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ABSTRACT: A traditional approach to model infectious diseases is to use compartment

models based on differential equations, such as the SIR (Susceptible-Infected-Recovered)

model. These models explain average behavior, but are inadequate to account for

stochastic fluctuations of epidemiological variables. An alternative approach is to use

Individual-Based Model (IBM), that represent each individual as a set of features

that change dynamically over time. This allows modeling population phenomena as

aggregates of individual interactions. This paper presents a general framework to

model epidemiological systems using IBM as an alternative to replace or complement

epidemiological compartment models. The proposed modeling approach is shown to

allow the study of some phenomena which are related to finite-population demographic

stochastic fluctuation. In particular, a procedure for the computation of the probability

of disease eradication within a time horizon in the case of systems which have mean-field

endemic equilibrium is presented as a direct application of the proposed approach. It

is shown, how this general framework may be described as an algorithm suitable to

model different types of compartment models. Numerical simulations illustrate how this

approach may provide greater insight about a great variety of epidemiological systems.
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1 Introduction

The control of infectious diseases is one of the main reasons for humankind
having doubled its life expectancy over the past century (Wickwire, 1977; Anderson
and May, 1992). Although the application of public health polices has controlled
some of the main epidemic threats, emerging infectious diseases, such as SARS
(Becker et al., 2005; Becker and Starczak, 1998), are dangerous and pose a
scientific challenge because they are unpredictable and their spread occurs over
a short period of time. Moreover, diseases that have been considered eliminated,
such as Tuberculosis, are still being cause of thousands of death throughout the
world (Keshavjee and Farmer, 2012). In particular, multidrug-resistant (MDR)
tuberculosis (defined as disease that was resistant to at least isoniazid and rifampin)
afflicts an estimated 500,000 new patients annually (Keshavjee and Farmer, 2012)
and has been considered a serious epidemic in China linked to inadequate treatment
in both the public health system (Zhao et al., 2012).

A mathematical model is an important tool, as it allows to predict and analyse
different scenarios (Ljung, 1987; Murray, 1993; Giannakis and Serpedin, 2001).
One of the first modern attempts to model an infectious disease was published in
1927 (Kermack and McKendrick, 1927). The SIR (Susceptible-Infected-Recovered)
model, also known as the Kermack-McKendrick epidemic model (Brauer, 2005),
is a model represented by different compartments. Other models have been
proposed to describe infectious diseases using compartment models (Demongeot
et al., 2013; Bonte et al., 2012; Allen, 2008; Shim, 2006; Piqueira et al., 2005;
Satsuma et al., 2004; Allen, 1994). In order to get more detailed epidemiological
models, some approaches have been proposed, such as division population into
subsets. These subsets can be related to age dependence (Coutinho et al., 1999;
Allen and Thrasher, 1998); social behavior (Gordon, 2003; Pastor-Satorras and
Vespignani, 2001), usually applied on sexual diseases (Shi et al., 2008; Huang and
Villasana, 2005; Xia and Moog, 2003); or metapopulation (Fulford et al., 2002).
Other works transform compartment models in discrete-time models (Satsuma
et al., 2004; Willox et al., 2003; Allen, 1994). A particular weakness of compartment
models comes from its basic assumption: the differential equation model is
built assuming homogeneous mixing (i.e. the mean-field approximation) between
different classes (epidemiological states) (Anderson and May, 1992; Hethcote,
2000). The consideration of mean-field can be unsuited for heterogeneous systems
(Coutinho et al., 1999; Keeling et al., 2003). This model is generally not able
to describe the persistence or the eradication of infectious diseases because the
stochastic effects are more evident when the number of infected individuals is small
(Keeling and Grenfell, 2002; Keeling and Rohani, 2002; Gamarra et al., 2001; Lloyd,
2001; Pastor-Satorras and Vespignani, 2001; Earn et al., 1998; Keeling and Grenfell,
1997).

It should be noticed that some works have proposed the introduction of
stochastic variables in compartment models, in order to deal with changing
environments (Aiello and da Silva, 2003; Bjornstad et al., 2002; Braumann, 2007;
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Allen, 2008). Although these adaptations can be useful in several situations,
differential (difference) equations are in general not suitable to deal with problems
in which the individuals present important differences (Black and McKane, 2012;
Barrett et al., 2010; Breckling et al., 2006; Krone, 2004). In such a view, one of
the most prominent frameworks is to deal with each individual as an unique entity.
There are several procedures that follow this idea, such as Multi-Agent Systems
(Gordon, 2003) and approaches based on Cellular Automata (Shi et al., 2008).
Black and McKane (2012) state that an increasing use of computer simulation by
theoretical ecologists started a move away from models formulated at the population
level towards individual-based models. The authors argue that the construction
of ecological models at the individual level and their subsequent analysis is, in
many cases, straightforward and leads to important insights. Recently, a significant
number of papers have been published on the Individual-Based Model (IBM) (Avgar
et al., 2013; Baetens et al., 2013; Omori and Sasaki, 2013; Black and McKane, 2012;
Bonte et al., 2012; Guichard et al., 2012; Bonte et al., 2012; Roche et al., 2011;
Grimm et al., 2010; DeAngelis et al., 2008; Gómez-Mourelo et al., 2008; Burke
et al., 2006; Breckling et al., 2006; Grimm and Railsback, 2005; Grimm, 1999).

