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ABSTRACT: This study describes and evaluates a package that implements extensions of the
algorithm first presented by Nandram and Chen (1996), replacing Gaussian distribution (NCG)
with Student’s t distribution (NCt) for Bayesian analysis of ordinal categorical data using mixed
models. The algorithms described by Albert and Chib (1993) and Cowles (1996) were also
implemented. Comparison was carried on using two different designs. A Steiner triple system
with seven treatments used mostly to estimate fixed effects and a 10x10 square lattice designed
to rank and select among random effects. Different situations for intraclass correlations were also
considered. We reported the total number of iterations required for convergence diagnostics, and
the mean square error (MSE) on posterior estimates of both random and fixed effects as well as
posterior estimates of intraclass correlation. NCG and NCt algorithms resulted in lower MSE for
both designs. This algorithm has also shown faster convergence rates. For the square lattice, NCG
and NCt algorithms overestimated the intraclass correlation when the simulated value was large
(0.8). But the bias on MSE relative to the other designs did not increase. A real experiment
from plant breeding is given as an example of package use, an Incomplete Block Design to
evaluate resistance of tomato varieties to late blight (caused by Phytophthora infestans). Gaussian
distribution was the parcimonious choice for the latent trait. Algorithms are consistent with regard
to the ranking of varieties.
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1 Introduction

Ordinal categorical data are widely used in different areas of research and often come
from subjective measures. Many examples can be found in the literature; for example, in
opinion studies (GOB; MCCOLLIN; RAMALHOTO, 2007), in food science with the use
of hedonic scales to evaluate sensory attributes (PIEPHO; KALKA, 2003), in quantitative
genetics and breeding (SORENSEN et al., 1995), in phytopathology with the use of
diagrammatic scales for disease quantification (CORRÊA; BUENO-FILHO; CARMO,
2009) and in the physical sciences with Mohs hardness scale (TABOR, 1954).

A number of methods have been proposed to analyze categorical data. We will focus
on threshold models, that have appealing properties specially in regard to interpretability of
intraclass correlation based on ratios of linear combinations on variance components and
has been preferred in quantitative genetics. Other distributions have been proposed for the
latent trait, specially logit link (MCCULLAGH, 1980; AGRESTI, 2013).

Threshold models use a latent variable with a continuous distribution in such a
way that the response observed for one category is within the limits that define these
categories (ALBERT; CHIB, 1993; SORENSEN et al., 1995; MCCULLOGH; SEARLE,
2001; KIZILKAYA et al., 2003; PIEPHO; KALKA, 2003). Bayesian implementations
of threshold models were first proposed by Albert and Chib (1993) for the analyses of
fixed-effect models. However, their algorithm lead to strong autocorrelation between
samples and slower convergence rate in Gibbs sampling when analyzing mixed-effect
models (SORENSEN et al., 1995) .

To accelerate the convergence process, Cowles (1996) proposed an algorithm that
used a blocking step to accept or reject the entire vector of threshold parameters. On
the other hand, Nandram and Chen (1996) proposed a reparameterization of the threshold
parameters by considering the Dirichlet distribution as the generator of threshold parameter
candidates for fixed effect models. In all of those algorithms it is straightforward to use
Student’s t distribution to replace the Gaussian distribution. This allows to investigate the
need of a more robust (heavy tailed) distribution for the latent trait.

We didn’t find any studies that compare the efficiency of those original algorithms
and their extensions for mixed models and Student’s t distribution as proposed by Albert
and Chib (1993) (ACG and ACt), Cowles (1996) (MCG and MCt) and Nandram and Chen
(1996) (NCG and NCt). The extended version by Silva and Bueno-Filho (2010) was not
compared in simulation studies as well.

The consistency and speed of the algorithms are compared in a simulation study
using two designs and four intraclass correlation specifications as well as simulating from
assymetric distributiions for the latent traits. The objective of those comparisons is to acess
if Student’s t or original Gausian (probit) link are affected by asymetric or heavy tailed
distributions on latent traits. A real experiment in plant breeding is also provided. In this
example an IBD in which 66 tomato families were compared with respect to their tolerance
to the leaf blight disease (caused by Phytophthora infestans). In the following section are
presented the extensions for mixed models of the algorithm proposed by Nandram and
Chen (1996), using Gaussian and Student’s t distributions. The third section presents the
designs, methods and results of the simulation study. Section four presents the tomato
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breeding experiment, followed by the conclusions from our study in the final section.
An additional contribution, the Bayesthresh package was developed to perform

the analyzes presented in the article. Being available at 〈https://cran.r-project.org/web/
packages/Bayesthresh/index.html〉

2 Extensions for mixed models of Nandram and Chen (1996)
algorithm

2.1 NC: Nandram and Chen (1996) algorithm for the analyses of mixed models,
using a cumulative Gaussian distribution (probit link)

Let Y be the n×1 vector of realized values for the ordinal data, with range 1 toK. Let
γ be the vector of threshold parameters that partitions the real line into K disjoint intervals
as follows: (γ0, γ1); [γ1, γ2); . . . ; [γK−1, γK) with γ0 = −∞ and γK = +∞. Nandram
and Chen (1996) proposed the use of the Dirichlet distribution to generate candidates for γ
and adopted γ1 = 0. In this manner, for every class k, γ∗k will be the distance between γk
and γ1, which is obtained from the transformation γ∗k = γk − γ1.

Let L be the vector of latent variables and L∗i be the difference of the latent variable
within the k class.

L∗i = Li − γi, i = 1, ..., n, and then Yi = k if γk−1 − γ1 ≤ L∗i ≤ γk − γ1.
Let δ be an auxiliary variable, and γ∗∗k be the new vector of threshold parameters,

let θ∗ be the new vector of fixed and random effects in the linear predictor, and L∗ be the
reparameterized latent variable (1).

