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Abstract
Linear-bilinear models, especially the additive main effects and multiplicative interaction

(AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies

in plant breeding programs. These models allow a parsimonious modeling of GE interac-

tions, retaining a small number of principal components in the analysis. However, one

aspect of the AMMI model that is still debated is the selection criteria for determining the

number of multiplicative terms required to describe the GE interaction pattern. Shrinkage

estimators have been proposed as selection criteria for the GE interaction components. In

this study, a Bayesian approach was combined with the AMMI model with shrinkage estima-

tors for the principal components. A total of 55 maize genotypes were evaluated in nine dif-

ferent environments using a complete blocks design with three replicates. The results show

that the traditional Bayesian AMMI model produces low shrinkage of singular values but

avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand,

Bayesian shrinkage AMMI models have difficulty with the credible interval for model param-

eters, but produce stronger shrinkage of the principal components, converging to GE matri-

ces that have more shrinkage than those obtained using mixed models. This characteristic

allowed more parsimonious models to be chosen, and resulted in models being selected

that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI

models and cross validation based on leave-one-out. This characteristic allowed more par-

simonious models to be chosen and more GEI pattern retained on the first two components.

The resulting model chosen by posterior distribution of singular value was also similar to

those produced by the cross-validation approach in traditional AMMI models. Our method

enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model

based on direct posterior distribution retaining more GEI pattern in the first components and

discarding noise without Gaussian assumption as requested in F-based tests or deal with

parametric problems as observed in traditional AMMI shrinkage method.
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Introduction
Plant breeding programs select and recommend the best genotypes or cultivars based on
yield and on their adaptability to and stability in various test environments. However, the
breeder’s job is hindered by genotype-by-environment interactions (GEI), a phenomenon that
can be detected through the responses of the genotypes when evaluated in different
environments.

Therefore, studies on GEI are of utmost importance, and can be performed using several dif-
ferent methods, including linear-bilinear models [1], which offer an improved description of
the effects of interaction among factors. The additive main effects and multiplicative interac-
tion (AMMI) model is currently one of the most popular multiplicative models. The AMMI
model was originally proposed by Gollob [2] and Mandel [3,4] in the context of fixed effects,
but the actual statistical method itself goes back to work by Pike and Silverberg [5] andWil-
liams [6]. It has been widely used to study GE interactions in plant breeding programs and in
agronomic experiments in general because it incorporates univariate and multivariate proce-
dures to separate the pattern responsible for the interaction from the noise, which is an unex-
plained factor. The noise, which is of no agronomic interest, is removed to increase the
predictive power of the model [7].

One aspect that is still debated in the literature is the method used to select the number of
multiplicative terms necessary to describe the interaction pattern. Bilinear terms of the model
have been selected using several different criteria. These include approximate F-tests, notably
the F-test from Gollob [2] and the FR-test from Cornelius et al. [8], and non-parametric meth-
ods based on computationally intensive resampling, such as cross validation [7,9,10,11] and
parametric bootstrapping, described by Forkman and Piepho [12].

An alternative for selecting the AMMI model multiplicative components has been described
by Cornelius and Crossa [10,13]. These authors have proposed that an estimator that promotes
shrinkage of the least squares estimates of the scale parameters in multiplicative models, specif-
ically the singular values, be applied. In addition to obtaining more realistic estimates for the
parameters, their method eliminates the need for any statistical tests or cross-validation meth-
ods to select components that describe the interaction pattern among factors. Additionally, the
shrinkage estimators from Cornelius and Crossa [10] produced fitted models that were better
than those fitted using approximate F-tests, and they were generally as good as or better than
the best linear unbiased predictors (BLUPs) obtained from random models. Their approach
was based on the idea that the phenotypic means obtained by the ordinary least squares (OLS)
method are not the best at minimizing the mean squared error (MSE) and cannot be used in all
situations [14].

Despite the above-mentioned advantages, the method proposed by Cornelius and Crossa
[10] does not have a very clear derivation and may provide inconsistent results in the spectral
decomposition, for example, negative singular values and magnitude inversion between high-
dimensional and low-dimensional singular values. Additionally, the method proposed by these
authors can only be used to predict the genotypic value of a genotype present in a specific envi-
ronment, i.e., it is applied in the context of models with fixed effect parameters and, therefore,
requires balanced data and homogeneous variance, which cannot always be guaranteed for
data from multi-environment trials (MET). Furthermore, many conclusions about adaptability
and stability in multiplicative models are obtained from biplots [15] of the genotype and envi-
ronment scores that generally do not involve any measure of uncertainty or use inferential pro-
cedures prone to criticism, either from the assumptions required for parametric methods or by
problematic procedures used in bootstrap resampling [16,17]. Missing data and heterogeneous
variance are not large problems for factor analyses equivalent to AMMI models and sites
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regression (SREG) models, proposed by Burgueño et al. [18], Piepho [19] and Smith et al.[20],
that also allow the GEI to be random. However, as Crossa et al. [21] have shown, it is not clear
how the confidence regions used in fixed effect models can be effectively incorporated in
BLUPs in multiplicative mixed models for interaction parameters.

An alternative for complete analysis of MET data is to use a Bayesian approach for the
AMMI model fit, as proposed by Crossa et al. [21] and Perez—Elisald et al. [22]. Viele and Sri-
nivazan [23] were the first to use an inference method with the AMMI model in a Bayesian
context, using Markov chain Monte Carlo (MCMC) methods. These authors showed as sam-
pling bilinear parameters of model when the support for the joint posterior distribution was
nontrivial. Liu [24] developed a set of conditional posteriors where sampling for the parameters
can be performed directly using a Gibbs sampler, which resulted in a more stable algorithm.
The flexibility to include credible regions in the biplot and information in the inference process
was demonstrated by Crossa et al. [21], Perez—Elisald et al. [22], Forkman and Piepho [12]
and Oliveira et al. [25]. According to these authors, in addition to all of these advantages,
Bayesian maximum a posteriori (MAP) estimators for singular values produce shrinkage simi-
lar to those observed by Crossa et al. [21], even with uninformative priors for the truncated
normal with high variance. The result is a MAP estimator analytically similar to an OLS esti-
mator, but empirically similar to the shrinkage estimator. Therefore, an analysis that effectively
explores the analytical properties of shrinkage estimators using Bayesian inference should be
developed.

This study proposed singular value shrinkage estimators for AMMI models using the Bayes-
ian shrinkage approach. A shrinkage estimator, similar to the one proposed by Cornelius and
Crossa [10], was analytically justified and the results were compared with conventional Bayes-
ian AMMI analysis.

Materials and Methods
To illustrate the proposed method, a dataset using 55 maize hybrids evaluated in nine different
environments for grain yield, in kg.ha-1, was employed. The experimental design was a com-
plete block design with three replicates and evaluated to rows that were 3m in length during
the agricultural year 2005 to 2006 (Table 1).

