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ABSTRACT: In this paper, we discuss the estimation of the Birnbaum-Saunders

Special-Case (BS-SC) distribution through the Bayesian approach considering its

parameters independents, assuming gamma priors for both of them. As the full posterior

conditionals do not have closed forms we use the Metropolis-Hastings algorithm to

generate samples from the joint posterior distribution. We present a simulation study

proposing the Markov chain Monte Carlo (MCMC) method as a random number

generator, considering the cases where the BS-SC distribution has symmetric and

asymmetric shapes. An application related to ozone concentration is presented in this

paper using the described methodology.
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1 Introduction

The Birnbaum-Saunders (BS) distribution was developed to study problems of
vibration in commercial aircraft that caused fatigue in the materials (BIRNBAUM
and SAUNDERS, 1969). The authors used their knowledge of fatigue problems
to build a new family of distributions, which models materials lifetime subject to
dynamic loads. Through the years, the BS distribution has been widespread in
many works, such as Rieck and Nedelman (1991) created a log-linear model for the
BS distribution; Achcar (1993) introduced the Bayesian approach on the estimation
of the BS parameters; Villegas et al. (2011) introduced the BS mixed models for
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censored data; Balakrishnan et al. (2011) presented mixtured models based on the
BS distribution; among others.

A random variable T with parameters α > 0 and β > 0, denoted by T ∼
BS(α, β), is defined in terms of the Gaussian distribution as follows
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where Z ∼ N (0, 1). Its probability density function (pdf) is given by
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where α > 0 is the shape parameter and β > 0 is the scale parameter and median of
the distribution. As α grows, the BS distribution becomes positively asymmetrical,
whereas when α → 0, the distribution becomes symmetric around β.

Later, Dı́az-Garćıa and Leiva (2005) proposed a new family of distributions
so-called the Generalized Birnbaum-Saunders (GBS), defined in terms of elliptic
distributions. Here, the assumption that Z ∼ N (0, 1) from equation (1) is relaxed
for any univariate symmetric distribution, i.e.
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where U ∼ S(0, 1; g), g corresponds to the kernel of the pdf of symmetric
distribution used and α and β are the same as presented in equation (2). Thus,
it follows that a random variable T follows a GBS distribution, denoted by
T ∼ GBS(α, β; g), if its pdf is given by

fT (t) = c
t−3/2(t+ β)
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, t > 0, (3)

where c is the normalization constant and g corresponds to the kernel of the pdf of
symmetric distribution to be used. In particular, when U ∼ N(0, 1) we have the
BS distribution. For instance, some other extensions of the BS distribution can be
found in Vilca-Labra and Leiva (2006) who assumed that U could follow any skew
elliptical distribution; Owen (2006) developed a three-parameter BS distribution;
Gómez et al. (2009) introduced the generalized slash Birnbaum-Saunders family
of distributions; Castillo et al. (2009) proposed a new extension based on the
epsilon-skew symmetric distributions; Guiraud et al. (2009) and Leiva et al. (2012)
introduced a non-centrality parameter to the BS and BS-t distributions; among
others.

Due to their properties and flexibility in modelling different types of data, the
GBS distributions received wide attention in different research areas, e.g., Leiva
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et al. (2008) modelled the air pollutant concentration in Chile using the GBS
distributions; Leiva et al. (2012) used the GBS distributions in the forestry sciences,
modelling the diameter of trees; Marchant et al. (2013) utilized distributions from
the GBS family on a financial dataset. Cancho et al. (2010) present the only study
using Bayesian approach on a GBS distribution besides the standard BS.

One of the GBS distributions that are not explored in the literature is the
Birnbaum-Saunders Special-Case (BS-SC) distribution, also proposed by Dı́az-
Garćıa and Leiva (2005), which has as baseline the Special-Case distribution (for
further information, see Gupta and Varga, 1993). The BS-SC model has heavier
tails than the classic BS distribution and so could be used in cases where there are
only a few observations on the extremes of the distribution. Also, since the BS-SC
has heavy tails we can compare it with the BS-t distribution but, in a Bayesian
approach, the BS-SC distribution is easier to fit considering that the BS-t model
has a degree of freedom parameter (ν) which is somewhat not very easy to estimate.