Regarding comparison among IBM and compartment models, such as SIR,
there are relevant works in this area. Demongeot et al. (2013) revisit SIR models by
introducing first a microscopic stochastic version of the contacts between individuals
of different populations. Omori and Sasaki (2013) develop a mathematical model
that describes coevolution between host and virus. The author uses a SIR model,
with seasonal fluctuation of transmission rate. In the same line, Roche et al.
(2011) develop an IBM in order to address simultaneously the ecology, epidemiology
and evolution of strain-polymorphic pathogens, using Influenza A viruses as an
illustrative example. The authors validate the model against comparable models,
showing the robustness of the proposed algorithm and argue that his proposed IBM
reproduces accurately the solutions of classic SIR model as a special case of their
model. Another interesting approach was developed by (Green et al., 2006). In that
work, authors use the term deterministic mean-field models, which is close related
to compartment models. They claim that relating of deterministic, mean-field
models into network models, where epidemic spread occurs between interconnected
susceptible and infectious individuals or populations, requires careful consideration.
Similarly, (Sharkey, 2008, 2011) developed a better understanding of the connection
between stochastic simulation and deterministic models of epidemics propagated
on contact networks. They present how the difference may emerge from IBM to
compartment models regarding the topology of network. Allen (2008) presents a
formulation of various types of stochastic epidemic models based on the well-known
deterministic SIS and SIR epidemic models.

More recently, researchers are concerned on establishing a set of rules or
standards to systematize the use and development of the IBM. An important
attempt to achieve this objective has been the ODD protocol (Grimm et al., 2006,
2005), which gives a general structure to model any infectious disease that may be
expressed in classes. In a supplementary paper, Grimm et al. (2010) make a review
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of ODD protocol. They state, despite some critics, that the ODD has emerged as an
important step towards a more rigorous formulation of models. Ideas of ODD have
been applied in many works, such as a model for tick-borne disease (Gaff, 2011).

In this paper, a framework of the IBM to epidemiological compartment
models is proposed. We may summarize the three major contributions thus: first,
presentation of a flexible algorithm of the IBM that can be applied to replace or
complement several types of epidemiological compartment models. Secondly, the
capability to deal with finite-size population effects, including the study of disease
eradication. The documentation of the proposed framework follows ideas of ODD
protocol. Finally, the development of an analytical equation of the probability of
eradication for one step ahead simulation, based on the assumptions of the IBM.
This equation is validated via Monte Carlo simulations.

The IBM is applied in three simulation experiments. First, the IBM is
presented with a variable population that receives a migration at a specific time.
Second, the IBM is adjusted to have an average behavior corresponding to a SIR
model. In the third experiment, probability of eradication of infection disease is
related to the size of population. It is shown that the proposed model can give
an answer about the dependency of eradication probability on the population size,
which allows quantifying the effect of subdividing the population as a prophylactic
action.

2 Preliminary concepts

2.1 Individual-Based model (IBM)

The IBM is a computational tool that allows simulation experiments,
taking into account individual features and interaction among these individuals.
Simulation models that describe individuals (agents) have been generally used in
several research fields (Grimm et al., 2006, 2010). The IBM allows researchers
to investigate how system-level properties emerge from the adaptive behavior of
individuals, as well as how, on the other hand, the system affects individuals. In such
way, aspects that are usually ignored in other kinds of models may be considered.

A useful description of IBM was developed by Grimm et al. (2006), as a result
of preliminary discussions during an international workshop on individual-based
modeling held in Bergen, Norway, in the spring of 2004. In such discussions,
researchers have noticed that IBMs are often described verbally without a clear
indication of the equations, rules, and schedules. Besides that, there is no standard
protocol for describing an IBM. As stated in (Grimm et al., 2006), “the basic idea
of protocol is always to structure the information about an IBM”. The protocol
developed by Grimm and colleagues is composed by three blocks: Overview, Design
concepts, and Details, and for that, it is called ODD. The block of Overview provides
the overall purpose and structure of the model. The block of Design concepts
describes the general concepts underlying the design of the model. Finally, the
block of Details presents information that was omitted in the overview, such as
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initialization, input and sub-models. Background information on the ODD-protocol
may be obtained from (Grimm et al., 2006, 2010).

2.2 Compartment models

Epidemiological compartment models is a strategy for modeling epidemiologi-
cal systems by means of dividing a population into compartments, or classes related
to epidemiological states (Hethcote, 2000). One of the most common compartment
model, the so-called SIR model (Brauer, 2005; Hethcote, 2000; Anderson and May,
1992; Kermack and McKendrick, 1927), considers the classes: Susceptible, Infected
and Recovered. In such model, infants which do not have any passive immunity (for
instance because their mothers were never infected), are considered as susceptible
individuals (S); that is, those who can become infected. When there is an adequate
contact of a susceptible with an infective so that transmission occurs, then the
susceptible enters the class I of infected individuals, which are infectious in the
sense that they are capable of transmitting the infection. When the infectious
period ends, the individual enters the recovered class R consisting of those with
permanent infection-acquired immunity.

The SIR model is composed by differential equations which describe
propagation of a disease in a population, in terms of a vector of three components,
S, I and R, which represent the number (or proportion) of individuals in each class.
Consider the SIR model described by:

dS(t)

dt
= µN(t)− αS(t)−

βI(t)S(t)

N(t)
, (1)

dI(t)

dt
=

βI(t)S(t)

N(t)
− γI(t)− αI(t), (2)

dR(t)

dt
= γI(t)− αR(t), (3)

where S(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0; N(t) is the total population size; β is
the transmission rate between individuals; µ is a rate of new susceptible, α is a
rate of death and γ is a rate of recovering. In the case that µ = α, the number
of deaths balances the number of births, so that the population size is constant
N(t) = N = S(t) + I(t) + R(t). 1/µ is the mean lifetime and 1/γ is the average
infectious period.