Table 1. Characteristics of the experimental environments.

Environment Municipality Latitude Longitude CV1 (%) Mean yield (t ha-1)

E1 Lavras, MG 21°13´S 44°58´W 14.1 10.803

E2 Guarda-Mor, MG 17°34´S 47°08´W 13.5 6.212

E3 Barreiras, BA 12°08´S 45°00´W 12.0 4.549

E4 Jussara, GO 23°35´S 52°28´W 12.5 5.152

E5 Lavras, MG 21°12´S 44°58´W 20.8 6.246

E6 São Gotardo, MG 19°18´S 46°03´W 11.3 8.085

E7 Ijaci, MG 21°09´S 44°56´W 10.1 13.192

E8 Ijaci, MG 21°10´S 44°56´W 10.7 8.896

E9 Lavras, MG 21°10´S 45°03´W 14.6 8.737

Source: Machado et al., 2007.
1coefficient of variation.

doi:10.1371/journal.pone.0131414.t001
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AMMI model and shrinkage effect for singular values in the context of
fixed effects
The traditional AMMI model for fixed effects, with yij, i genotypes (i = 1, 2,. . ., g) and j envi-
ronments (j = 1, 2,. . ., a), is described as follows:

yij ¼ mþ ti þ bj þ
Xt

k¼1

λkaikgjk þ 2ij ð1Þ

where μ is the overall mean of the experiment, τi is the effect of the ith genotype, βj is the effect
of the jth environment, λk is the kth singular value of the multiplicative component, αik is the
ith element of the kth genotypic singular vector, γjk is the jth element of the kth environment
singular vector, eij is the error associated with the ith genotype of the jth environment, and
t�min(g-1, a-1).

This model also has the restrictions of identifiability ð
X

i

ti ¼
X

j

bj ¼
X

i

ðtbÞij ¼X
j

ðtbÞij ¼ 0Þ, orthonormality of the singular vectors ð
X

i

a2ik ¼
X

i

g2jk ¼ 1;
X

i

aikaik0 ¼X
j

gjkgjk0 ¼ 0; k
0 6¼ kÞ and that λk should satisfy the condition λk � λk+1, for any k> 0.

Shrinkage effect for fixed effect models. Cornelius and Crossa [10] proposed that a
shrinkage estimator be used for the bilinear terms to study GEI in multiplicative models, nota-
bly in AMMI models. The shrinkage estimator assumes that each empirical bilinear least
squares component is the “true” value of the effect plus a disturbance (ηijk), i.e.,

λ̂kâ ikĝ jk ¼ λkaikgjk þ Zijk, such that λkαikγjk and ηijk are not correlated, and λk'αik'γjk' and ηijk are

not correlated, for k 6¼ k'. The shrinkage estimator
X

k
Skλ̂kâ ikĝ jk estimates the contribution of

Skλkαikγjk to the mean of the observed plot μij, and the average quadratic estimation error per

plot for the AMMI model is minimized if Sk ¼ Eðλ2kÞ=Eðλ̂2
kÞ: According to these authors the

Eðλ2kÞmeans the expectation of estimated lambda on the true value. Defining uk such that

Eð
X

i

X
j
Z2ijkÞ ¼ uks

2=n; where σ2 is the residual variance and n the sample size yields

Eð
X

i

X
j
Z2ijkÞ ¼ Eðλ̂2

kÞ � Eðλ2
kÞ and, consequently,Sk ¼ 1 � uks

2=n
Eðλ̂2

k
Þ , where

uks
2=n

Eðλ̂2
k
Þ is similar to an

approximate F-1-test. Furthermore, Sk ¼ maxð1� F�1
k ; 0Þ, the shrinkage factor in this method,

can be negative.

The authors showed that, occasionally,Skλ̂k�1 > Sk�1λ̂k�1 , which violates the model restric-

tion λk � λk-1. To overcome this problem, it is assumed that λ̂k ¼ λ̂k�1 and a joint estimate was
calculated. The rule was applied sequentially; it also yielded joint estimates for sequences of
more than two singular values.

Although it violates several critical restrictions of the analysis, models fitted by this method
are more parsimonious than those based on the least squares method, and, in general, the
shrinkage estimates were as good as or better than the predictions made by random models.
This method is based on minimizing the MSE and follows the principle proposed by Stein [26].
Despite all of the advantages of this method, it is naturally subject to the limitations of models
conceived in the context of fixed effects.

Bayesian shrinkage AMMI model
The AMMI model described at Eq 1 is related to a two-way table. In order to expand the
AMMI effect to plot level at any environment we can to describe the model 1 in matrix form,
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with confounded block and environment effects represented as follows:

y ¼ X1βþ Zδþ
Xt

k¼1

λkdiagðZαkÞX2γk þ ϵ ð2Þ

where y is the vector of observations with dimension n×1, X1 is the design matrix with dimen-
sion n×a associated with the block plus environments effects vector β, Z is a design matrix with
dimension n×g associated with the genotypic parameter vector δ with dimension g×1, λk is the
kth singular value under the conditions mentioned previously, αk and γk are the kth eigenvec-
tors for the genotype and the environment, respectively, and � is the vector of the residuals
with multivariate normal probability distribution with mean of zero and variance and covari-
ance matrix Is2

e . The matrix representation of inner product diag(Zαk)X2γk is used in order to
account for GEI in data level where X2 account only for environments design. More detail can
be obtained in the R program available in S1 Text—line 63).

Prior distribution for the model parameters. A prior distribution represents the previous
knowledge about a parameter of interest. This prior knowledge can be informative or uninfor-
mative, depending on the currently available knowledge about the phenomenon or on the
amount of information needed for the model, which are set a priori using hyperparameter
values.

Therefore, determining the prior distribution for the effects of the singular values defines
the Bayesian shrinkage model. In this case, the prior distributions for AMMI model (2)
assigned to the parameters were as follows:

pðβÞ ¼ 1=s ¼ kðconstantÞ

δjmd; s
2
d ~Nð0; Is2

dÞ

λkjmλk
; s2

λk
~Nþð0; s2

λk
Þ

Where β is the fixed effects mdands
2
d are mean and variance hypothesis parameters related to

effect of genotypes, mλk
; ands2

λk
are mean and variance hypothesis parameters related to kth sin-

gular value and N+ means a normal truncated. The non informative priors for singular vector
related to genotypes and environments are respectively given by:

αk~ uniform spherical distribution in the correct subspace (SUNId)

γk~ uniform spherical distribution in the correct subspace (SUNId).

s2d ~Inv� scaled � w2ðud; S2dÞ / 1
s2d
for υδ = 0 and S2d ¼ 0

s2e ~Inv� scaled � w2ðue; S2e Þ / 1
s2e
for υe = 0 and S2e ¼ 0

where Inv-scaled-χ2 is the inverted-scaled chi-square distribution with υ degree of freedom and
S2 scale parameter. The priors for β s2

d and s
2
e are equivalent to Jeffrey priors that can be

obtained by the expected Fisher Information of the likelihood distribution (given below). For
the singular vectors αk and γk, a uniform spherical distribution prior, which are uninformative
and special cases of the von Mises-Fisher distribution [27], were used. These vectors are distrib-
uted in a restricted space in <p orthogonal to t-1 vectors in the space of dimension p (p = g or
p = a).

