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ABSTRACT: In this article we present the structure of the F tests, the variance

components and the approximate degrees of freedom for each of the eight possible mixed

models of the strip-split plot design. We present an example to illustrate the model and

compare it to more traditional settings like a three-way factorial design and a split-split

plot model.
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1 Introduction and Method

There are many opportunities in which a researcher needs to know the behavior
of a factor in relation to one and/or two additional factors. When this happens a
factorial design is usually considered, which is due, in part, to the great development
reached by this type of model.

Instead, we study here the strip-split-plot design; i.e., an extension of strip-
block designs such that each plot on the intersection is subdivided into subplots to
insert a third factor. This new factor will be more precise on its measurement due
to its high number of observations and interactions; which is the more important
feature of the design.

We do not claim originality on the invention of this model. On the contrary,
Gomez and Gomez (1984) described it, as well as Zimmermann (2004, 2014) did.
They also described the F tests when the effects are fixed. Nonetheless, after an
intensive search, we could not find on the literature those same F tests for the
strip-split plot design with mixed effects. For instance, Montgomery (2012) calls
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strip-split-plots what is known in most of the remaining literature as strip blocks,
therefore his analysis is developed for this latter case, and again only for the fixed
effects model. The omission is understandable taking into account that his work is
mainly focused on industrial applications; not agriculture, where this model could
be more useful.

Other authors, like Cochran and Cox (1992) talk about strip-split plots and
strip blocks, but do not talk about strip-split plot designs. Kuehl (1999) opens
the possibility to a third factor for experiments with sub-subplots, but does not go
beyond this point. McIntosh (1983) introduces analyses for combined experiments,
but does not touch strip-split plot designs. Finally, Saavedra (2000) works with
combined experiments in split plots and even works with sub-subplots, but she does
not touch either strip-split plot designs.

Thus, there is a gap on the literature and no current monographs, books or
papers, to our knowledge, seem to cover it. We intend to fill that gap here presenting
for the first time the development of such F tests for all possible mixed models. On
a sequel, we will consider the contrasts for this design and construct their variances
and variance estimators, again for every case of the mixed effects model.

To determine the variance components and the ANOVA, we use a method
explained by Searle et. al. (1992). The design is completely randomized so that it
makes sense to implement F tests. The mathematical model is given by

yhijk = m+Rh+Ai+eAhi
+Bj+eBhj

+ABij+eABhij
+Ck+ACik+BCjk+ABCijk+et,

where m is the general mean, Rh is the h-th random block effect (h = 1, . . . , r), Ai

is the i-th horizontal strip effect (i = 1, . . . , a), Bj is the j-th vertical strip effect
(j = 1, . . . , b) and Ck is the k-th effect of the subplot of A and B (k = 1, . . . , c).
So yhijk represents the observation of the i-th level of A, the j-th level of B, the
k-th level of C on the block h. The errors eAhi

, eBhj
, eABhij

and ethijk
are normally

distributed with mean zero and variance σ2
eA , σ

2
eB , σ

2
eAB

and σ2
et , respectively. Since

the blocks are random, we will assume R ∼ N(0, σ2
R).

The analysis is done according to the scheme on Table 1, where df stands for
degrees of freedom and SS stands for the sum of squares of the respective variation
source. It is worth mentioning here that Dı́az (2004) presents the sums of squares
and the covariance matrices for all the mixed models as Kronecker products, but
those are omitted here to save space.

2 Expected mean squares

To illustrate how to obtain the expected mean squares E(MS) we will show
the process for the random blocks R (For the remaining cases, since the procedure
is similar, we will only present the final value without the respective development):
First, take SSR in Table 1 and calculate its expected value:

E(SSR) =abc
∑r

h=1 E(Rh−R.+eAh.
−eA..+eBh.

−eB..+eABh..
−eAB...+eth...