Other compartment models can be built following the same reasoning, by
defining groups of individuals (compartments) which interact, with this interaction
described by a system of differential equations. The choice of which compartments
to include in a model depends on the characteristics of the particular disease being
modelled and the purpose of the model (Hethcote, 2000).

3 Developing an IBM for infectious diseases

Here the IBM proposed in this paper is presented following the ODD protocol.
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3.1 Purpose

The purpose of the IBM is to model infectious diseases in populations, in
which the individuals may be divided into epidemiological states. This framework
using IBM aims at being an alternative to replace or complement the compartment
models, such as SIR, SEIR, SIS and others (Hethcote, 2000; Allen, 1994).

3.2 State variable and scales

The proposed IBM is expressed by the following scheme. Let an individual be
described by its characteristics

In,t = [Cn,1,t Cn,2,t · · · Cn,m,t], (4)

where n is a sequential number that identifies an individual, m is the number
of characteristics, t is the instant where the individual presents a specific set of
characteristics In,t ∈ R1×m. The population size is the number of individuals N(t)
and n ≤ N(t). Cn,m,t is the mth-feature of the nth individual. In general, these
features can be epidemiological states, age, sex, space location, social condition,
and so forth. To represent an epidemiological system, at least one of the features
should represent epidemiological states as used in SIR-type models, that is, the
class of susceptible, infected, recovered, exposed and any other. For each class
a natural number is assigned. The first feature Cn,1,t ∈ [0, 1, 2, 3 . . . k] is used
to denote the class. Hence, an individual with its features will be denoted as
In,t(Cn,1,t;Cn,2,t; · · · ;Cn,m,t).

Example 1: An individual with m = 2, where C1,1,t ∈ [0, 1], 0 for susceptible
and 1 for infected and C1,2,t is the age expressed in years. I1,0.1(1; 25) presents the
features: the individual is the number 1, infected, 25 years old at time 0.1 year.

3.3 Process overview and scheduling

The characteristics of each individual evolve over time. The age of an
individual is increased by ∆t at each interaction. Besides age, we can divide the
features into two types. The first is related to its epidemiological state. The IBM
should have rules that define when (or a probability) that a susceptible moves to
infected, or any other class change. The second type is related to any other feature
that may be important to describe the propagation of disease and the dynamics of
the population under analysis. For instance, the spatial position of an individual
can change after each interaction following a random rule or following a specific
daily routine.

3.3.1 Class update

In the majority of cases in epidemiology systems, there are two specific
situations of class update. First, the class is changed as a deterministic or stochastic
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function of the passed time since the last state change of that characteristic. This
occurs, for instance in diseases as measles, where the disease presents a time period
of infection. After that, the individual obtains immunity, being considered as
recovered. Birth and deaths are considered as first type. The second type of update
occurs due to interactions between individuals. This is the case of the infection.
The update only occurs when an effective contact between a susceptible individual
and an infected individual occurs.

An exponential distribution is used to describe the time interval up to an
event in a “memoryless” system – in which the event can occur, at each moment,
with the same probability, regardless the passed time since the last state change.
For mortality or birth rates, the exponential distribution can be adopted – which
means that the probability of death of an individual does not depend on its age.
This distribution was also used for the recovery transition (Anderson and May,
1992). The probability density function is given by

f(x) = κe−κx, (5)

where κ is the distribution parameter and x is the stochastic variable. For instance,
using Equation (5) for recovering process, x stands for the time of the individual is
infected and κ = γ. The mean value of Equation (5) is 1/κ.

The cumulative distribution function is

F (x) = e−κx. (6)

To take into account bounds of possible ages, it is possible to use a truncated
exponential distribution (Bendat and Pierson, 1986), that is f(x|b < x ≤ a) =

f(x)

F (a)− F (b)
, where F (x) =

∫ b

a

f(x)dx and a and b are the upper and lower bounds,

respectively.
For each characteristic that presents a finite time period, an additional class is

defined that a priori receives stochastically a value for this final period. The initial
condition of a characteristic can be defined as

Cn,m,t = −
1

κ
ln(x). (7)

Example 2: A population presents a life expectancy of 1/κ = 1/µ = 70 years.
When an individual is born, this individual receives characteristics that determine
when it will die Cn,m,t = −1/µ ln(x). Taking x as a random variable with uniform
distribution. If the stochastic variable returns ln(x) = 0.9 then Cn,m,,t = 63. That
means the individual n will be alive up to age 63.

The infection process is also a class update – this process is the key of IBM
approach. The process of infection occurs when there is an adequate contact of
a susceptible with an infective so that transmission occurs. In the compartment
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models, β is the average number of adequate contacts of a person per unit time,
then βI/N is the average number of contacts with infected individuals per time
unit of one susceptible, and βI/NS is the number of new cases per time unit due
to the S susceptible individuals.