δ = 1/γ∗K−1,

γ∗∗k = δγ∗k , k = 0, 1, 2, ...,K,

θ∗ = δθ e L∗ = δL∗;

(1)

The Jacobian of the δ transformation is given as [δ2]−
1
2 (n+m+K) Nandram and Chen

(1996), in which m is the number of explanatory variables. This is a proxy to the variance
of the latent trait. Assuming an inverse gamma prior for δ2 and using a cumulative Gaussian
distribution as the link function, we have the joint posterior distribution, given as:

p
(
θ∗, γ∗∗k , δ

2, L∗|y
)
∝

[
n∏
i=1

Φ
(
L∗i , wiθ

∗, δ2
)
I[γ∗∗k ,γ∗∗k+1)

(L∗∗i )

]
× Φ(θ∗; 0, δ2V )(δ2)−k/2p(σ2

u)p(δ2);

(2)

Let (σ2
u) represent the variance component of the u vector of random effects. Let V be the

covariance matrix of the linear effects (both fixed and random). For the random effects this
is often called A, that is a m × m matrix of known constants, Henderson (1976). Some
other measure of genetic similarity obtained from molecular markers could be used instead
Wang and Da (2014).

The full conditional distribution of θ∗ is given as:

θ∗|L∗, δ2, Y, σ2
u ∼ N

(
B−1W ′L∗, δ2B−1

)
; (3)
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in which W = [X|Z], X and Z are design matrices for the fixed and random effects,
respectively, and B = δ2V −1 +W ′W .

Let the inverse gamma prior for δ2 have hyperparameters c and d as follows:

p(δ2) ∝ (δ2)−(c+1)exp

{
− d

δ2

}
; (4)

Thus, the full conditional posterior distribution for δ2 will be:

δ2|θ∗, Y, σ2
u ∼ IG(aδ, bδ); (5)

where aδ is the shape parameter and bδ is the scale parameter, presented in equations (6)
and (7):

aδ =
n+m+K + 2c

2
; (6)

bδ =
(L∗ −Wθ∗)′(L∗ −Wθ∗) + θ∗

′
V −1θ∗ + 2d

2
. (7)

The full conditional distribution for the variance of the random effects (σ2
u) is given as:

p(σ2
u|θ∗, L∗, Y ) = (σ2

u)−(
q
2+a+1)exp

{
−1

2σ2
u

(u
′
u+ 2b)

}
; (8)

That can be seen as an inverse gamma distribution:

σ2
u|θ∗, L∗, y ∼ IG

(
q + 2a

2
,
u
′
u+ 2b

2

)
; (9)

With the reparameterization in (1), the conditional distribution of (γ∗∗|θ∗, δ2, Y ) becomes:

π(γ∗∗|θ∗, δ2, Y ) ∝
∏
Yi=2

[
Φ

(
γ∗∗2 − w

′

iθ
∗

δ

)
− Φ

(
−w′iθ∗

δ

)]

×
∏
Yi=3

[
Φ

(
γ∗∗3 − w

′

iθ
∗

δ

)
− Φ

(
γ∗∗2 − w

′

iθ
∗

δ

)]
. . .

×
∏

Yi=K−1

[
Φ

(
1− w′iθ∗

δ

)
− Φ

(
γ∗∗K−2 − w

′

iθ
∗

δ

)]
;

(10)

and the full conditional posterior distribution for (L∗|γ∗∗, θ∗, δ2, Y ) is given as:

L∗|γ∗∗, θ∗, δ2, Y = k ∼ N(Wθ∗, δ2); (11)

As for γ∗∗ sampling, it is performed by means of the Metropolis-Hastings algorithm using
an auxiliary vector p whose elements are described as follows:

pk−1 = γ∗∗k − γ∗∗k−1, k = 2, ...,K − 1; (12)
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where:

p = (p1, p2, . . . , pk−2)′, pk ≥ 0, k = 1, 2, . . . ,K − 2 and
K−2∑
k=1

pk = 1; (13)

According to Nandram and Chen (1996), the mean value theorem gives:

Φ

(
γ∗∗k − w

′

iθ
∗

δ

)
− Φ

(
γ∗∗k−1 − w

′

iθ
∗

δ

)
=

1

δ
Φ

(
ξk−1 − w

′

iθ
∗∗

δ

)
pk−1; (14)

where ξk−1 ∈ (γ∗∗k ; γ∗∗k−1), k = 2, 3, ...,K−1, and Φ(.) is the cumulative standard normal
density function. Thus, the conditional distribution of γ∗∗ is given as the product of h1×h2,
where h2 is the core of a Dirichlet distribution with parameters n = (n2 +1, ..., nk−1 +1)

′

and does not depend either on θ∗ or on δ. We proceed as follows:

h1(ξ) =

K−2∏
k=1

nk∏
i=1

Φ

(
ξk − w

′
θ∗

δ

)
;

and

h2(p) =

K−2∏
k=1

Pnk+1
k .

The acceptance probability for the new vector γ is given by the min{1, α}, where

α = w(γ∗∗(j),pj)/w(γ∗∗(j−1),pj−1); (15)

and j represents the jth iteration of the algorithm and:

w(γ∗∗,p) = P (γ∗∗|θ∗, δ2)/P (p|n, θ∗, δ2). (16)

The expression of P (γ∗∗|θ∗, δ2) is given in (10), and P (p|n, θ∗, δ2) is the Dirichlet
distribution:

p(p) =
1

Z(n)

K−2∏
k=1

p
nk+1−1
k , (17)

where p1, ..., pK−2 ≥ 0;
K−2∑
k=1

pk = 1; n2, ..., nK−1 > 0 . and Z(n) is the normalizing

constant given as:

Z(n) =

K−2∏
k=1

Γ(nk+1)

Γ

(
K−2∑
k=1

nk+1

) ; (18)

As we want the joint distribution of L∗ and γ∗∗, we sample for p, and this is used to build
γ∗∗k . If the new threshold parameter vector is accepted, the values of L∗ are used; otherwise
we keep the previous sample of the latent variable.
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2.2 NCt: Nandram and Chen (1996) modified algorithm, using the cumulative
Student’s t distribution as a link function for mixed models

The likelihood is given by:

P (Yi = k|θ∗, δ, v, γ∗∗) = Fv

(
γ∗∗k − w

′

iθ
∗

δ

)
− Fv

(
γ∗∗k−1 − w

′

iθ
∗

δ

)
, k = 1, 2, ...,K;

(19)
where Fv is the function of cumulative Student’s t distribution with v degrees of freedom.
To promote the algebraic ease of obtaining full conditional posterior distributions, Student’s
t distribution will be written in two stages (equations 20 and 21) as a mixture of Gaussian
distributions with inverse-gamma distributions for the variance parameters, as described in
Sorensen and Gianola (2002) .