−et.... )
2,
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Table 1 - Sums of squares and Degrees of freedom

Source df SS

R r − 1 abc
∑r

h=1(yh... − y....)
2

A a− 1 bcr
∑a

i=1(y.i.. − y....)
2

eA (r − 1)(a− 1) bc
∑a

i=1

∑r
h=1(yhi.. − yh... − y.i.. + y....)

2

B b− 1 acr
∑b

j=1(y..j. − y....)
2

eB (r − 1)(b− 1) ac
∑b

j=1

∑r
h=1(yh.j. − yh... − y..j. + y....)

2

AB (a− 1)(b− 1) cr
∑a

i=1

∑b
j=1(y.ij. − y.i.. − y..j. + y....)

2

eAB (a− 1)(b− 1)(r − 1)
c
∑a

i=1

∑b
j=1

∑r
h=1(yhij. − yhi.. − yh.j. − y.ij. +

yh... + y.i.. + y..j. − y....)
2

C c− 1 abr
∑c

k=1(y...k − y....)
2

AC (a− 1)(c− 1) br
∑a

i=1

∑c
k=1(y.i.k − y.i.. − y...k + y....)

2

BC (b− 1)(c− 1) ar
∑b

j=1

∑c
k=1(y..jk − y..j. − y...k + y....)

2

ABC (a− 1)(b− 1)(c− 1)
r
∑a

i=1

∑b
j=1

∑c
k=1(y.ijk − y.i.k − y..jk + y...k −

y.ij. + y.i.. + y..j. − y....)
2

et ab(c− 1)(r − 1)

∑r
h=1

∑a
i=1

∑b
j=1

∑c
k=1(yhijk − y.ijk − yhij. +

y.ij.)
2

since the product of errors and factors is always zero under expectation, E(SSR)
equals

abc
∑r

h=1 E(Rh−R.)
2+abc

∑r
h=1 E(eAh.

−eA..+eBh.
−eB..+eABh..

−eAB...+eth...
−et.... )

2,

and since the errors are independent between themselves,

E(SSR) = abc
r∑

h=1

E(Rh −R.)
2 + abc

r∑
h=1

E(eAh.
− eA..)

2 + abc
r∑

h=1

E(eBh.
− eB..)

2

+ abc
r∑

h=1

E(eABh..
− eAB...)

2 + abc
r∑

h=1

E(eth...
− et....)

2.

Therefore, taking into account that σ2
e = E(e2) − E2(e), and that E(e) = 0 for

every error in the model,

E(SSR) = abc
r∑

h=1

E(Rh −R.)
2 + abc

(r − 1)σ2
eA

a

+ abc
(r − 1)σ2

eB

b
+ abc

(r − 1)σ2
eAB

ab
+ abc

(r − 1)σ2
et

abc
.
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Then, taking E(SSR) and dividing it by its df , we obtain the expected mean square
for fixed blocks:

E(MSR) =
abc

r − 1

r∑
h=1

E(Rh −R.)
2 + bcσ2

eA + acσ2
eB + cσ2

eAB
+ σ2

et . (1)

Now, for the more interesting case of random blocks, we get:

E(MSR) = abcσ2
R + bcσ2

eA + acσ2
eB + cσ2

eAB + σ2
et .

Note that E(MSR) will remain unchanged regardless the model we are considering.
This is also true for the expectation of the mean square of each error involved.
So we mention these here and will omit them in the particular description of the
E(MS)’s for each model:

E(MSeA) = bcσ2
eA + cσ2

eAB
+ σ2

et ,

E(MSeB ) = acσ2
eB + cσ2

eAB
+ σ2

et ,

E(MSeAB ) = cσ2
eAB

+ σ2
et ,

E(MSet) = σ2
et .

Finally, note also that every interaction involving a random effect will be
random. So in the following subsections, to avoid confusion, we present explicitly
all the E(MS)’s for every model.