As the evolution of IBM occurs at time intervals ∆t, it is possible to find
an approximate value of β for IBM in the following way. Using the Euler rule to
discretise Equation (2) it yields

βI(t)S(t)

N(t)
− γI(t)− αI(t) =

dI(t)

dt
(8)

≈
I(t+ ∆t)− I(t)

(t+ ∆t)− t
(9)

≈
I(t+ ∆t)− I(t)

∆t
. (10)

The total number of infected individuals after ∆t is

I(∆t+ t) ≈ I(t) + ∆t

(
βI(t)S(t)

N(t)
− γI(t)− αI(t)

)
(11)

≈ I(t) +
β∆tI(t)S(t)

N(t)
− γ∆tI(t)− α∆tI(t). (12)

Thus, the following parameter is used in the IBM:

βI = β∆t. (13)

Similar analysis may be undertaken to other parameters of SIR model, such as α, µ
and γ. The susceptible individuals may become infected by virtue of encountering
infected individuals. In each iteration, each susceptible individual will reach another
individual chosen randomly. If the other individual is infected, the first one
becomes infected with a probability βI . The infection process can use the uniform

distribution. This distribution is described by p(x) = 0, if x < a, p(x) =
1

b− a
, if

a ≤ x ≤ b and p(x) = 0 if x > b.

3.3.2 Other features

All features of an individual may change only after a time interval ∆t. The
age of an individual usually is denoted by the second characteristic (the first is the
epidemiological state). Other example is the spatial position. It is possible to define
two characteristics, for instance, Cn,3,t and Cn,4,t, and define them as the position
in a two dimensional space.

3.4 Design concepts

Emergence: Population dynamics emerge from the behavior of the individuals.
Birth, mortality, recover and infections process are defined by probabilities.
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Sensing : No sensing mechanisms are explicitly represented in this work. But,
the framework presented may easily include sensing of spatial, temperature, age,
sex or any other individual characteristics.

Interaction: Only the interaction among susceptible individuals with infected
individuals is considered. With this interaction, it is possible to take into account
the infection process.

Stochasticity : All behavior, demographic and infection parameters are
interpreted as probabilities.

Observation: The key output monitored from the model is the population
dynamics, as stated in Equation (16). In particular, the number of infected
individuals over the time is the most important output.

3.4.1 Population dynamics

A population (P ) of individuals is denoted by

Pt =


I1,t
I2,t

...
In,t

 =


C1,1,t C1,2,t · · ·C1,m,t

C2,1,t C2,2,t · · ·C2,m,t

...
...

...
Cn,1,t Cn,2,t · · ·Cn,m,t

 , (14)

where In,t is an individual at time t and Pt ∈ Rn×m.
The register of P along the time is the dynamic description of the

epidemiological system. Let

Mk,t(n) =

{
1 (Pt(n, 1) = k)
0 (Pt(n, 1) 6= k),

(15)

and

Γk,t =

N(t)∑
n=1

Mk,t(n). (16)

Γk,t denotes the total number of individuals that presents the epidemiological
state k at time t.

Example 3: Suppose an epidemiological system with Cn,1,t ∈ [0, 1, 2, 3], where
Susceptible 0, Exposed 1, Infected 2 and Recovered 3. In a compartment model
approach, this has been called SEIR model (d’Onofrio, 2002). The total number of
susceptible, exposed, infected and recovered individuals at time t0 are St0 = Γ0,t0 ,
Et0 = Γ1,t0 , It0 = Γ2,t0 and Rt0 = Γ3,t0 , respectively.

Finally, a population can receive new individuals from another population. In
this case, the Poisson distribution is used to describe migration process. This is
important when there are infected individuals in the incoming population (Aiello
and da Silva, 2003; Bjornstad et al., 2002).

Rev. Bras. Biom., São Paulo, v.34, n.1, p.133-162, 2016 141



Table 1 - Variables to set up in a IBM

Variable Description
N(0) Initial population
m Number of characteristics
k Number of classes
κ Definition of distribution parameters (i.e. µ, γ, α, and others)
βI percentage of infected contact
Γκ,0 Number of individuals for each epidemiological

state or class at time t = 0

3.5 Initialization

The first step to simulate the IBM is to set up the variables. It is necessary
to set the variables indicated in Table 1.

3.6 Input

The particular data used to parametrize the model will depend on the
particular infectious disease to which it is applied.

3.7 Sub-models

No sub-models are used in this approach.

Example 4: In this example, the IBM is applied for an epidemiological system with
three classes: susceptible, infected and recovered and compared to SIR model. The
population is considered constant N(t) = N , that is, Pt = RN×m, which is normally
used in compartment models when the growth of the populations is much slower
than other dynamics of the epidemiological system (Hethcote, 2000). For the SIR
model, five features are defined, so m = 5 and Pt = RN×5, ∀t. The features related
to IBM are described as follows. Cn,1,t ∈ [0, 1, 2] represents an individual that may
be susceptible 0, infected 1 or recovered 2. Cn,2,t the individual age expressed in
years. The maximum age for each individual is calculated as Equation (7) and then
Cn,3,t = − 1

µ ln(x). Cn,4,t is the time in years, since the individual is in an infected
state, the value of this parameter is zero. Finally, Cn,5,t is the maximum time
that such individual will stay in the infected state, after being infected, given by
Cn,5,t = − 1

γ ln(x). The number of individuals in each class is calculated by means

of Equation (16) and are denoted by St = Γ0,t, It = Γ1,t and Rt = Γ2,t. Figure 2
shows a flowchart of the IBM. The features of the initial population are determined
randomly, given the probability distributions of the state variables. Each time,
each individual may change its epidemiological state. The Appendix presents a
pseudo-code of IBM. An implementation of this algorithm in Scilab is available as
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Table 2 - Examples of transitions of IBM for the SIR model represented in Figure1

Time Individual Transitions Comments
t = 1 I2,0(0; 7; 15; 0; 0)→ I2,1(1; 8; 15; 0; 3) This individual was infected and

its infection will last 3 time units.

t = 2 I3,1(0; 60; 60; 0; 0)→ I3,2(0; 0; 54; 0; 0) This susceptible individual died
and was replaced by another
individual with the features
Cn,2,t = 0 and Cn,3,t = 54.