λi|v ∼ Gamma(
v

2
,
v

2
); (20)

L∗i |θ∗, δ2, λi ∼ N
(
w
′

iθ
∗,
δ2

λi

)
; (21)

Thus, the model in (19) may be rewritten as:

P (Yi = k|θ∗, δi, v, γ∗∗) = Fv

(
γ∗∗k − w

′

i
δ√
λi

θ∗

)
− Fv

(
γ∗∗k−1 − w

′

i
δ√
λi

θ∗

)
k = 1, 2, ...,K;

(22)
The prior distribution for v follows Kizilkaya et al. (2003), with p(v) = 1/(1 + v)2.

Assuming a uniform prior for θ∗, the joint posterior for all parameters is:

p(θ∗, γ∗∗k , L
∗∗, λ|y) ∝ (δ2)−

k
2

[
n∏
i=1

φ

(
L∗i , wiθ

∗,
δ2

λi

)
I[γ∗∗k ,γ∗∗k+1)

(L∗k)

]

×

[
n∏
i=1

λ
( v
2 )−1
i exp

(
−λi

2
v

)]
Φ(θ∗, 0, δ2V )

1

(1 + v)2

× p(σ2
u)p(δ2)p(v);

(23)

where λ = {λi}ni=1, and V was defined in (2).
The prior for δ2 is as in (4) and for σ2

u is an inverse gamma (24). The full conditional
posterior distributions for all parameters are presented below. The full conditional
distribution of θ∗ is:

P (σ2
u) = (σ2

u)−(a+1)exp

(
−b
σ2
u

)
; (24)

θ∗|L∗, δ2, v, λ ∼ N(M−1W
′
R−1L∗, δ2M−1); (25)

where M = W
′
R−1W + δ2V −1

The full conditional distribution for λi follows Kizilkaya et al. (2003):

p(λi|λ−i, L∗, θ∗, v) ∝ λ( v+1
2 )−1

i exp

(
−λi

2

((
L∗i − w

′

iθ
∗
)2

+ v

))
; (26)
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where λ−1 represents the elements of λ, except λi. The above distribution is proportional
to a gamma distribution with parameters (v + 1)/2 and (L∗i − w

′

iθ
∗)2 + v ; that is,

λi|λ−i, L∗i , θ∗, v, δ2 ∼ Gamma
(
v + 1

2
,

1

2

((
L∗∗i − w

′

iθ
∗
)2

+ v

))
; (27)

and

L∗i |λi, θ∗, v, δ2 ∼ N
(
w
′

iθ
∗,
δ2

λi

)
; (28)

Sampling from conditional distribution of v (equation 29) is performed via Metropolis-
Hastings algorithm Kizilkaya et al. (2003) .

p(v|θ∗, L∗, λ, δ2) ∝

(
( v2 )(v/2)

Γ(v/2)

)n( n∏
i=1

λ
v
2−1
i exp

(v
2
λi

)) 1

(1 + v)2
; (29)

Sampling δ2 is done using the same distribution of equation (5).
The joint distribution of L∗∗ and γ∗∗ is the product of (γ∗∗|θ∗, δ2, λ, Y ) and

(L∗|γ∗∗, θ∗, δ2, λ, Y ). The full distribution of the latent variable is as shown in (28). For
γ∗∗, the full conditional distribution is given as:

p(γ∗∗|δ2, λ, θ∗, Y ) ∝
∏
Yi=2

[
Φ

(
γ∗∗2 − w

′
′θ∗

δ√
γi

)
− Φ

(
−w′iθ∗∗

δ√
λi

)]

×
∏
Yi=3

[
Φ

(
γ∗∗3 − w

′
′θ∗

δ√
λi

)
− Φ

(
γ∗∗2 − w

′

iθ
∗

δ√
λi

)]

· · ·
∏

Yi=K−1

[
Φ

(
1− w′′θ∗∗

δ√
λi

)
− Φ

(
γ∗∗K−2 − w

′

iθ
∗

δ√
λi

)]
;

(30)

In the same manner as in (14), according to the mean value theorem, we have:

Φ

(
γ∗∗k − w

′

iθ
∗

δ√
λi

)
− Φ

(
γ∗∗k−1 − w

′

iθ
∗

δ√
λi

)
=

1
δ√
λi

Φ

(
ξk−1 − x

′

iθ
∗

δ√
λi

)
pk−1; (31)

where ξk−1 ∈ (γ∗∗k ; γ∗∗k−1), k = 2, ...,K − 1, and Φ(.) is the standard normal density
function. And from (31), we obtain:

π(γ∗∗|θ∗, δ2, Y ) ∝ h3(ξ)h4(p); (32)

where h3 and h4 are from (32), respectively:

h3(ξ) =

K−2∏
k=1

nk∏
i=1

(
ξk − w

′

iθ
∗

δ√
λi

)
;

h4(p) =

K−2∏
k=1

pnk+1
k ; (33)

The other procedures (sampling latent variable and threshold parameters) are the
same as in previous section.
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3 Simulation study

The simulation study was conducted to evaluate the consistency of implemented
routines under different scenarios. Mean Squared Errors (MSE) were used as a guide to
compare the precision of posterior means. Chain size to achieve ergodic sampling and
processing time were also monitored.