In this paper we consider the Bayesian inference as a tool for parameter
estimation of the BS-SC distribution. This approach was chosen since the
distribution has only its first moment and therefore becomes the natural choice for
the inference process, since in the classical approach some asymptotic assumptions
are violated and thus the estimates are not reliable. The modelling of uncertainty
on shape (α) and scale (β) parameters, considered independent in this work, was
performed by gamma prior distributions due to their parametric space. Since the full
conditional posterior distributions do not have closed form, the Metropolis-Hastings
(HASTINGS, 1970) was used to obtain samples of the joint posterior distribution,
and hence the Bayesian estimates.

For the simulation study, we propose the generation of data from BS-SC
distribution to be performed by MCMC-based algorithms (as Metropolis-Hastings),
since the quantile function of this model does not have a closed form. After data
generation Bayesian estimates were obtained and compared. Finally, an application,
comparing the BS, BS-t and BS-SC distributions, to a real dataset related to ozone
concentration in New York city is presented in order to validate the inference
process.

The rest of this paper is organized as follows. In Section 2, we define the BS-SC
distribution, notation and structure, comparing it to the classic BS distribution. In
Section 3, prior distribution and posterior analysis are described. In Section 4, we
bring up the simulation study, with data generation and its estimates. In Section 5,
an illustrative example based on real data is provided. Finally, Section 6 ends with
some concluding remarks.

2 Birnbaum-Saunders Special-Case distribution

Let X be a random variable which follows a Special-Case (SC) distribution
(GUPTA and VARGA, 1993), denoted by X ∼ SC(µ, σ), so its pdf is given by
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where µ ∈ R and σ > 0 are, respectively, location and scale parameters of the
distribution.

The SC model is a symmetric distribution (GUPTA and VARGA, 1993) that
has heavier tails than the Gaussian distribution and hence could be an interesting
competitive model to it and to the BS-t distribution when there are some extreme
values in the tails of the distribution. Further, the SC distribution allocates more
information around its mode as we can see in Figure 1 that presents a comparison
between the BS and BS-SC models for different values of σ2.

The only moments that can be obtained for this distribution are the first and
second one. For any n ≥ 3, E(Xn) does not exist since they diverge. Mean and
variance of the SC distribution are given respectively by

E(X) = µ and Var(X) = σ2,

which are the same of the Gaussian distribution.
An extension of the BS distribution was proposed by Dı́az-Garćıa and Leiva

(2005), where they presented the family of generalized Birnbaum-Saunders (GBS)
distributions, which pdf is expressed in (3). One particular case of the GBS
distribution is the Birnbaum-Saunders Special-Case (BS-SC) distribution that is
obtained writing the pdf (4) as equation (3).

We say that a random variable T follows a BS-SC distribution, denoted as
T ∼ BS − SC(α, β), if its pdf is given by

fT (t) =
t−3/2(t+ β)
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where α > 0 and β > 0 are the shape and scale parameters. If T ∼ BS − SC(α, β),
then Y = aT ∼ BS − SC(α, aβ) and Y = T−1 ∼ BS − SC(α, β−1) (DÍAZ-GARCÍA
and LEIVA, 2005).

According to theorem 3 from Dı́az-Garćıa and Leiva (2005), the only moment
that can be obtained of the BS-SC distribution is the first one, given by

E(T ) = β

(

1 +
α2

2

)

,

which is exactly equal to the first moment of the classic BS distribution
(BIRNBAUM and SAUNDERS, 1969).
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(a) (b)

(c) (d)

Figura 1 - Probability density functions for Gaussian and SC distributions with
µ = 0 and different values of σ: (a) σ2 = 4; (b) σ2 = 1; (c) σ2 = 0.25;
and (d) σ2 = 0.04.

The pdf behavior of a random variable T ∼ BS − SC(α, β) is quite similar
to BS pdf (Figure 2). Graphically, the main difference between the BS-SC and
BS distributions as expected from the comparison between the SC and Gaussian
distribution, comes from the fact that the first one has heavier extreme tails than
the second one. Also, we can observe that the BS-SC distribution allocates more
observations around its mode than the BS distribution when 0 < α < 1. These two
main differences make the BS-SC more attractive than the classic BS distribution
in cases where some extreme values are observed on the tails of the distribution.
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(a) (b)

(c) (d)

Figura 2 - Probability density functions for BS and BS-SC distributions with β = 10
and different values of α: (a) α = 0.2; (b) α = 0.5; (c) α = 1.2; and (d)
α = 1.5.