Given that s2
λk
is an unknown parameter in pðλkjmλk

; s2
λk
Þ, it must be estimated, the modeling

of this effect is included in the joint prior. The prior distribution for this parameter is the same
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as that described for s2
e and s

2
d, i.e., an uninformative prior was used with the property

pðs2
λk
Þ ¼ ðs2

λk
Þ�1.

Analytically, this prior resulted in an improper marginal posterior distribution, also verified
by Ter Braak et al. [28] in shrinkage models with specific variances. To correct this problem,
the extended prior presented by Ter Braak et al. [28] was adopted, correcting the degrees of
freedom to obtain a proper posterior distribution. Therefore, the prior for the specific variance
of λk is as follows: Assuming S2λk ¼ 0 and uλk ¼ nλk

� 1 ¼ � 2D we have:

pðs2
λk
Þ / ðs2

λk
Þ�

ðnλk
� 1Þ
2

� 1
exp

S2λk
2s2

λk

( )

pðs2
λk
Þ / ðs2

λk
Þ�

ð�2DÞ
2

� 1
exp

S2λk
2s2

λk

( )

pðs2
λk
Þ / ðs2

λk
ÞD�1

ð3Þ

where D ¼ � ðnλk�1Þ
2

, such as 0 < nλk
< 1 and, consequently, 0<Δ<1/2. Here nλk

is a arbitrary

value. In this study we assumed nλk
¼ 0:95. Therefore, for s2

λk
, k = 1, 2,. . ., 8, the scaled inverse

chi-square prior is represented by uλk ¼ � 2D and S2λk ¼ 0 as follows:

s2
λk
~Inv � scaled � w2ðuλk ; S2λkÞ ! ðs2

λk
ÞðD�1Þ

:

Therefore, the joint prior distribution is as follows:

pðθÞ ¼ pðβjmb; s
2
bÞpðδjmd; s

2
dÞpðs2

djud; S2dÞpðs2
e jue; S2eÞ�Yt

k

½pðλkjmλk
; s2

λk
Þpðs2

λk
juλk ; S2λkÞpðαkÞpðγkÞ�

where θ ¼ ðβ; δ; λk;αk; γk; s
2
e ; s

2
δ; s

2
λk
Þ.

Likelihood and full conditional posteriors for the AMMI model parameters. The poste-
rior probability distribution is a combination of the likelihood function (information from the
data) and the prior probability distributions. The likelihood function for the AMMI model was
implemented as follows:

Lð�y; s2
e jyÞ ¼ ð2pjIs2

e jÞ�
n
2exp � 1

2s2
e

ðy�X1β� Zδ�YÞ0 ðy�X1β� Zδ�YÞ
� �

ð4Þ

whereY ¼
Xt

k¼1

λkdiagðZαkÞX2γk and �y ¼ fβ; δ; λkαkγkg.

Applying Bayes’ theorem gives the full posterior probability distribution as follows:

pðθjyÞ / Lð�yjyÞpðβÞpðδjmd; s
2
dÞpðs2

djud; S2dÞpðs2
e jue; S2eÞ�Yt

k

½pðλkjmλk
; s2

λk
Þpðs2

λk
juλk ; S2λkÞpðαkÞpðγkÞ�

ð5Þ
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The full conditional distributions are as follows:

pðβj . . .Þ / exp f� 1

2s2
e

½A� ðX1
0X1ÞX

0
1β�

0 ðX0
1X1Þ½A� ðX0

1X1ÞX
0
1β�g

pðβj . . .Þ ~N½ðX0
1X1Þ�1

X
0
1A; ðX0

1X1Þ�1s2
e � ð6Þ

where A = y-Zδ-Θ and p ( |. . .) is the conditional of all of the other parameters of the model.

pðδj. . .Þ/exp � 1

2s2
e

δ� Z
0
Zþ I

s2
e

s2
d

� �
Z

0
B

� �
0 Z

0
Zþ I

s2
e

s2
d

Z
0
B

� ��1

δ� Z
0
Zþ I

s2
e

s2
d

� �
Z

0
B

� �( )

pðδj . . .Þ ~N Z
0
Zþ I

s2
e

s2
d

� ��1

B; Z
0
Zþ I

s2
e

s2
d

� ��1

s2
e

" # ð7Þ

where B = y−X1β−Θ.

pðs2
e j . . .Þ / ðs2

eÞ
�

n
2
þ 1

� 	
exp� 1

2s2
e

ðy� θÞ0 ðy� θÞg pðs2
e j . . .Þ ~Inv � scaled

� w2ðn; ½ðy� θÞ0 ðy� θÞ�=nÞ ð8Þ

pðs2
dj . . .Þ / ðs2

dÞ
�

nd

2
þ 1

� 	
exp� 1

2s2
d

ðδ0
δÞg s2

dj . . . ~Inv � scaled � w2ðnd; ðδ
0
δÞ=ndÞ ð9Þ

pðλkj . . .Þ / exp
1

2s2
e

ðC� �λkÞ0ðC� �λkÞ þ ðλk � mλkÞ0
s2
e

s2
λk

ðλk � mλk
Þ

" #( )

pðλkj . . .Þ ~Nþ �
0
�þ s2

e

s2
λk

 !�1

�
0
C; �

0
�þ s2

e

s2
λk

 !�1

s2
e

" # ð10Þ

where C = y-Xβ-Zδ-D and ϕ = diag(Zαk)X2γk, for λ1 � λ2,. . .,λt � 0
In this formulation, the posterior mean of the singular value is similar to a ridge regression

estimator. The posterior mean obtained by Crossa et al. [21] and Oliveira et al. [25] is similar
to (ϕ'ϕ)-1ϕ'C, referencing the least squares estimator. The distribution of the variance of the
singular values is as follows:

pðs2
λk
j . . .Þ /

Yt
k¼1

ðs2
λk
Þ
�1

2 exp � 1

2s2
λk

ðλ2kÞ
( )