Two incomplete block designs were considered: a small design, represented by a
Steinerś Triple System (STS) with seven treatments, and a large partially balanced design,
represented by a Simple Square Lattice (SSL) with 100 treatments. The treatments will be
described in the next subsections.

3.1 Steiner’s Triple System (STS)

STS was constructed with three treatments, two replicates and seven blocks of three
plots. The linear model used to simulate the effects and realizations of a continuous variable
was:

u = µ+Xb+ Za+ ε; (34)

where u is the vector of realizations, µ is the overall mean (equal to five), b is the fixed
effects vector, with b ∼ N(0, 1), and X is the design matrix of the fixed effects; a is the
random effects vector, simulated from a normal distribution, a ∼ (0, σ2

a), and Z is the
design matrix of the random effects.

Four values of σ2
a (0.1, 0.2, 0.5 and 0.8) were adopted for the random effects. The

sampling error was considered as ε ∼ (0, σ2
e), where σ2

e = (0.9, 0.8, 0.5 and 0.2). From
the combinations of σ2

a and σ2
e , we obtained four parameter values (0.1, 0.2, 0.5 and 0.8)

for the intraclass correlation ρ =
σ2
a

σ2
a+σ

2
e

.
The translation of vector u into an ordinal categorical variable was performed using

four threshold values, resulting in five categories (named 1 to 5).
Three sets of threshold values were chosen to emulate symmetric, asymmetric and

uniform distributions for the latent variable as follows:

ηi =



1, ui ≤ Q1;

2, Q1 < ui ≤ Q2;

3, Q2 < ui ≤ Q3;

4, Q3 < ui ≤ Q4;

5, ui > Q4;

(35)

Symmetric choice was based on the quantiles 0.0001, 0.15, 0.50 and 0.85;
asymmetric was based on quantiles 0.4, 0.5, 0.75 and 0.90; and uniform on quantiles 0.017,
0.28, 0.525 and 0.775. Figure (1) shows examples of the distribution for realizations of
categorical variable using the quantiles specification.

Specifications of variance components for the continuous variable resulted in four
different configurations of intraclass correlations ρ. The 12 experimental situations were
analyzed considering for each one two different values for hyperparameters of the inverse

604 Rev. Bras. Biom., Lavras, v.34, n.4, p.597-620, 2016



Uniform

 

Fr
eq

ue
nc

y 
(%

)

1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Symmetric

 

Fr
eq

ue
nc

y 
(%

)

1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Asymmetric

 

Fr
eq

ue
nc

y 
(%

)

1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 1 - Example of distribution for realizations of categorical variable using the
quantiles specification for the different experimental configurations. Steiner’s
Triple System - simulation study.

gamma priors for the variance of random effects: a less informative prior inverse-gamma
IG(3, 5) and a more informative prior IG(8, 5). In the algorithms NCG and NCt for σ2

e ,
an inverse-gamma prior IG(20, 5) was used.

For the analysis of STS the following linear model was used:

yij = µ+ τi + βj + εij (36)

where yij is the vector of pseudo-realizations of the latent variable from the ith treatment
in the jth block, µ is a common experimental constant, τi is the effect of ith treatment,
taken as fixed (assuming prior proportional to a constant), βj ∼ N(0, σ2

β) is the effect of
kth block, and εij ∼ N(0, σ2

e) is the experimental error in the latent variable. A total of
1000 experiments were simulated for each experimental situation.

3.2 Square Lattice Design (SLD)

A 10x10 square lattice design (SLD) with 20 blocks, grouped in two repetitions, and
100 treatments was used in this simulation. The model used to generate the observations
was the same described in equation (34). The simulated response vector was categorized
into nine classes, expanding the scheme presented in (35) using the quantiles 0.005,
0.075, 0.185, 0.325, 0.50, 0.675, 0.825, and 0.925, for a symmetric distribution. The
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same simulation procedure described in section (3.1) was used, giving a total of four
experimental situations. Like STS, the SLD was analyzed by considering a less informative
prior IG(3, 5) and a more informative prior IG(10, 2). The prior for residual variance in
NCG and NCt was the same as that used in the analysis of STS: IG(20, 5). For SLD, 500
experiments were simulated for each experimental situation.

The analysis used the same model described in (36), but changing the prior
specification for random and fixed effects: βj is the effect of jth block, taken as fixed
(assuming prior proportional to a constant) and τi ∼ N(0, σ2

τ ) is the effect of ith treatment,
representing a random additive genetic effect.

Figure (2) illustrates sampling from the prior distributions used and how they reflect
on intraclass correlation (meaning heritability, for SLD in genetic context). The first
situation would be the more realistic to a genetic experiment using a SLD and the last
is what you would expect in a nearly perfect blocking in the STS experiment. Note that
NCG and NCt have different prior specifications due to a prior specification for σ2

e . Note
also that if a mild informative prior like IG(3, 5) were used for both σ2

τ and σ2
e it would

result in a uniform prior distribution for intraclass correlation in NCG and NCt. However,
this could not be achieved for the other algorithms.

3.3 MCMC simulation and diagnostics procedure

An initial chain of 4000 samples was drawn. The diagnostic proposed by Raftery
and Lewis (1992) was used to assess the size of initial sample to discard (”burn in”)
and the sampling step size to avoid autocorrelation within the chain (”jump”). Two
independent chains of 4000 samples were them drawn with those values of burn in and
jump. The convergence for variance components was evaluated with the test of Gelman and
Rubin (1992). The analyses were performed with the aid of Bayesthresh package Correa
and Bueno-Filho (2012), and the chain diagnosis was performed with the coda package
Plummer et al. (2006). Both analyses were implemented in R software (R Development
Core Team, 2012).