I4,1(1; 31; 70; 2; 2)→ I4,2(2; 32; 70; 0; 0) This individual was recovered.

t = 3 – There is no change in the epi-
demiological state of individuals.

t = 4 I5,3(1; 23; 70; 3; 3)→ I5,4(2; 24; 70; 0; 0). This individual was recovered.

t = 5 I2,4(1; 11; 15; 3; 3)→ I2,5(2; 12; 15; 0; 0). This individual became recov-
ered.

I6,4(2; 20; 20; 0; 0)→ I6,5(0; 0; 57; 0; 0). This recovered individual died
and was replaced by another
individual with the features
Cn,2,t = 0 and Cn,3,t = 57.

supplementary material.

Example 5: This example presents a population of six individuals for an
IBM of Example 4. Figure 1 presents a population, where each line represents
an individual. The algorithm proposed here can be seen as a set of rules to
make transitions in these matrix of populations. According to Equation (14) this
population can be expressed by:

Pt = [I1,t I2,t I3,t I4,t I5,t I6,t]
T. (17)

At each instant of time, ∆t, an individual state is evaluated. Figure 1 presents
possible transitions for features Cn,1,t to Cn,5,t. Table 2 summarizes these
transitions.

4 Eradication probability

4.1 Mathematical Formulation

In this section, an equation that gives the probability of eradicating the disease
after each time step ∆t is derived. The flowchart of an infected individual (Figure 3)
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t=0 t=1 t=2
0 12 65 0 0 0 13 65 0 0 0 14 65 0 0
0 7 15 0 0 1 8 15 0 3 1 9 15 1 3
0 59 61 0 0 0 60 61 0 0 0 0 54 0 0
1 30 70 1 2 1 31 70 2 2 2 32 70 0 0
1 20 70 0 3 1 21 70 1 3 1 22 70 2 3
2 16 20 0 0 2 17 20 0 0 2 18 20 0 0

t=3 t=4 t=5
0 15 65 0 0 0 16 65 0 0 0 17 65 0 0
1 10 15 2 3 1 11 15 3 3 2 12 15 0 0
0 1 54 0 0 0 2 54 0 0 0 3 54 0 0
2 33 70 0 0 2 34 70 0 0 2 35 70 0 0
1 23 70 3 3 2 24 70 0 0 2 25 70 0 0
2 19 20 0 0 2 20 20 0 0 0 0 57 0 0

Figure 1 - Transitions in IBM for an epidemiological system, which presents three
classes: susceptible, infected and recovered. Each column represents a
feature of the individuals (rows). In this case, the population has six
individuals. Numbers in bold face indicate transitions that are explained
in Table 2. Matrix transition for individuals of a population is ruled by
proposed algorithm for IBM.

presents the possible changes of state. The individual can die, transmit the disease
to another individual or recover. The probability of an infected individual to die at
instant t is:

p0,n = 1− e−
In,t(Cn,2,t)

µ (18)

and the probability to recover is

p2,n = 1− e−
In,t(Cn,4,t)

γ . (19)

An infected individual presents the same probability to contact with any other
individual. In such a situation, the probability that an infected individual does not
transmit the disease is:

p1,n = 1− βISt
N(t)

. (20)

where St is the total of susceptible individuals at instant t.
Considering just one infected individual, the eradication occurs when an

individual dies or when this individual recovers, without transmitting the disease
to another individual. Thus, the eradication probability after a single time step, for
a system with one infected individual, can be expressed by:

pIn,t = p0,n + (1− p0,n)p2,np1,n. (21)

When the number of infected individuals is greater than one and considering
that the infection process is composed of independent events, the eradication
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probability can be expressed by:

pPt =

N(t)∏
n=1

(
pIn,t

)
, ∀n that In,t(Cn,1,t) = 1

=

N(t)∏
n=1

(p0,n + (1− p0,n)p2,np1,n) (22)

=

N(t)∏
n=1

[(
1− e−

In,t(Cn,2,t)

µ

)
+

(
e
−
In,t(Cn,2,t)

µ

)(
1− e−

In,t(Cn,4,t)

γ

)(
1− βISt

N(t)

)]
.

In Sec. 5.3, Equation 22 is numerically validated.
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5 Results

This section presents three simulations experiments. Simulation Experiment
1 shows a scenario with a variable population that receives a migration at a specific
time. Simulation Experiment 2 (Figure 2) presents how the IBM may express
the average behavior of a SIR model. Finally, in the Simulation Experiment 3
(Figure 3), the IBM and an eradication probability given by Equation (22) are used
to discuss the number of individuals in a herd.