ðs2
λk
Þð�1þDÞ

pðs2
λk
j . . .Þ /

Yt
k¼1

ðs2
λk
Þ

�
ð1� 2�Þ

2
� 1

� �
exp �ð λ2kÞ

2s2
λk

ð1� 2DÞ
ð1� 2DÞ

( )

pðs2
λk
j . . .Þ /

Yt
k¼1

ðs2
λk
Þ

�
ð1� 2DÞ

2
� 1

� �
exp �ð1� 2DÞ

2s2
λk

ðλ2kÞ
ð1� 2DÞ

( )

s2
λk
j . . . ~Inv � scaled � w2ð1� 2D; ½λ2

k=ð1� 2DÞ�Þ

ð11Þ
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The posterior distribution for the singular vector are given by:

pðαkj . . .Þ / exp
λk
2s2

e

½αk0diagðX2γkÞ0Z
0 �ðy�X1β� Zδ�DÞ

� �

pðαkj . . .Þ ~VMF
λk
2s2

e

; ðdiagðX2γkÞ0Z
0 Þðy�X1β� Zδ�DÞ

� � ð12Þ

pðγkj . . .Þ / exp
λk

2s2
g

½g0 kdiagðZαkÞ0X
0
2 �ðy�X1β� Zδ�DÞ

( )

pðγkj . . .Þ ~VMF
λk

2s2
g

; ½diagZðαkÞ0X
0
2�ðy�X1β� Zδ�DÞ

( ) ð13Þ

where VMF is a Von Mises—Fisher distribution
Because the problem is orthogonally restricted, the singular vectors αk and γk are sampled

by linear transformation [21,25]. The sampling is conducted in the corrected subspace, where
there are no restrictions. The values are then returned to the correct space in <p, orthogonal to
t-1, in the dimension space p (p = a or p = g, according to the vector).

Because the full conditional posterior distributions for the model parameters are known,
direct sampling can be performed. The Gibbs sampler was used in the MCMCmethod. Chain
convergence was assessed using the methods introduced by Raftery and Lewis [29] and Heidel-
berger andWelch [30].

To compare the Bayesian shrinkage AMMI method (AMMIBS) with traditional methods,
four approaches were used. In the first approach, a classic AMMI analysis was performed using
the analysis of variance (ANOVA). The number of components was selected using the F-test

by Gollob [2], FG ¼ λ2
k
=dfðGÞ
S2

, and the F-test by Cornelius et al.

[31],FR ¼ ðSQðGEÞ �
Xt

k¼1

λ2
kÞ=dfRS2 , where S2 is the joint mean squared error, SQ(GE) is the

sum of the squares of the interaction, and df(G) = g+a−1−2k and dfR = (g−1−p)(a−1−p) are the
corresponding degrees of freedom. Both F-based tests were applied using a α = 0.05

In the second approach, a singular value decomposition of the BLUPs matrix for the GE
interaction was performed using a mixed model with the genotype and interaction effects mod-
eled as random. This is the same model represented by Eq 2, except the singular value decom-
position is applied directly in the GE BLUPs using the model as follows:

y ¼ X1βþ ZδþWiþ ϵ ð14Þ

where w is the matrix of the random effect for GE interaction in classical mixed models. The
estimates of the components of variance were obtained using expectation/maximization-
restricted maximum likelihood (EM-REML) estimators. Vector i, which corresponds to the
interactions, was transformed to the GE matrix, which was then used for the decomposition
GE = ULV, where U and V are the singular vectors matrices for the genotypes and the environ-
ments, respectively, and L is the diagonal matrix of the singular values.

In the third approach, the AMMI analysis was subjected to the shrinkage estimator by Cor-
nelius and Crossa [10] previously described. In the fourth approach, the Bayesian AMMI anal-
ysis (AMMIB) was performed as described in Crossa et al. [21] and Oliveira et al. [25].

Criterion to select Bayesian Shrinkage AMMI model. The use of a additional criterion to
selection components could be not an important issue in Bayesian AMMI since all information
about the parameter is available on its posterior distribution. Thus, if we use the ad hoc
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threshold proposed by Cornelius and Crossa [10] for AMMI shrinkage we can to select the
AMMI model based on the hypothesis H0: λk � 1. Therefore, if the Pλ = 1 � 0.05, where Pλ = 1

is the percentile related to λ = 1 in the p(λk|. . .) posterior distribution, we can retain the kth
component or discard otherwise. Since this criterion uses a ad hoc value we propose others
measures in order to exploit the advantages of shrinkage.

In this study we used an additional test based on Bayes Factor as a comparative measure
where the choice of AMMI model (AMMI0, AMMI1. . .AMMIk) will be depend of the evidence
e� 12.79db where e = 10�log10(BF) and

BF ¼ pðyf jyÞ
pðyf�ijyÞ

" #

where θfé a full model using p principal components and p(θf-i) is the reduced model with p-1
principal components where i = 1,2,3. . ..p. The test was performed initially considering the
score for high dimensional model and when e� 12.79db the test was stopped [32]. This crite-
rion consider a 0.95 of probability or 19:1 of chance to accept full model over the reduced one.

Additional comparison was accomplished using different cross-validation approach based
on leave-one-out method proposed by [11] and [33]. Dias and Krzanowski [11] method is
based on Prediction Sum Square (PRESS) criterion corrected by the number of degree of free-
dom retained on the AMMIk and the number of degree of freedom remained after adjusting
the kth component. This is justified since the PRESS in this method is monotonically decreas-
ing and W statistics became necessary. The Gabriel [33] method uses only the PRESS criterion
since its cross-validation approach present a "Ockham's profile" where the "pattern" and "noise"
can be found by "Ockham's hill" in a plot using a Statistical efficiency criterion given by SE =
PRESSfull/PRESSk where full related to raw data and PRESSk to the prediction sum square
related to kth component. The Gabriel method was used in both Bayesian and classical AMMI.
However, in cross-validation in AMMI Bayesian methods we prefer to use only the inner prod-
uct λkαikγjk and calculating the PRESS in order to gain computational efficiency and avoiding
arbitrary choice of signal in singular vectors.

Model parameter inference

The estimates for s2
e , s

2
d, s

2
λk
λk, δ, and β were obtained using the MCMC samples means. The

sample means for the singular vectors do not satisfy the restriction of orthonormality in the
model. Therefore, the estimates for α and γ were obtained by orthonormalization of the matri-
ces of the means �α and �γ, respectively, performed using the method proposed by Liu [24].

The univariate highest credible posterior density regions for the parameters were con-
structed using the method proposed by Chen and Shao [34], and implemented in the R statisti-
cal software [35].

The bivariate credible regions for the genotypic scores ðα1

ffiffiffiffiffi
λ1

p
;α2

ffiffiffiffiffi
λ2

p Þ and the environ-
ment scores ðγ1

ffiffiffiffiffi
λ1

p
; γ2

ffiffiffiffiffi
λ2

p Þ were constructed using the method in Ooms [36] and Oliveira

et al. [25].