3.4 Results

The NCG and NCt algorithm had a lower MSE for the estimates of fixed effects
when compared to the other algorithms, regardless of the design used (Table 1). The prior
for variance components had no effect on the MSE of fixed effects for the NCG and NCt
algorithms. For the other algorithms, the increase in intraclass correlation resulted in a
larger bias for either informative or non-informative priors and for all distributions. It
worths to notice that the more informative prior on σ2

β the smaller MSE (Table 1). This is
expected as the prior would be ”correct” in those situations.

The link function did not affect the posterior of fixed effects, with both the Gaussian
and Student’s t distributions showing very similar MSE behavior, regardless the shape of
true distributions. The MSE for random effects were qualitatively the same for fixed effects
using NCG and NCt algorithms (Figure 2).Similar MSE values were found regardless of
prior specification and latent trait simulated distribution. When an informative prior on σ2

β

was used, the algorithms ACG, ACt, MCG, and MCt showed a smaller MSE, similar to
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Table 1 - Mean squared error (MSE) and bias of the posterior mean of the fixed effects in
the STS design.

Prior Algorithm Intraclass correlation Asymmetric Symmetric Uniform
Bias MSE Bias MSE Bias MSE

IG (3,5)

ACG

0.1 5.71 8.62 12.58 9.64 135.49 9.53
0.2 5.81 1.73 13.45 10.61 15.77 10.84
0.5 7.32 1.70 14.17 7.93 14.52 8.50
0.8 16.21 1.12 32.29 20.63 35.49 20.02

ACt

0.1 8.97 11.44 18.15 12.71 189.03 12.33
0.2 8.25 12.38 18.52 13.41 20.47 13.58
0.5 10.62 9.20 20.38 10.41 17.35 10.23
0.8 16.06 20.04 32.72 20.63 35.92 20.25

MCG

0.1 3.94 7.75 11.24 8.90 122.15 8.93
0.2 4.18 8.67 12.17 9.91 14.87 10.17
0.5 5.76 6.14 12.83 7.17 11.15 7.16
0.8 13.54 18.36 28.86 19.32 31.54 18.78

MCt

0.1 8.21 10.65 16.81 11.91 175.34 11.68
0.2 7.48 11.54 17.15 12.55 19.37 13.06
0.5 8.77 8.22 17.58 9.28 15.61 9.26
0.8 14.16 18.50 29.29 19.37 32.63 18.71

NCG

0.1 -2.15 3.02 1.51 1.73 40.35 4.23
0.2 -3.90 3.25 1.67 1.70 5.84 4.35
0.5 -1.17 1.95 1.65 1.12 2.79 2.42
0.8 -3.40 2.93 2.26 1.91 6.16 4.24

NCt

0.1 -1.55 1.99 1.25 1.59 23.69 3.14
0.2 -2.04 2.15 1.79 1.60 5.58 3.34
0.5 -0.46 1.40 1.64 1.09 3.03 2.03
0.8 -2.01 2.05 2.47 1.85 5.73 3.29

IG (10,2)

ACG

0.1 4.84 7.74 10.86 8.52 113.27 8.60
0.2 4.95 8.74 11.00 9.31 13.76 9.68
0.5 3.58 4.44 8.28 4.42 7.20 4.83
0.8 5.35 9.52 14.59 11.23 15.81 10.38

ACt

0.1 7.65 9.92 15.27 11.13 153.35 10.86
0.2 6.78 10.94 15.41 11.79 18.03 12.04
0.5 6.05 6.02 13.26 6.58 10.29 6.72
0.8 6.16 10.34 16.16 12.10 17.02 11.09

MCG

0.1 2.79 6.62 9.54 7.87 104.18 8.13
0.2 2.52 7.38 9.88 8.62 13.12 9.01
0.5 2.62 3.93 7.84 4.29 6.97 4.63
0.8 4.06 8.58 13.48 10.59 15.21 9.80

MCt

0.1 6.66 9.20 13.62 10.42 144.01 10.31
0.2 5.57 9.94 14.12 10.96 17.24 11.36
0.5 5.04 5.51 12.14 6.14 9.41 6.26
0.8 5.08 9.55 15.34 11.43 16.14 10.62

NCG

0.1 -2.63 3.00 1.34 1.67 40.06 4.23
0.2 -4.02 3.27 1.50 1.65 6.03 4.37
0.5 -1.22 1.94 1.57 1.09 2.65 2.37
0.8 -3.38 2.90 2.32 1.95 5.92 4.14

NCt

0.1 -1.48 1.93 1.49 1.57 22.75 3.06
0.2 -1.96 2.07 1.53 1.59 4.87 3.14
0.5 -0.25 1.39 1.56 1.06 2.73 1.93
0.8 -1.75 1.91 2.57 1.89 5.78 3.30
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Figure 2 - Histogram with samples from the four specifications of prior distributions for
the intraclass correlation (heritablity) used in the square lattice analysis. ”Va”
stands for the variance of random effects and ”Ve” for the experimental error (in
the latent trait scale)

that obtained with the NCG and NCt algorithms. However it is likely that in this case the
bias is low because a ”correct” and informative prior was used. One would expect changes
if the prior were not on variance components or if dispersion of latent true trait were too
different from the fixed value σ2

e = 1.

608 Rev. Bras. Biom., Lavras, v.34, n.4, p.597-620, 2016



Strandén and Gianola (1998) suggested that Student’s t distribution might be more
flexible than the Gaussian one and that the former might be more robust when the response
variable is asymmetric distributed. However, this was not observed in our study. Posterior
inferences using Student’s t distribution were very similar to Gaussian, not affected either
by assimetric or very heavy tailed distribution for latent trait. In other words, degrees
of freedom for Student’s t were always high (results not shown). Our findings in some
way agree with Kizilkaya et al. (2003) that highlighted the need of more studies that use
Student’s t distribution in threshold models to assess its properties. Our conclusion is that
allocation of threshold parameters is enough to get a robust analysis using Gaussian models
both for assimetric and heavy tailed latent trait distributions.