3 Prior distribution and posterior analysis

Let T1, . . . , Tn be independent and identically distributed random variables,
where Ti ∼ BS − SC(α, β), i = 1, . . . , n. A useful reparametrization for the classic
BS distribution is λ = α−2 since we can take a conditionally conjugate gamma prior
for λ. Here we use the same reparametrization although the conjugate property is
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not valid in our case. Thus, setting λ = α−2, the BS-SC likelihood function, without
normalization constant, can be written as

L(λ, β|D) ∝ λn/2

βn/2

n
∏

i=1

t
−3/2
i (ti + β)

n
∏

i=1

[

1 + λ2

(

ti
β
+

β

ti
− 2

)2
] , λ > 0, (5)

where D denotes the data.
The uncertainty of the parameters λ and β, considered to have independent

prior distributions, is described as

π(λ) ∝ λa−1e−bλ, λ > 0, (6)

and

π(β) ∝ βc−1e−dβ, β > 0, (7)

i.e., we used the gamma distribution with shape and rate hyperparameters a and b,
respectively, for λ and gamma distribution with shape and rate hyperparamenters
c and d, respectively, for β.

Combining the information from data in equation (5), with the prior
information from equations (6) and (7), we obtain the joint posterior density
function of (λ,β), i.e.
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Therefore, the marginal posterior distributions are easily obtained from
equation (8) as follows
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We can observe that the marginal posterior distributions do not have closed
form and, thus, to acquire samples from the joint posterior distribution the
Metropolis-Hastings (HASTINGS, 1970) algorithm will be used.
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4 Simulation study

Since the quantile function of the BS-SC distribution has no closed form, we
propose in this paper the data generation of this model via Metropolis-Hastings
algorithm. The steps to obtain the observations are described below:

• Step 1: Establish an initial value for the start of the algorithm, denoted by
y(0);

• Step 2: y(i+1) = y(i), where y(i), i = 0, . . . ,M − 1, is the new sample of the
chain;

• Step 3: Generate a new candidate ynew from a proposal distribution g(y);

• Step 4: Generate u from an Uniform(0,1);

• Step 5: If u > f(y(i))
f(ynew)

g(ynew)

g(y(i))
we should keep the observation y(i), otherwise

y(i) = ynew;

• Step 6: Repeat Steps 2 to 5 until a certain number of observations M is
obtained.

It is noteworthy that the acceptance rate should be maintained between 25%
and 45%, considering that a low acceptance rate may indicate that the sample
values are in the distribution tails, while a high acceptance rate may indicate that
the values are being sampled only from regions with high probability density.

In this study we generate four different scenarios with the BS-SC model,
covering cases where the shape of the distribution is near symmetrical (α = 0.2) or
very asymmetrical (α = 1.5):

• Scenario 1: BS − SC(α = 0.2, β = 1.5)

• Scenario 2: BS − SC(α = 0.2, β = 0.2)

• Scenario 3: BS − SC(α = 1.5, β = 1.5)

• Scenario 4: BS − SC(α = 1.5, β = 0.2)

For each scenario we used five different sample sizes (n1 = 15, n2 = 20,
n3 = 30, n4 = 50 and n5 = 100) and generated 1,000 datasets. In computing the
Bayesian estimates we ran 50,000 iterations, with a burn-in=10,000 and thin=10.
For prior information we have used two different gamma priors: i) Prior 1 is a
non-informative prior with hyperparameters a = b = c = d = 0.01; and ii) Prior 2 is
an informative prior in which the hyper-parameters was chosen in such a way that
the prior mean became the expected value of the corresponding parameter. All the
simulation study was performed on R software (R CORE TEAM, 2013) in a HP
Proliant M530e Gen8 computer.