Results
MCMC chains were simulated using 188,000 iterations for each parameter of the AMMIBS
and AMMIB models. For each chain, the first 8,000 observations were discarded (burn-in) and
values were saved at every 20th observation (thinning), resulting in a sample size of 9,000. Con-
vergence of the chains was evaluated using the criteria from Raftery and Lewis [29] and Heidel-
berger andWelch [30]. The results of the tests showed that all of the parameters had good
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convergence properties with a dependence factor that was always less than 5 (I<5) and that
they all passed the stationarity test, indicating that convergence was achieved.

In the AMMIB model, the chains for the coordinates of the singular vectors (starting with
the second genotype and environment vectors) converged to two solutions, equal in absolute
value, similar to the results found by Oliveira et al. [25], with uninformative priors for the sin-
gular values. Fig 1 shows the traces for the first coordinates of the singular vectors associated
with λ2 in the AMMIB model. The data show a change of the periodicity in the convergence
that separates the chains into sign lags. This behavior was not apparent in the AMMIBS model
(Fig 2). In both cases, the choice of sign is arbitrary.

The property of arbitrariness of the singular vectors sign is a characteristic of the principal
component analysis. This characteristic ensures that the chains satisfy E[αik] = 0 and E[γjk] = 0
for k� 2. One of the solutions (negative or positive) must be chosen; the choice does not affect
the interpretation of the biplot nor the inner product. When the solution is chosen, the other
terms adjust automatically. The solution with a positive sign for the first coordinate of each
genotype singular vector was chosen. The signs of the other coordinates and the coordinates of
the corresponding environment vector are then determined. This choice produced absolute
singular values similar to those in Fig 1. Fig 3 shows the traces for the first coordinates of the
second genotype and environment singular vectors, respectively, for the AMMIBS analysis. By
choosing the positive solution, α12 and γ12 have opposite signs (see Fig 1).

This figure shows the negative association between genotype 1 and environment 1. Regard-
less of the sign chosen, α12 and γ12 have opposite signs (Fig 1).

Fig 1. Traces of the chains for the first two coordinates of the genotype and environment singular
vectors using the AMMIBmodel.

doi:10.1371/journal.pone.0131414.g001

Fig 2. Traces of the chains for the first two coordinates of the genotype and environment singular
vectors using the AMMIBSmodel, without restricting the solutions.

doi:10.1371/journal.pone.0131414.g002
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The posterior densities of the singular values for the AMMIBS model are shown in Figs 4
and 5. Starting in the third singular value, the chains converge to near zero, which shows a
larger shrinkage when a specific variance is used in the truncated normal. Utilizing the prior
for specific variance of the singular values means that the conditional posterior distribution for
the second singular value is bimodal. This agrees with Ter Braak’s findings [37], when specific
variances are assumed that have shrinkage effects on the parameters.

Because of this feature, the posterior mean for the second singular value was slightly shrunk,
but the posterior mean was near zero for the others higher-dimensional singular values. On the
other hand, the posterior of the second singular value presented values two modes being one of
them lower than 1 (Cornelius and Crossa ad hoc criterion for classical AMMI shrinkage).

The posterior densities of the components of variance for the singular values are shown in
Figs 6 and 7. Only the first two components have high means and variances, while the other
components have values near zero with low variance, resulting in shrinkage of the estimates of
the singular values (Figs 4 and 5). The shrinkage effect on the estimates of the singular values
are directly associated with the components of the variance, as shown in Eq 14. The mean val-
ues for these components are shown in Table 2 with their corresponding 95% credible
intervals.

Point estimates and credible regions for the other model parameters
The means of the components of variance, s2

d and s
2
e , were 0.373 and 1.285 with a 95% highest

posterior density (HPD) interval of [0.2262, 0.5426] and [1.1680, 1.406], respectively. The 95%
HPD intervals for the primary genotype effects are shown in Fig 8 in increasing order. This
ranking allows the genotypes that contribute most to the population mean to be identified, i.e.,
those that have only positive values in the HPD region (located to the right of genotype G17 in
the Fig 8).

To make more accurate conclusions concerning the selection and recommendation of the
best genotypes, the effects of the GE interaction must also be considered by analyzing the terms
that describe it.

The posterior means for the components of the variance for the singular values that are
responsible for shrinkage effects are shown in Table 2. These estimates are calculated using the
AMMIBS model. The estimates of the singular values using the AMMIBS model, the AMMIB
model, the BLUPs, the OLS and the shrunken estimates (Shrink.), proposed by Cornelius and
Crossa [10,13], are shown in Table 3.

Fig 3. Traces of the chains for the first two coordinates of the genotype and environment singular
vectors using the AMMIBSmodel, with restriction of sign for solutions.

doi:10.1371/journal.pone.0131414.g003
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The data in Table 3 show that the singular values in the AMMIB model from Crossa et al.
[21] are slightly shrunken compared to the classical AMMI with GE, estimated by OLS or the
mixed models (EBLUP). In the AMMIB model, the first five singular values have means above
zero, but, by Bayesian Factor criterion AMMI4 model be chosen. This result is very similar to
the values obtained by shrinkage AMMI from Cornelius and Crossa [10], and also by the Gol-
lob F-test, which selected only five principal components. This result suggests that AMMIB
tends to select models similar to the Cornelius and Crossa [10] shrinkage estimator, and these
results are consistent with the test performed on the traditional AMMI model using the Gollob
F-test.

The data in Table 3 also show that the AMMIBS model has a more pronounced shrinkage
effect than the AMMIB model or the Cornelius shrinkage model. Specifically, the AMMIBS

Fig 4. Posterior densities of the singular values λ1, λ2, λ3 and λ4, obtained using the AMMIBSmodel.

doi:10.1371/journal.pone.0131414.g004
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model captured 89.11% of the interactions explained by the model (not necessarily the raw
interactions), while the AMMIB model captured 61.34% in the first two axes. The first two sin-
gular values from both models were very similar, suggesting that the AMMIBS model shrinks
only the low-magnitude singular values, preserving the estimates of the first ones, capturing
most of the interaction pattern than noise. The Bayesian shrinkage method proved to be the
most parsimonious of the all methods, capturing most of the interactions with the lowest num-
ber of multiplicative terms to explain the interaction pattern.

The estimates of the first singular value from the AMMIBS, the AMMIB and the EBLUP
models were similar to one another, but different from those obtained with the traditional
AMMI and Cornelius estimators. Based on this result, the GE interaction matrix, obtained
from the inner product of these methods, showed a pronounced shrinkage and, therefore, was

Fig 5. Posterior densities of the singular values λ5, λ6, λ7 and λ8, obtained using the AMMIBSmodel.

doi:10.1371/journal.pone.0131414.g005
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similar to modeling the interaction as random in a mixed model. The AMMIB model estimates
were also more similar to the AMMI model with EBLUP than to the AMMIBS model.