Despite the smaller MSE observed in the NCG and NCt for the fixed and random
effects, these algorithms were more sensitive to the prior used for the variance components.
Using less informative prior (IG(3, 5)) was more accurate only for intraclass correlation
equal to 0.1 and 0.2, with a tendency to overestimate the ρ values when it was greater than
or equal to 0.5 (Figure 3). In this case, the informative prior resulted in a smaller MSE for
ρ. This is due to a smaller bias and was expected because this inference was done using a
”correct” and informative prior. The other algorithms showed a smaller MSE for ρ when
using the informative prior, but the MSE values of these algorithms (ACG, ACt, MCG and
MCt) were larger than the ones of NCG and NCt when ρ = 0.8. The average correlation
between predicted and observed values was approximately 0.99 for ρ = 0.8 and varied
from 0.75 to 0.90 for ρ < 0.8.

Among the algorithms, NCG and NCt distinguished themselves, being fast and
flexible for the experimental situations simulated. This reparameterization resulted in a
smaller MSE for the estimates of fixed and random effects. On the other hand, they
were more sensitive to the priors used for the variance components, when they reflect
informative priors to ρ. Nevertheless, they are also more flexible from the viewpoint
of prior specification, making possible to get an effectively uniform prior for intraclass
correlation, instead of the other algorithms.

Using the algorithms NCG ans NCt also yielded better behaved MCMC chains, with
smaller dispersion and early reaching of stationary distribution (Figure 3). This not only
reduced the MSE of fixed and random effects but also accelerated the chain convergence
process. Nandram and Chen (1996), when comparing their algorithm to AC and MC,
observed an improvement in the convergence process. In the case of mixed models,
a reduction in the number of iterations necessary for convergence was also observed.
Moreover, we have shown that there were no differences in the convergence process
between the Gaussian and Student’s t distributions (Table 4). This means that a routine
test can be done to see if Student’s t distribution should be used, just checking posterior
inferences by both models or degrees of freedom in NCt.

For the variance components, the informative prior accelerates the convergence
process of the algorithms (Table 5) but does not improve their overall performance. In
other words, the NCG and NCt algorithms showed a greater convergence speed than the
others, regardless of the prior used. It is also noticeable that a design having large number
of random effects to be estimated, such as SLD, and a design with very few random effects,
such as STS, have almost the same effect on the dependency of MCMC chains. The
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Table 2 - Mean squared error (MSE) and bias of the posterior mean of the random effects
in the STS design.

Prior Algorithm Intraclass correlation Asymmetric Symmetric Uniform
Bias MSE Bias MSE Bias MSE

IG (3,5)

ACG

0.1 0.06 1.38 0.13 1.42 0.13 1.32
0.2 0.08 1.42 0.13 1.51 0.10 1.39
0.5 0.56 2.79 1.61 3.57 1.10 3.72
0.8 3.46 9.95 3.44 7.88 3.39 8.24

ACt

0.1 0.09 1.70 0.14 1.67 0.14 1.62
0.2 0.11 1.77 0.17 1.75 0.13 1.65
0.5 0.57 3.49 1.54 3.89 1.12 3.57
0.8 3.39 9.77 3.17 7.66 3.40 8.17

MCG

0.1 0.06 1.31 0.08 1.33 0.08 1.25
0.2 0.07 1.36 0.12 1.45 0.07 1.33
0.5 0.36 2.38 0.88 2.92 0.62 2.56
0.8 2.40 8.66 2.89 7.21 2.61 7.38

MCt

0.1 0.07 1.56 0.11 1.57 0.11 1.54
0.2 0.07 1.59 0.14 1.65 0.11 1.56
0.5 0.44 2.97 0.86 3.20 0.77 3.05
0.8 2.52 8.57 2.61 6.93 2.50 7.20

NCG

0.1 0.008 0.32 0.004 0.26 0.004 0.32
0.2 0.01 0.32 0.006 0.28 0.008 0.32
0.5 0.04 0.71 0.03 0.75 0.02 0.71
0.8 -0.11 0.46 0.04 0.49 -0.12 0.46

NCt

0.1 0.008 0.31 0.003 0.28 0.003 0.31
0.2 0.01 0.32 0.005 0.30 0.005 0.33
0.5 0.03 0.72 0.03 0.75 0.02 0.72
0.8 -0.10 0.49 0.04 0.49 -0.13 0.49

IG (10,2)

ACG

0.1 0.01 0.64 0.01 0.63 0.01 0.63
0.2 0.02 0.63 0.01 0.64 0.01 0.63
0.5 0.04 0.71 0.03 0.74 0.03 0.74
0.8 -0.10 0.84 0.04 0.78 -0.11 0.81

ACt

0.1 0.01 0.56 0.01 0.55 0.01 0.56
0.2 0.02 0.55 0.01 0.55 0.01 0.55
0.5 0.04 0.69 0.04 0.72 0.03 0.71
0.8 -0.09 0.70 0.05 0.64 -0.11 0.67

MCG

0.1 0.01 0.62 0.01 0.62 0.01 0.62
0.2 0.01 0.61 0.01 0.62 0.01 0.62
0.5 0.04 0.70 0.03 0.73 0.02 0.73
0.8 -0.10 0.78 0.05 0.74 -0.11 0.78

MCt

0.1 0.01 0.55 0.01 0.54 0.01 0.55
0.2 0.01 0.54 0.01 0.54 0.01 0.54
0.5 0.04 0.68 0.04 0.71 0.03 0.70
0.8 -0.10 0.64 0.05 0.60 -0.11 0.63

NCG

0.1 0.007 0.29 0.005 0.23 0.005 0.28
0.2 0.01 0.29 0.004 0.26 0.006 0.29
0.5 0.04 0.72 0.03 0.77 0.02 0.73
0.8 -0.10 0.48 0.03 0.51 -0.12 0.48