Table 1 presents the posterior mean for both parameters, α and β, obtained
from the Bayesian methods, as well as their Monte Carlo errors (in parentheses) for
both priors.
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Tabela 1 - Average estimates and the associated Monte Carlo errors for the
Bayesian approach of the simulation from the BS-SC distribution with
different values of α and β

Empirical Number of Prior 1 Prior 2

distribution observations α̂ β̂ α̂ β̂
15 0.2144 (0.0009) 1.5037 (0.0200) 0.2086 (0.0009) 1.5031 (0.0011)

α = 0.2 20 0.2106 (0.0007) 1.5038 (0.0013) 0.2065 (0.0007) 1.5031 (0.0009)
β = 1.5 30 0.2056 (0.0005) 1.5024 (0.0007) 0.2030 (0.0005) 1.5022 (0.0007)

50 0.2036 (0.0004) 1.5007 (0.0005) 0.2022 (0.0003) 1.5006 (0.0005)
100 0.2018 (0.0002) 1.5006 (0.0004) 0.2012 (0.0002) 1.5006 (0.0004)
15 0.2121 (0.0011) 0.2004 (0.0002) 0.2064 (0.0009) 0.2004 (0.0001)

α = 0.2 20 0.2120 (0.0008) 0.2004 (0.0001) 0.2072 (0.0007) 0.2004 (0.0001)
β = 0.2 30 0.2059 (0.0005) 0.2009 (0.0001) 0.2036 (0.0005) 0.2001 (0.0001)

50 0.2040 (0.0004) 0.2002 (<0.0001) 0.2026 (0.0003) 0.2001 (<0.0001)
100 0.2021 (0.0003) 0.2001 (<0.0001) 0.2014 (0.0002) 0.2000 (<0.0001)
15 1.5591 (0.0142) 1.5812 (0.0236) 1.5260 (0.0204) 1.5115 (0.0055)

α = 1.5 20 1.5572 (0.0106) 1.5675 (0.0191) 1.5260 (0.0156) 1.5123 (0.0050)
β = 1.5 30 1.5263 (0.0063) 1.5596 (0.0122) 1.5178 (0.0160) 1.5109 (0.0043)

50 1.5201 (0.0043) 1.5399 (0.0067) 1.5209 (0.0063) 1.5100 (0.0035)
100 1.5156 (0.0031) 1.5256 (0.0031) 1.5141 (0.0030) 1.5092 (0.0026)
15 1.5942 (0.0117) 0.2198 (0.0017) 1.5348 (0.0205) 0.2012 (0.0024)

α = 1.5 20 1.5428 (0.0066) 0.2150 (0.0011) 1.5122 (0.0192) 0.2011 (0.0021)
β = 0.2 30 1.5404 (0.0046) 0.2102 (0.0007) 1.5109 (0.0110) 0.2007 (0.0020)

50 1.5129 (0.0059) 0.2039 (0.0005) 1.5096 (0.0061) 0.2002 (0.0016)
100 1.5028 (0.0029) 0.2012 (0.0003) 1.5022 (0.0030) 0.2005 (0.0009)

Clearly the posterior means that were calculated are really close to the
real simulated values, indicating that both simulation and inference processes are
satisfactory. Further, as expected, the informative prior (Prior 2) outperformed the
non-informative prior (Prior 1), especially when the distribution is asymmetrical
(α = 1.5) with a low sample size.

5 Application

In this section we illustrate the proposed methodology to estimate the
parameters of the BS-SC distribution in a real dataset that refers to the ozone
concentration in New York city in 1973. This dataset is available on lattice

package in R under the name environmental and further details can be obtained
in Bruntz et al. (1974).

Non-informative prior distributions for the parameters α and β of the BS,
BS-SC and BS-t distributions, considered to be independent, were used to obtain the
Bayesian estimates (λ = 1/α2 ∼ Gamma(0.01, 0.01) and β ∼ Gamma(0.01, 0.01)).
Moreover, for the BS-t distribution it was considered the uniform distribution as
a prior distribution for the inverse of ν, i.e., 1/ν ∼ U(0.1, 0.5) that is somewhat
informative but it was necessary in order to obtain the convergence for all three
parameters of the model.

Two chains were generated for each model (Figure 3 presents the ones related
to the BS-SC distribution) by Metropolis-Hastings algorithm with 50,000 iterations,
where the first 10,000 were discarded as a burn-in and it was used a thin of 10 in this
case. Both chains converged according to the Gelman & Rubin criterion (GELMAN
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and RUBIN, 1992). Furthermore, the autocorrelation of the parameters is well
controlled. Therefore, according to these indications, there is no problem on the
posterior statistics.