5.1 Simulation experiment 1

In the simulation experiment 1, the IBM is used to simulate a hypothetical
disease that exhibits three epidemiological states: susceptible, infected and
recovered. The parameters used are ∆t = 0.1, γ = 1/3, µ = 1/50, α = 1/60
and βI = 0.25. The initial conditions are N(0) = 1000, S(0) = 900, I(0) = 10
and R(0) = 90. At time t = 120 a group of 100 individuals arrives at this
population. This groups presents 30 susceptible individuals, 60 infected individuals
and 10 recovered individuals. This migration may represent a disturb in the
system regarding the number of infected individuals. The simulation in this cases
is performed to see the behaviour of the model from a external perturbation,
which does not change the parameters and structure of the systems. In this case,
migration was considered as a single-event. Details of this model are given in
Example 4. N(t) is not constant and increases with time, as µ < α. Figure 4
shows the average number of susceptible, infected and recovered individuals and
three standard deviations along 300 years. The IBM was simulated 100 runs. The
population reaches an average of N(120) ≈ 1150, just before the migration. It jumps
to 1250 and ends the simulation with N(300) ≈ 1490. This simulation experiment
presents an endemic number of infected. After the migration, the number of infected
jumps from an average of 49.96 to 109.96. The system returns to its endemic
situation, but as the populations increases along the time, the number of infected
reaches an average of 64.02 at t = 300. As it is possible to see from this numerical
experiment, the simulation shows a sort of robustness of the model due to the
external perturbation.

5.2 Simulation experiment 2

In this simulation experiment, the expected result is that, for a large number
of simulations, the average behavior of IBM converges to the predicted behavior
of SIR simulation. Figure 5 shows three simulations for three different values of
βI, keeping the relation of Equation (13). As one can see, the general behavior is
similar between the two models.

In this case, Example 4 was also used. As the objective is to reproduce the
SIR model, after an individual death, another individual is created. This condition
guarantees that N(t) is constant for all t.
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Figure 4 - Simulation experiment 1. Monte Carlo simulation of IBM, showing
average and three standard deviations of (a) Susceptible, (b) Infected and
(c) Recovered individuals. The parameters used are ∆t = 0.1, γ = 1/3,
µ = 1/50, α = 1/60 and βI = 0.25. The initial condition was set in
N(0) = 1000, S(0) = 900, I(0) = 10 and R(0) = 90. At time t = 120
100 new individuals arrive: 30 of which are susceptible, 60 infected and
10 recovered. Simulation (100 runs) was conducted along 300 years.
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Figure 5 - Comparison between IBM (–) and SIR (o). The parameters used are:
N = 1000, ∆t = 0.1, γ = 1/3, µ = 1/60. (a) β = 2, βI = 0.2. (b)
β = 2.5, βI = 0.25. (c) β = 3, βI = 0.3. In the three plots, it is presented
only the number of susceptible individuals. Similar results are obtained
for infected and recovered individuals.
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Figure 6 - Monte Carlo simulation (100 runs) of IBM. The parameter used are:
N = 1000, ∆t = 0.1, µ = 1/60, γ = 1/3 βI = 0.25. The initial condition
was set in S(0) = 0.9N , I(0) = 0.01N and R(0) = N − S(0)− I(0). At
t = 0, Cn,2,t = 0.25µ and Cn,4,t = 0.25γ.

In this section, the Monte Carlo technique is applied to evaluate the IBM
model (Aiello and da Silva, 2003; Martinez and Martinez, 2002). This method
simulates the IBM several times. Figure 6 shows all simulations in just one plot,
while Figure 7 presents the average and standard deviation for each time-value.
It is possible to notice that IBM presents an average behavior that approximates
the SIR model. However, Figure 6 shows some jumps at around t = 40s, which
can be explained by the stochasticity of the model. In such cases, the number of
infected individuals has reached zero (as an stochastic effect). Thus, the number
of susceptible individuals increases, and on the other side, the number of recovered
individuals decreases with time. An explanation for this phenomenon is that IBM
presents a non-null probability of eradication, even when its parameters come from
the SIR in a endemic state. When the number of infected individuals is small, an
eradication process may occur. This property of having two stable fixed points is
an interesting property of IBM, which cannot be seen in compartment models.

Figure 7 shows the average and standard deviation as a vertical range. The
average value is quite similar to SIR model, what was expected for the mean-field
approximation. An important issue can be seen in Figure 8. The average number
of infected individuals is around 40 in steady state. In Figure 8, three standard
deviations are considered. It is possible to see that for almost any time, there
is a non-null probability, within such three standard deviations, of the number of
infected individuals reaching zero – leading to the disease eradication.
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Figure 7 - Monte Carlo simulation of IBM, showing average and one standard
deviation. The parameters are the same as those described in Figure
6. (a) Susceptible. (b) Infected. Simulation was conducted along 300 .
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Figure 8 - Monte Carlo simulation. Zoom of Figure 7(b). In this case, the bars
show three standard deviations.

The possibility of eradication due to such stochastic fluctuations motivates
the study of IBM as a tool for the determination of the probability to eradicate a
disease.

5.3 Simulation experiment 3

In this simulation we are concerned with the possibility of analysing the
eradication process of an infectious disease.

5.3.1 Probability of one-step-ahead eradication

Firstly, an experiment has been performed in order to check the validity of
Equation (22). The idea is to verify the eradication after the system has reached
the steady-state (the endemic equilibrium), which has occurred approximately after
4000 simulation intervals. Let Pt=t4 as shown in Figure 1. Consider the following
parameters: µ = 1/60, γ = 1/3, βI = 0.25. The population was considered small as
N = 6 precisely in order to check the viability of the model for small populations.