The model selected by the singular value posterior distribution in AMMBS was AMMI1. It
was evident in Fig 3, since the threshold suggested by Cornelius and Crossa presented pλ = 1 �
0.05 To be more exact, all values obtained in MCMC for the first singular value was higher
than 1 for the first singular value. This results agree with Dias and Krzanowski [11] criterion
where the best model was AMMI1 (Table 3). On the other hand, the BF criterion applied in
Bayesian analysis suggests AMMI2 for AMMIBS and AMMI4 for AMMIB. The result for
AMMIBS is similar to than obtained using Cornelius F-based test. Using classical AMMI anal-
ysis (OLS), the selected models were AMMI1, AMMI2 for Dias and Krzanowski [11] criterion

Fig 6. Posterior densities of the variance components for the singular values σ2
λ1
; σ2

λ2
; σ2

λ3
and σ2

λ4
, obtained using the AMMIBSmodel.

doi:10.1371/journal.pone.0131414.g006
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Fig 7. Posterior densities of the variance components for the singular values σ2
λ5
; σ2

λ6
; σ2

λ7
and σ2

λ8
, obtained using the AMMIBSmodel.

doi:10.1371/journal.pone.0131414.g007

Table 2. Posterior mean estimates and the 95% credible interval (CI) for the variance components of the singular values.

Parameter Mean Sd Lim. Inf. Lim. Sup.

s2
λ1

19.524 68.699 1.977 51.057

s2
λ2

8.226 12.467 0.046 24.110

s2
λ3

1.232 3.451 0.052 5.062

s2
λ4

0.402 1.056 0.050 1.047

s2
λ5

0.342 0.392 0.049 0.927

s2
λ6

0.332 0.379 0.049 0.879

s2
λ7

0.334 0.367 0.049 0.890

s2
λ8

0.339 0.822 0.046 0.887

doi:10.1371/journal.pone.0131414.t002
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and Cornelius F-based test respectively and AMMI5 for F-Gollob and Cornelius and Crossa
shrinkage analysis.

In general the select models across different analysis were (AMMI1, AMMI2, AMMI4 and
AMMI5). These divergent results can be explained when we analyze the Fig 9. In this figure it

Fig 8. Posterior means and the 95%HPD intervals for the genotype effects.

doi:10.1371/journal.pone.0131414.g008

Table 3. Estimates of the singular values λk for the AMMI model using the AMMIBSmodel, the AMMIBmodel and the AMMI model with fixed and
randomGE (OLS and BLUPs) and the AMMI shrinkage developed by Cornelius.

Parameter AMMIBS AMMIB BLUPs OLS Shrink.

λ1 7.411§ 7.902§ 7.027 9.559*+€ 6.652

λ2 4.589§ 5.978§ 5.887 7.580*+ 6.442

λ3 1.015 4.605§ 5.278 6.156+ 6.442

λ4 0.254 2.268§ 4.309 6.007+ 6.442

λ5 0.108 1.058 4.161 5.674+ 2.783

λ6 0.051 0.478 3.857 3.920 0

λ7 0.025 0.213 2.766 3.306 0

λ8 0.013 0.109 2.379 <0.000 0

*Significant by the Cornelius F-test at a 0.05 significance level
+Significant by the Gollob F-test at a 0.05 significance level.
€Number of terms retained on the AMMI model based on leave-one-out cross validation using W's score by Dias and Krzanowski.
§ Model selection based on Bayes Factor.

doi:10.1371/journal.pone.0131414.t003
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is evident that AMMI2 and AMMI5 presented two peak in the plot for statistical efficiency;
where in OLS analysis the "Ockham's hill" was observed in AMMI5. But this model retain two
times more degree of freedom than AMMI2. In both Bayesian analysis AMMI5 was marginal
and the "Ockham's hill" was allocated at AMMI2 suggesting Bayesian methods the best
approach to retain pattern and discarding noise using lesser degree of freedom. The predictive
accuracy based on correlation for all models were equivalent showing marginal gain starting
from AMMI1.

Bivariate credible regions for the genotype and the environment scores
Bivariate credible regions were constructed for the AMMI2 biplot, similar to those presented
by Oliveira et al. [25]. Genotypes or environments whose credible regions for the scores in the
biplot include the origin are considered stable. In addition, large overlaps between the credible
regions indicate that the respective genotypes or environments have similar GE interactions.

Fig 9. Ockham's plot related to classical AMMI model (OLS), Bayesian AMMI (AMMIB) and Bayesian
Shrinkage AMMI (AMMIBS). (A) AMMI vs prediction sum square- PRESS (lowest is best—Ockham's
valley); (B) AMMI vs correlation (r) between "true" and predicted cell values in GEI matrix; (C) AMMI vs
Statistical Efficiency (higher is best—Ockham's hill).

doi:10.1371/journal.pone.0131414.g009
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The Figs 10 and 11 show the same groups of genotypes for the AMMIB and the AMMIBS
analyses, respectively. The figures show that the grouping pattern is retained, even with the
truncation of solutions of the second singular vectors in the AMMIBS analysis.

The genotypes shown in Fig 11 have nonzero values for the interactions (unstable geno-
types), and two homogeneous groups can be formed, i.e., one group comprising G2 and G47
and the other group comprising G13, G19, G35 and G40. These two groups are responsible for
many of the significant contribution to the GE interaction. Only the regions that do not include
the origin are shown in the figure for simplicity and ease of interpretation. The bivariate credi-
ble regions in this biplot were not regular in the second axis. This distortion was from the trun-
cation in the choice of the sign that, together with the shrinkage model, prevented the correct

Fig 10. 95% credible regions that do not include the origin for the first two principal axes of the genotype scores using the AMMIB analysis.

doi:10.1371/journal.pone.0131414.g010
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selection of the points in the chain of singular vectors (see Fig 2). This problem did not occur
in the AMMIB model and the separation of the chain into lags and the choice of sign were
more pronounced (Fig 1). In Fig 11, the change in the signs during the MCMC is in evidence,
but the data show that the absolute value of the two estimates and the position of the bivariate
credible regions in the biplot for the two methods did not differ.

The same procedure was performed to create homogeneous groups of environments with
respect to the interaction effect. Similar to the genotypes, the results for environments A3 and
A8 are not shown in the biplot for simplicity because they do not contribute significantly to the
interaction effect. The others were classified by similarity among groups, resulting in the three
groups shown in Fig 12, i.e., (A6), (A1 and A7) and (A2, A4, A5 and A9). In this case, the same
restriction regarding the truncation when choosing the sign was applied.