Figura 3 - History of generated chains and their densities of the parameters α and
β from BS-SC distribution, for the ozone concentration dataset.

Table 2 provides posterior means, standard deviations and the 95% highest
posterior density (HPD) credible intervals of the parameters of the BS-SC, BS
and BS-t distributions. Moreover, Table 2 displays the deviance information
criterion (DIC) value in order to compare these models (smaller values of DIC
provide better fit, see Carlin and Louis, 2009). DIC was used since it is the most
common goodness-of-fit measure in Bayesian analysis (GELMAN et al., 2013). We
can observe that the parameters standard deviations for the distributions are not
numerically high when compared to the posterior mean itself, excepting for ν that is
actually expected. Furthermore, the HPD amplitude is not high, indicating that the
parameters estimates are satisfactory (Table 2). Finally, we can say that the BS-SC
distribution is the best model since it returned smaller value of DIC (2551.243).
The fit of the BS-SC, BS and BS-t distributions, using Bayesian approach, to the
dataset in study, can be seen on Figure 4.
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Tabela 2 - Posterior means, standard deviations and 95% HPD credible intervals
of parameters from the BS-SC distribution of the ozone concentration
dataset

Standard Lower Upper
Parameter Estimate deviation HPD (95%) DIC

BS-SC α 1.0880 0.0808 0.9376 1.2531 2551.243
β 31.9780 2.4781 27.3799 37.0678

BS α 0.9994 0.0690 0.8701 1.1379 2631.518
β 27.9995 2.3373 23.7091 32.9264

BS-t α 0.8235 0.0737 0.6808 0.9642 2592.069
β 31.0800 2.5860 26.1370 36.2266
ν 8.4160 7.4744 2.5073 15.1702

Figura 4 - Histogram of the ozone dataset and the fitted curve from BS-SC and BS
distributions.

6 Concluding remarks

In this paper we presented the Bayesian inference as an alternative to be used
in parameters estimation of the Birnbaum-Saunders Special-Case distribution since
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only the first moment of this distribution can be obtained, and then the frequentist
approach should be avoided as some asymptotic properties are violated. We
showed that there is no closed conditional posterior distributions when the gamma
distribution – intuitively assumed due to the parametric spaces – with independent
parameters is assumed as a prior distribution and, thus, the Metropolis-Hastings
algorithm is required to generate the MCMC samples. However, as elucidated in the
simulation study and in the real dataset application, the estimates for parameters
α and β obtained by this approach are satisfactory. Furthermore, we showed
that it is possible to use the Metropolis-Hastings algorithm for the simulation
of BS-SC data in an accurate way and it possibly could be used in any model.
We presented one application related to the ozone concentration in New York city
showing that, despite the similarity between the BS-SC distribution and the BS
standard model, the BS-SC distribution fitted better according to the deviance
information criterion. Finally, the Bayesian methodology applied to this work, on
estimation and data simulation, and on problems involving BS-SC distribution was
shown to be extremely efficient and interesting.
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RESUMO: Neste artigo, a estimativa dos parâmetros da distribuição Birnbaum-Saunders

Caso Especial (BS-SC) é realizada por meio de uma abordagem bayesiana, considerando-

os independentes e utilizando a distribuição gama como priori para ambos. Uma vez

que as distribuições condicionais a posteriori completas não possuem forma fechada

conhecida, o algoritmo de Metropolis-Hastings foi utilizado para a obtenção de amostras

da distribuição a posteriori conjunta. Um estudo de simulação é conduzido e o método

de Monte Carlo via Cadeia de Markov (MCMC) é proposto como um gerador de números

aleatórios da distribuição em estudo, considerando os casos em que a mesma assume a

forma simétrica e assimétrica. Finalmente, uma aplicação relacionada à concentração

de ozônio é apresentada neste artigo.

PALAVRAS-CHAVE: Distribuições Birnbaum-Saunders generalizadas; Monte Carlo via

cadeias de Markov; algoritmo Metropolis-Hastings; gerador de números aleatórios.
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