NCt

0.1 0.006 0.26 0.001 0.24 0.001 0.26
0.2 0.01 0.28 0.004 0.27 0.003 0.28
0.5 0.04 0.74 0.03 0.77 0.001 0.74
0.8 -0.10 0.51 0.03 0.51 -0.12 0.51
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Table 3 - MSE and bias for the intraclass correlation in the SLD.
Prior Algorithm Intraclass correlation Asymmetric

Bias MSE

IG (3,5)

ACG

0.1 0.30 0.090
0.2 0.30 0.040
0.5 0.10 0.010
0.8 0.04 0.030

ACt

0.1 0.41 0.170
0.2 0.41 0.110
0.5 0.27 0.080
0.8 0.05 0.030

MCG

0.1 0.29 0.080
0.2 0.29 0.040
0.5 0.08 0.010
0.8 0.03 0.030

MCt

0.1 0.39 0.150
0.2 0.38 0.090
0.5 0.22 0.060
0.8 0.03 0.030

NCG

0.1 0.29 0.080
0.2 0.29 0.030
0.5 -0.08 0.006
0.8 -0.10 0.133

NCt

0.1 0.30 0.090
0.2 0.30 0.040
0.5 -0.07 0.005
0.8 -0.10 0.132

IG (8,5)

ACG

0.1 0.07 0.006
0.2 0.08 0.004
0.5 -0.12 0.020
0.8 0.04 0.020

ACt

0.1 0.09 0.008
0.2 0.09 0.005
0.5 -0.06 0.026
0.8 0.04 0.032

MCG

0.1 0.07 0.006
0.2 0.07 0.010
0.5 -0.13 0.030
0.8 0.02 0.025

MCt

0.1 0.08 0.007
0.2 0.08 0.007
0.5 -0.10 0.030
0.8 0.03 0.030

NCG

0.1 0.10 0.010
0.2 0.10 0.002
0.5 -0.27 0.080
0.8 -0.11 0.169

NCt

0.1 0.10 0.011
0.2 0.10 0.004
0.5 -0.27 0.080
0.8 -0.11 0.168
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Figure 3 - Posterior density for an example simulated in the STS design with ρ = 0.2,
burn=0, and jump=1 and a final chain sample size equal to 4000 with symmetric,
asymmetric and uniform distributions of the random variable. Dotted lines show
the posterior means of the threshold positions.

performance of NCG and NCt algorithms was superior to that of the others, regardless
the number of random effects to be estimated.

Kizilkaya et al. (2003) suggest that the rejection sampling for threshold parameter
reduced the independence between samples, but not necessarily leads to a faster
convergence of chains. Our results from the simulated study indicates at least that NCG
and NCt converges more often for a planned chain size (Table 6).

One advantage of NCG and NCt algorithms is the generation of candidates for the
threshold parameters in the [0, 1] range. This is because Dirichlet distribution is conjugated
to the multinomial. The acceleration of convergence process achieved by this procedure can
be better seen in Figure (4), which shows the trajectory of MCMC chains for the second
threshold (STS design).

Figure (5) depicts the autocorrelation in MCMC chains for the second threshold
by using different algorithms. This parameter generally have the highest autocorrelation
during the sampling process. Clearly, the algorithm adapted from Nandram and Chen
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Table 4 - Average processing time, burn-in, jump, and total number of iterations for the six
algorithms assessed for the STS and SSL designs, according to the Raftery and
Lewis diagnostic.

Algorithm Time(min.) Burnin Jump Total number of iteractions
STS

ACG 3.57 78.36 17.59 67032.08
ACt 4.12 89.23 22.21 83281.63
MCG 1.97 61.87 15.38 57742.86
MCt 4.33 75.05 18.72 70173.76
NCG 0.91 23.79 6.65 25255.95
NCt 1.06 23.48 6.84 25959.31

LQS
ACG 23.74 60.74 15.17 56869.24
ACt 41.40 94.38 20.34 76290.67
MCG 11.39 27.00 8.09 30317.97
MCt 39.20 47.25 13.76 51562.65
NCG 9.74 14.74 4.57 17150.79
NCt 16.20 16.43 5.15 19226.35

Table 5 - Average processing time, burn-in, jump and total number of iterations for the
two priors used to estimate the variance components for the STS and SL designs,
according to the Raftery and Lewis diagnostic.
Prior Time (min.) Burnin Jump Total number of iteractions

STS
More informative 2.35 52.58 13.48 50485.61
Less informative 2.97 64.68 15.65 59309.06

LQS
More informative 19.08 36.49 10.57 39591.30
Less informative 28.08 50.36 11.79 44214.49

Table 6 - Convergence rate of the samples for the STS and SLD designs for the six
algorithms, according to the Gelman and Rubin test.

Algorithm Design
STS SLD

ACG 0.77 0.81
ACt 0.74 0.75

MCG 0.61 0.65
MCt 0.50 0.42
NCG 0.89 0.96
NCt 0.72 0.96
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(1996) needs fewer iterations to obtain a stationary and independent chain.
Simulations has shown that the NCG and NCt algorithms are more consistent and

fast, but the others can also be used for inference on fixed and random effects, although
for variance components some care is needed. NCG and NCt are also better on allowing
specification of uniform priors for intraclass correlation, being a much more flexible choice.
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Figure 4 - Trajectory of the chain for a simulated example in the STS design with ρ = 0.2,
burn=0, jump=0, and a final chain size of 4000 for the threshold 2 with
symmetric, asymmetric, and uniform distributions of the response variable.
γ2 stands for the second threshold parameter, sampled in all models, rescaled
acordingly.