Fig 11. 95% credible regions that do not include the origin for the first two principal axes of the genotype scores using the AMMIBS analysis.

doi:10.1371/journal.pone.0131414.g011
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Using the biplot, the adaptability between genotypes and environments was also analyzed
(Fig 13). The superposition of the credible regions showed that the group consisting of G13,
G19, G35 and G40 was specifically adapted to the environment group consisting of A1, A2, A4
and A7, while genotype G2, based on the overlap of the credible regions, appears to be specifi-
cally adapted to environments A2 and A9. Genotype G47 does not overlap the environments
because of the restriction of the solution of the second singular vector; however, the proximity
of the credible regions in the truncated area indicates that G47 would be adapted to environ-
ments A2 and A9. Apparently, none of the genotypes would be adapted to environment A6.

These results, the univariate HPD regions for the BLUPs of the effects and the bivariate
credible regions for the genotype and environment scores in the biplot can help breeders to
select the best genotypes, providing statistical support for their choices.

Fig 12. 95% credible regions that do not include the origin for the first two principal axis of the environmental scores.

doi:10.1371/journal.pone.0131414.g012
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Discussion
In Bayesian inference, the number of bilinear components to be retained in AMMI model is
selected using the Bayesian information criterion (BIC) and the Bayes factor (BF) [22, 24].
However, Cornelius and Crossa [10,13] showed that when shrinkage estimators are used, the
zero singular values do not provide any information on interaction effects and can thus be
excluded from the model. Therefore, by assigning specific variance to the singular values, the
selection of the interaction terms is similar to a shrinkage estimator of fixed effects, i.e., singular
values that contribute little or no information on the interaction pattern have estimates close to
zero and are not included in the model, and those with true importance for the bilinear model
have little or no shrinkage effect and are thus retained in the model.

Fig 13. 95% credible regions that do not include the origin for the first two principal axes of the genotype and the environmental scores.

doi:10.1371/journal.pone.0131414.g013
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The results of Cornelius and Crossa [10,13] showed that shrunken estimates for linear-bilin-
ear models with fixed effects are superior to OLS and as good as or better than estimates pro-
duced by BLUPs for models with random effects. Their method, however, was subject to the
limitations of models with fixed effects and, therefore, could only be used with balanced
data and homogeneous variances. Another disadvantage is the need for extra steps in the itera-
tive estimation process because the estimates obtained by the iterative method could violate
the restrictions imposed on singular values, as observed in this study, where the restriction
λk � λk+1 was generally not obeyed. To circumvent this violation of the model, it is assumed
that λk = λk+1 and a joint estimate for the terms violating this restriction is calculated, as fol-
lowed in the present analyses (Table 3).

Our approach showed that shrinkage estimators can be obtained for singular values without
violating the restrictions of the analysis allowing to obtain credible intervals for the principal
components and, simultaneously, to select the best model, i.e., the one with the fewest compo-
nents. Our approach is a Bayesian interpretation of the estimators developed by Cornelius and
Crossa [10], although in practical terms, the selected model was more parsimonious (AMMI2
vs. AMMI5 and AMMI1 vs. AMMI5). Despite this difference, our method based on Bayes Fac-
tor or evidence criterion [32] converged to the same model indicated by the Cornelius F-test
and purely Bayesian inference selected values similar to Dias and Krzanowski cross validation
criterion. The first principal component showed no shrinkage compared with those obtained
by the AMMIB and the AMMI models using a random GE matrix. This result showed that the
model successfully retains axis with greater ability to capture the pattern and eliminates axis
with high noise as confirmed by cross validation result.

In AMMIBS, the use of any test on the number of components might not be necessary since
all information we need is present at posterior distribution. In this context, the model to be
selected by the AMMIBS was AMMI1 instead AMMI 2 as by BF measure. This can be observed
by the use of the posterior percentile in the Fig 1. However, this approach might be ambiguous
since the second singular value present a high posterior average and hold the "Ockham hill" in
the plot and, therefore, might be important to explain GEI. In this sense, we adopted a extra
criterion by used of Bayes Factor. The Bayes Factor reveled the best model in a very parsimoni-
ous models (AMMI2) and in this context what is the best approach? A general and definitive
answer is very difficult but in the Fig 9 we can obtain a clarification for the range of models
observed. The AMMI OLS gives us a ambiguous response about the best model since AMMI5
and AMMI2 presenting two peaks being the Ockham´s hill localized at AMMI5. By the classi-
cal interpretation this could be the best model since it retain more pattern than noise. But the
degree of freedom requested to adjust AMMI5 is two times larger than requested by AMMI2
and thus the best model could be AMMI2 in OLS context [11]. This reason was used by [11] in
their approach to find the more parsimonious model by account for the number of degree of
freedom used in PRESS adjustment. On the other hand, in Bayesian cross validation context,
this problem was not observed since higher dimensional components were shrunk and no
more than one peak was observed in Ockham's plot. Thus, the Bayes Factor was a good crite-
rion to select model since all pattern was retained in the two first components—presenting
lower PRESS than AMMI5-OLS. However, the Bayes Factor analysis presented a high compu-
tational cost because the number of rounds requested to obtain the criterion was almost equal
to the number of components in AMMI model. In addition, in AMMIB, the BF criterion
selected the worst AMMI model considering the predictive ability (AMMI4).

As alternative we applied a direct cutoff criterion using the threshold given by Cornelius
and Crossa [10] for shrinkage AMMI on the posterior distribution. In this sense, the AMMI1
model was selected. It is obvious that AMMI 1 is not the best model as showed in Ockham's
plot, but it is the second one. Therefore, we might claim the parsimonious principle and
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verifying that the number of replications requested by full model to obtain the same root mean
square predictive difference (RMSPD) of AMMI1 and AMMI2 is 7.4 and 8 respectably. Thus,
the loss of GEI pattern between choosing AMMI1 instead AMMI 2 could be marginal, but
computably more efficient and therefore we suggested the AMMI1 model as the best model for
our dataset. In addition, the direct posterior analysis as proposed here do not request several
rounds of tests as in BF test and do not claim for Gaussian assumption about principal compo-
nents as in F test—about this last claim, our result showed that Gaussian assumption, in gen-
eral, is very strong.

It worth to highlight also that our BF algorithm was not optimized since we started by full
model instead lower dimensional models. Thus, we suggest the development of a more efficient
algorithms starting from more parsimonious models first in order to avoid more cycles of
Bayes Factor test.

A good discussion about parsimony and predictive ability in AMMI models was given by
Dias and Krzanowski [11]. These authors observed that cross-validation based on leave-one-
out methods usually select more parsimonious models than F-test or cross-validation based on
randomized methods. In other words, they found that leave-one-out selected AMMI1 while
AMMI3 and AMMI2 were selected by F-Gollob and Cornelius F-test respectively. In addition
these authors observed very larger range of different models selected by F-based tests and
cross-validation as observed in this study, pointing the difficult task of selecting models in
AMMI methods. In general, the authors concluded that cross-validation methods are more sta-
ble across several trials, more parsimonious than F-based tests and are free from Gaussian
assumption.