150 Rev. Bras. Biom., São Paulo, v.34, n.1, p.133-162, 2016



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

n

(%
)

(a)

3.7 3.75 3.8 3.85 3.9 3.95 4 4.05
0

500

1000

1500

%

n

(b)

Figure 9 - Eradication probability after ∆t: (a) Probability of eradication computed
using Equation (22) over ten thousands simulations. (b) Histogram of
percentage eradication, removing the first 4000 points.

Applying Equation (22), the probability of one-step-ahead eradication, nearby the
system endemic equilibrium, is 3.858%. To check this result, as well as the whole
viability of Equation (22), the IBM was simulated ten thousand times with the
above parameters. Figure 9 (a) shows the evolution of probability eradication in
the next instant of time. Figure 9 (b) shows a histogram of eradication probability,
in which the transient part (4000 points) has been removed. The obtained value
is 3.856 ± 0, 056, which confirms Equation (22). In the case of this example, in
which the endemic equilibrium is relatively low (about 4% of infected individuals in
the population), the route to eradication via a single step after the equilibrium has
shown to be a reasonable approximation. A Markov chain process using Equation
(22) and its complements for calculating the transition probabilities would lead to
more precise estimates of eradication probabilities, in the general case. In a recent
work, Artalejo et al. (2013) includes an external environment into the epidemic
model by means of replacing the constant transmission rates with dynamic rates
governed by an environmental Markov chain. In such cases, the IBM can be used
for estimating such probabilities directly from simulation.

5.3.2 Population size

With Equation (22), it is possible to evaluate the influence of the population
size in disease eradication. To evaluate this feature, let γ = 1/3, µ = 1/60, βI =
0.25, St = 0.8N , It = 0.01N . Cn,2,t and Cn,4,t are determined similarly to Cn,3,t
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Figure 10 - Eradication probability while in the endemic equilibrium, as a function
of population size. Parameters: γ = 1/3, µ = 1/60, βI = 0.25, St =
0.8N , It = 0.01N . The plot presents the average (-o-) and a standard
deviation range, calculated from 100 runs.

and Cn,5,t by means of Equation (7). Simulating 100 times, the results presented
in Figure 10 show that the eradication probability decrease with the size of the
population, for populations in the same endemic equilibrium.

5.3.3 Population size design

In this section, it is shown how the IBM can be used to contribute to design a
population size of an animal , in order to keep the probability of disease eradication
above a minimal acceptable level. Suppose the following scenario. A herd with:
N = 500, µ = 1/60, γ = 1/3, β = 5, βI = 0.5. In the beginning, 99% of population
is susceptible and 1% is infected. Figure 11 presents the simulation of this scenario.
Approximating the outcomes of IBM simulation by Gaussian distributions, the
eradication probability of each time can be calculated by the set of Monte Carlo
simulations: the distribution of the values along the Monte Carlo simulation gives a
probability of the number of infected individuals reaching zero. For example, nearby
t = 100, there is a probability < 0.3%, since the number of infected individuals equal
to zero is outside the range of three standard deviations. After the transient time,
i.e., around t > 20, the results indicate that a maximum probability of 1.8% occurs
around t = 127.

In a second scenario, this population is divided into two subgroups: one of
them with 300 individuals and another one with 200 individuals to show the effect
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Figure 11 - Population of 500 individuals. Other parameters: µ = 1/60, γ = 1/3,
β = 5, βI = 0.5. (a) IBM: (-o-) average of 50 runs, (–) vertical bars
indicate the three standard deviation range. (b) SIR Model.

of the reduction of eradication probability due to the reduction of the number of
individuals in a population. The percentage of susceptible and infected individuals
is kept the same. Figures 12 and 13 display the simulations for the 300 individuals
and the 200 individuals case, respectively. For the subpopulation of 300 individuals,
the eradication probability has been increased to 25.3% and for the subpopulation
of 200 individuals, to 41.1%.

5.3.4 Probability of eradication

The last experiment about eradication aims at analysing the average of time
eradication. This simulation was conducted for the population of section 5.3.3 with
N = 500, N = 300 and N = 200. The probability of eradication is analysed in two
instants: 300 time units and 50 time units in order to show one instant closer to the
beginning of the simulation and another one closer to steady state behaviour. Other
parameters were set in µ = 1/60, γ = 1/3, βI = 0.5. Figure 14 shows the cumulative
probability of eradication for the three population sizes. With a population of 500
individuals, after 300 time units, eradication has occurred in 6.1% of runs. For 300
and 200 individuals, this value has increased to 57.9% and 95.5%, respectively. In 50
time units, these values are 1.0%, 11.3% and 32.1% for a population of 500, 300 and
200 individuals, respectively. This kind of study can be worthwhile in the design of
animal breeding systems, in order to quantify the epidemiological risk associated to
the dimension of the number of animal in a herd. Such data can help to plan the
subdivision of the herd in isolated sub-populations.
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Figure 12 - Population of 300 individuals. Other parameters: µ = 1/60, γ = 1/3,
β = 5, βI = 0.5. (a) IBM: (-o-) average of 50 runs, (–) vertical bars
indicate the distance of three standard deviation. (b) SIR Model.
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Figure 13 - Population of 200 individuals. Other parameters: µ = 1/60, γ = 1/3,
β = 5, βI = 0.5. (a) IBM: (-o-) average of 50 runs, (–) vertical bars
indicate the distance of three standard deviation. (b) SIR Model.