4 An example applied to plant breeding for disease resistance

This was a plant breeding experiment on resistence to late blight (caused by
Phytophthora infestans) in tomato. Treatments were 66 full sib families of tomato (different
genotypes). An incomplete block design (IBD) with 20 blocks having 33 plants grouped
(resolved) in 10 repetitions per family. Disease severity was assessed weekly for 54 days
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Figure 5 - Auto-correlation (ACF) plot of the chain for a simulated example in the STS
design with ρ = 0.2, burn=0, jump=0, and a final chain size of 4000 for the
second threshold with symmetric distribution of the response variable.
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using a scale whith six categories, roughly representing 1%, 5%, 10%, 16%, 32%, and
50% disease severity Corrêa, Bueno-Filho and Carmo (2009). The model adopted for the
analysis was a split-plot in time, where the plots were a single tomato plant randomized to
the IBD and subplots were their repeated evaluations in time.

The initial analysis used all of the six algorithms described before to provide initial
MCMC chains of 4000 iterations. After Raftery and Lewis diagnostic, estimated sample
sizes were used to plan final MCMC. Two chains were sampled to evaluate the convergence
by Gelman and Rubin’s diagnostic.

Bayes factors (JEFFREYS, 1961) were applied to compare models with cumulative
Normal and Student’s t distributions to assess the evidence in favor of the former.
According to Gelman et al. (2003), the Bayes factor was obtained from the mean estimate of
the log-likelihood (from posterior samples). The experiment was analyzed using a personal
computer with a Core(TM)i7-2600 3.4GHz processor and 16 Gb of RAM. Table(7) shows
the estimated parameters and the controling MCMC sizes used for the sampling process,
such as the burn-in (Burn), jump (Jump), and the effective number of iterations (Iter).

Table 7 - Parameters of the iteration process after the application of the Raftery and Lewis
diagnostic to obtain the ideal sample size, and the model parameters from the
ideal sample.

ACG ACt MCG MCt NCG NCt
LogVeros. -4813.46 -5072.754 -4302.46.16 -4701.44 -7095.68 -6801.88
σ2
gen 0.137 0.127 0.198 0.141 0.059 0.059
σ2
bl 0.028 0.052 0.031 0.029 0.036 0.026
σ2
res 1.00 1.00 1.00 1.00 0.16 0.11
ρgen 0.12 0.11 0.16 0.12 0.26 0.34
Burnin 688 698 333 31 6 194
Jump 37 45 96 1 9 66
Time (min.) 2.17 192.68 1.68 41.31 2.60 194.76

We observed that the algorithms proposed by Kizilkaya et al. (2003) had the smallest
processing time and that the ACt algorithm took more time, but there were great differences
among the algorithms with regard to burn-in, jump, and the effective number of iterations.
Although the simulation process indicated a smaller processing time for the NCG and NCt
algorithms, only the ACt algorithm had a noticeably greater time than the others in present
study (about 93-fold). The NCG and NCt algorithms gave smaller genotype variance
estimates but also greater estimated intraclass correlation for the genotypes (Table 7). As
stated before this is the comparison in which we expect algorithms to differ, with a greater
prior influence on intraclass correlation. This suggests prior sensitiveness and the worthy
of another analysis using near-uniform priors to intraclass correlation.

Estimates for the genotype effects and time trajectories were very similar among all
algorithms, even though the prior used for the variance components was the same as used in
the simulations. Bayes factors were approximately equal to 1 in the comparison of models
with a cumulative Normal distribution and those with a Student’s t, indicating that both
distributions have a similar performance.
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There were no differences in the rankings of genotypes with regard to disease
resistance, indicating that the algorithms had similar predictive power. Figure (6) shows the
predictions and highest posterior difference (HPD) intervals for the most resistant genotype
(62), a moderately resistant genotype (10) and a susceptible genotype (2).
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Figure 6 - Predicted values for the three genotypes with different degrees of disease
resistance. The solid line indicates the HPD interval with regard to the predicted
severity value.

Conclusions

The proposed extension of Nandram and Chen (1996) algorithm for the analysis
of mixed models is a faster alternative than other algorithms as shown in experimental
situations simulated. Using Student’s t cumulative link instead of probit link did not change
properties of the analysis, indicating that Gaussian distribution is a robust choice and can
be used regardless of the shape of the latent trait, even in experiments with small numbers
of samples. Algorithms implemented in the Bayesthresh package can be used as a fast and
robust tool for the analysis of ordinal categorical data with mixed models (and threshold
approach) using Bayesian inference.
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RESUMO: Este estudo descreve e avalia um pacote que implementa as extensões dos algoritmos
descritos por Nandram e Chen (1996) utilizando a distribuição Gaussiana (NCG) e a distribuição
de Student (NCT) para análise bayesiana de dados categorizados ordinais. Os algoritmos descritos
por Albert e Chib (1993) e Cowles (1996) também foram implementados. As comparações foram
realizadas utilizando dois modelos diferentes. Um modelo foi o sistema triplo de Steiner com sete
tratamentos utilizado para avaliar os efeitos fixos e um delineamento em láttice quadrado 10x10
foi usado para avaliar os efeitos aleatórios. Também foram consideradas diferentes situações para
as correlações intraclasse. Nós avaliamos o número total de iterações para a convergência, o erro
quadrático médio (EQM) e o viés para as estimativas a posteriori dos efeitos fixos, aleatórios
e das correlações intraclasse. Os algoritmos NCG e NCT resultaram em menor EQM e viés
para os efeitos avaliados. Também apresentaram maior velocidade para atingir a convergência
dos parâmetros. Estes algoritmos apresentaram estimativas para o a correlação intraclasse
superestimada quando o valor paramétrico era de 0.8. O viés e o EQM nas demais simulações
não foi alterado. Um experimento real de melhoramento genético, foi analisado utilizando os
mesmos algoritmos, em delineamento de blocos incompletos para selecionar genótipos de tomate
resistêntes a Phytophthora infestans. A distribuição Gaussiana foi considerada parcimoniosa para
a escolha do traçølatente. Os algoritmos implementados são considerados consistentes quanto a
classificação dos genótipos.

PALAVRAS-CHAVE: MCMC; bayesthresh; modelos de limiar
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