Although it is very difficult to relate analytical proof for our empirical result, the relation
between AMMIBS and F-based test is very similar. It is worth highlighting that different bree-
der's aims could be related to the number of components retained in the AMMI model and
that predictive ability sometimes may be useful to breeder, but sometimes not [38]. In this
work, we prefer to emphasize the advantage of applying models selection plus biplot inference
using just a model and further discussion could be raised in a more practical study.

The primary difficulty encountered in the shrinkage estimators was in the separation of the
sign of the singular vector obtained by the AMMIB method arising from the precision parame-
ter of the von Mises-Fisher conditional distribution. Because the ratio of singular value and
residual variance represents the concentration parameter, in high-dimensional coordinates,
when the singular value is strongly shrunken, these vectors are sampled with high dispersion
distribution or nearly uniformly over the hypersphere. Therefore, this effect combined with the
arbitrary change in the sign showed that the separation of the chain into lags in high dimen-
sional parameter is impractical.

Another cause of the lack of periodicity in the chain is from the Jeffreys priors for the spe-
cific variances, resulting in scaled inverse chi-square conditionals with only one degree of free-
dom of high-variance and improper posteriors for the singular values. To solve this situation,
an extended prior, from Ter Braak et al. [28], was implemented to obtain a proper posterior
distribution. However, as shown by Ter Braak et al. [28] and verified by the data in this study,
the conditional posterior density can be bimodal, with one mode peaking near zero. According
to Ter Braak [37], this is caused by the shrinkage effect provided by the prior. The posterior
mean for the second singular value, also shown by Ter Braak [37], is the least squares estimate
of this value times its shrinkage factor.

It was empirically shown that the absolute value of each coordinate is approximately equal
to that obtained from the conventional analysis, and, therefore, this pattern was used to choose
the sign (Figs 1 and 2).
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The decision to use the absolute value of the chain resulted in point estimates of the singular
values similar in the AMMI, the AMMIB, and the AMMIBS methods, but hindered the con-
struction of the credible intervals. However, when there was little shrinkage of the singular
value, the bivariate credible regions were not truncated, as observed for the first principal com-
ponent. This implies that in models with a large amount of shrinkage, the inferences for the
intervals can be hindered, even though the estimates of the posterior means are similar to con-
ventional estimators.

Despite this limitation, overall, the AMMIBS model successfully chose the terms for the
AMMI model and parameter estimates, and offers several benefits compared with traditional
methods. For example, although not addressed in this study, the model can have heterogeneous
variance in the data, which, as previously mentioned, would be a limitation of frequentist
approaches; although some works have tried to address heterogeneity by weighted models [39].
Moreover, additional information, such as relatedness and historical experimental data can be
incorporated with relative ease into the model. Although these advantages can also be obtained
from mixed models in MET in versions equivalent to AMMI models and genotype main effect
plus genotype environment effect (GGE) biplots [18,19,20], parametric confidence regions for
the scores in the biplot are not easily incorporated [17,21]. Some suboptimal solutions have
been proposed by Yang et al. [17], suggesting that confidence regions in the biplot be con-
structed using bootstrap resampling techniques. This method has been criticized by destroying
the interaction pattern [16]. The critics emphasized that the position of the scores in a biplot is
important for the analysis and mutually defined, so that the signs and values lose meaning
when genotype scores are randomly separated from environment scores in the resampling pro-
cess. But, in general, our results showed that Yang et al. [17] claim about biplot interpretation
must be taking into account since the uncertain about relative position of environments and
genotypes in the biplot may conduct to erroneous classification of stability and adaptability
plus mega-environments discovery.

When estimating the singular values for the AMMIB model, the estimates were shrunk rela-
tive to the least squares solutions, which is consistent with the results in Crossa et al. [21] and
Oliveira et al. [25]. However, as shown in Table 3, AMMIBS produced even more shrunken
estimates, i.e., the results suggest that shrinkage using specific variance for the singular values
was stronger for the high-dimensional terms and had little effect on the first two singular val-
ues. This implies that the AMMIBS model was more parsimonious because it retained only one
non zero singular value and two principal components to describe the GE interaction. As
described above, the inner product of these components produces shrunken GE estimators,
showing that the AMMIBS model produces more shrunken interaction estimates than BLUPs
from a mixed model, suggesting that the interaction is a random. The AMMIB model produced
the same result, with an inner product much closer to the BLUP, suggesting that this model
restricted by priors with a fixed estimator produces shrunken GE estimates that are similar to
the BLUPs. It is worth to highlight that the BLUP method instead of shrinking the singular
value directly as in the AMMIBS, it shrunk the cell means related to GEI at ratio of s2

e=s
2
I

where s2
I is the GEI variance. The ratio of shrinkage obtained in our method is defined directly

on the singular value on the ratio s2
e=s

2
λk
(S1 Appendix). Thus, in mixed models, the EBLUPs

for GEI are function of a constant ratio of shrinkage, but in AMMIBS, different ratios are
applied directly on singular value posterior showing the difference among the methods.

In the last decade, several methods for analyzing GE interactions in MET data have been
proposed. Models that incorporate genotypes as random effects are being widely published and
defended in the literature. The application of Bayesian methods, although not new [23,24],
brings new prospects for MET data analysis. Using relatedness matrices replacing
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δjmd; s
2
d ~Nð0; Is2

dÞ by δjmd; s
2
d ~Nð0;GÞ and heterogeneity of variance by replacing Is2

e by V
can be easily implemented and more informative priors can helps to generate more realistic
estimates for the parameters of interest and should be a part of new research approaches.

This study illustrated that Bayesian shrinkage can be applied to AMMI models with relative
success to select models and estimate parameters. However, the derivation of reference priors
or maximum entropy for the parameters of the terms of the principal components may solve
the problems of improper or even bimodal posteriors.

The results demonstrated that the traditional Bayesian AMMI model produces a small
amount of shrinkage in the singular values and avoids problems determining credible intervals
in the biplot. Bayesian shrinkage AMMI models have problems with the credible interval, but
produce stronger shrinkage of the principal components, converging to more shrunken GE
matrices than those obtained using mixed models. This characteristic allowed more parsimoni-
ous models to be chosen and more GEI pattern retained on the first two components. The
resulting model chosen by posterior distribution of singular value was also similar to those pro-
duced by the cross-validation approach in traditional AMMI models. Our method enables the
estimation of credible interval for AMMI biplot plus the choice of AMMI model based on
direct posterior distribution retaining more GEI pattern in the first components and discarding
noise without Gaussian assumption as requested in F-based tests or deal with parametric prob-
lems as observed in traditional AMMI shrinkage method.
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