154 Rev. Bras. Biom., São Paulo, v.34, n.1, p.133-162, 2016



200

300

500

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

t

%

Figure 14 - Cumulative probability of eradication for the three population size. (··)
N = 500, (- -) N = 300 and (−) N = 200. Other parameters: µ = 1/60,
γ = 1/3, βI = 0.5. Simulation (1000 runs) was conducted over 300 time
units. It was simulated 1000 runs.

Conclusions

This paper has presented a framework of IBM for epidemiological systems.
This approach can take into account specific features of any individual,
heterogeneous aspects, variant populations. The IBM model allows the analysis
of phenomena associated to a finite (possibly small) number of individuals, in
contrast to the premise of continuity of compartment models, that implies, in fact,
an approximately infinite number of individuals.

The IBM has been tested in three simulation experiments. In the
first simulation experiment, the epidemiological system presents three classes:
susceptible, infected and recovered. The population is not constant and at a specific
time, the population receives a migration influx. The results presents stochastic
fluctuations, but on average the number of infected individuals reaches an endemic
value, which is expected for this simulation.

In the second simulation experiment, the IBM uses the SIR model as a
reference, with both models sharing the same epidemiological assumptions. It has
been shown that the IBM and the SIR models present similar results, concerning
their average behavior. This fact reveals that these two different approaches to
model epidemiological systems present similarities that may be explored. The
statistical fluctuations that appear as a consequence of such assumptions, however,
could be explicitly dealt by the IBM model only.
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A technique to calculate the eradication probability for a given population
size and a given endemic equilibrium has been developed. This procedure has been
used to show how different population sizes can present different probabilities of
eradication. The IBM model has indicated an interesting result: when a population
is separated into smaller sub-populations, the probability of eradication increases.

Future directions of research on IBM applied to epidemiological systems should
be focused on the elaboration of a methodology to specify which features should
be included. In other words, effort has to be made in order to develop a way
to determine the structure of an IBM, in a similar way as other classical tools of
system identification (Ljung, 1987; Murray, 1993). In terms of application, the
results presented here suggest that simulations in an IBM framework can be useful
for evaluating disease control methods and policies that could not be evaluated by
traditional differential equation models, particularly in what concerns the stochastic
effects associated to finite population sizes.
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RESUMO: Modelagem de sistemas epidemiológicos foi estabelecida como uma

ferramenta importante para compreender os mecanismos de propagação de doenças

infecciosas. A abordagem tradicional para esta técnica é usar modelos compartimentais

baseados em equações diferenciais, tais como o SIR (Suscet́ıvel-Infected-Recuperados).

Esses modelos explicam o comportamento médio, mas não são suficientes para explicar

as flutuações estocásticas de variáveis epidemiológicas que ocorrem em virtude de

interações individuais em populações de tamanho finito. Este artigo apresenta uma

abordagem para modelar sistemas epidemiológicos utilizando o modelo baseado no

indiv́ıduo (IBM) como uma alternativa para substituir ou complementar os modelos

do compartimento epidemiológicos. O IBM permite o estudo de alguns fenômenos que

estão relacionados com a população finita, tais como a flutuação estocástica demográfica.

Em particular, é apresentado um processo para o cálculo da probabilidade de erradicação

da doença dentro de um horizonte de tempo no caso dos sistemas que apresentam

equiĺıbrio endêmico. Esta estrutura também tem sido descrita como um algoritmo

adequado para modelar diferentes tipos de modelos compartimentais. Simulações

numéricas mostram que, embora o algoritmo proposto é equivalente, em média, para

o modelo compartimental, é posśıvel investigar diferentes aspectos do sistema e fornecer

informações úteis sobre uma grande variedade de sistemas epidemiológicos.

PALAVRAS-CHAVE: Modelo baseado em indiv́ıduos; epidemiologia matemática;

flutuações estocásticas; modelo epidemiológico compartimental.
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Appendix

In this appendix a pseudo-code of IBM for a SIR model is presented. A Scilab
implementation of the algorithm is available as supplement of this work.

Algorithm begins

Parameters definition: N(t), ∆t, γ, µ, βI

Initial Population P0

for t← 1 until tf do

indd← find (Pt(:, 2) > Pt(:, 3))

P (indd, :)← [ ] {Death - Delete all individuals indd with Cn,2,t > Cn,3,t }
Born bth new individuals ← f(∆t, µ, x) {As a function of ∆t, µ and x }
Pt(end+ 1 : end+ bth, 3)← − 1

µ ln(x) {Define Cn,3,t for born individuals }

indr ← find (Pt(:, 4) > Pt(:, 5))

P (indr, 1)← 2 { Recover }
P (indr, 4 : 5)← 0

for n← 1 to N(t) do

if Pt(n, 1) = 0 {Susceptible individual}
ind← x {Another individual is chosen stochastically }
if (Pt(ind, 1) = 1) & (x > βI ) {Infection occurs with βI % }
Pt(n, 1)← 1 {Infection }
Pt(n, 4)← 0

Pt(n, 5)← − 1
γ ln(x)

end-if

end-if

end-for

Pt(:, 2)← Pt(:, 2) + ∆t

indr ← find (Pt(:, 1) = 2)

Pt(indr, 4)← Pt(indr, 4) + ∆t

Γk,t =
∑N(t)
n=1 Mk,t(n) {Values k=0 (S), k=1 (I), k=2 (R) }

end-for

end-algorithm
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