -872.102 -925.355 -923.192 

AIC 1759.209 1752.206 1856.711 1854.385 

 WST11 WWT11 
2h  0.398 (0.047) 0.327 (0.047) 0.515 (0.076) 0.531 (0.066) 
2δ  - 0.077 (0.026) - 0.170 (0.058) 
2H  - 0.405 (0.046) - 0.701 (0.070) 

LogL -974.274 -958.445 -326.322 -312.657 

AIC 1954.549 1924.890 656.644 631.315 
2h  narrow-sense heritability, 

2δ  proportion of the total genetic variance explained by dominance, 

2H  broad-sense heritability, LogL is the likelihood of the fitted model. For each trial, the two first 

letters identify the water condition (WS or WW), followed by the first letter of location (J for Janaúba 

or T for Teresina) and the last two digits corresponds to the year (10 or 11). 

 