2.1 Expected mean squares for the fixed effects model

When the effects are fixed (constant), by definition it is sufficient to suppress
the expectation operator of the mean squares considered. Thus we get:

E(MSA) =
bcr

a− 1

a∑
i=1

(Ai −A. +ABi. −AB.. +ACi. −AC .. +ABCi.. −ABC ...)
2

+ bcσ2
eA + cσ2

eAB
+ σ2

et ,

E(MSB) =
acr

b− 1

b∑
j=1

(Bj −B. +AB.j −AB.. +BCj. −BC .. +ABC .j. −ABC ...)
2

+ acσ2
eB + cσ2

eAB
+ σ2

et ,

E(MSAB) =
cr

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(ABij −AB.j −ABi. +AB..

+ABCij. −ABC .j. −ABCi.. +ABC ...)
2 + cσ2

eAB
+ σ2

et ,
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E(MSC) = abr
c−1

∑c
k=1(Ck−C.+AC.k−AC..+BC.k−BC..+ABC..k−ABC...)

2+σ2
et

,

E(MSAC) =
br

(a− 1)(c− 1)

a∑
i=1

c∑
k=1

(ACik −AC .k −ACi. +AC..

+ABCi.k −ABC ..k −ABCi.. +ABC ...)
2 + σ2

et ,

E(MSBC) =
ar

(b− 1)(c− 1)

b∑
j=1

c∑
k=1

(BCjk −BC .k −BCj. +BC ..

+ABC .jk −ABC ..k −ABC .j. +ABC ...)
2 + σ2

et ,

E(MSABC) =
r

(a− 1)(b− 1)(c− 1)

a∑
i=1

b∑
j=1

c∑
k=1

(ABCijk −ABC .jk

−ABCi.k +ABC ..k −ABCij. +ABC .j. +ABCi.. −ABC ...)
2 + σ2

et .

2.2 Expected mean squares for the random effects model

When a factor, say A, has random effects, we will assume that the effects of
A have distribution N(0, σ2

A). Then for the random effects model, the effects of A,
B and C will be random, independent, and normally distributed with mean 0 and
variance σ2

A, σ
2
B and σ2

C , respectively. The interactions AB, AC, BC and ABC
will have normal distribution with mean 0 and variance σ2

AB , σ
2
AC , σ

2
BC and σ2

ABC ,
respectively. We also assume that the effects are independent between them. So we
get:

E(MSA) = bcrσ2
A + bcσ2

eA + crσ2
AB + cσ2

eAB
,+brσ2

AC + rσ2
ABC + σ2

et ,

E(MSB) = acrσ2
B + acσ2

eB + crσ2
AB + cσ2

eAB
,+arσ2

BC + rσ2
ABC + σ2

et ,

E(MSAB) = crσ2
AB + cσ2

eAB
+ rσ2

ABC + σ2
et ,

E(MSC) = abrσ2
C + brσ2

AC + arσ2
BC + rσ2

ABC + σ2
et ,

E(MSAC) = brσ2
AC + rσ2

ABC + σ2
et ,

E(MSBC) = arσ2
BC + rσ2

ABC + σ2
et ,

E(MSABC) = rσ2
ABC + σ2

et .
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2.3 Expected mean squares when only A is fixed

In this case, B and C will be random with variances σ2
B and σ2

C , respectively.
Also, AB, AC, BC and ABC will be random with variances σ2

AB, σ
2
AC , σ

2
BC and

σ2
ABC , respectively. So we obtain:

E(MSA) =
bcr

a− 1

a∑
i=1

(Ai −A.)
2 + bcσ2

eA + crσ2
AB + cσ2

eAB
+ brσ2

AC + rσ2
ABC + σ2

et ,

E(MSB) = acrσ2
B + acσ2

eB + crσ2
AB + cσ2

eAB
+ arσ2

BC + rσ2
ABC + σ2

et ,

E(MSAB) = crσ2
AB + cσ2

eAB
+ rσ2

ABC + σ2
et ,

E(MSC) = abrσ2
C + brσ2

AC + arσ2
BC + rσ2

ABC + σ2
et ,

E(MSAC) = brσ2
AC + rσ2

ABC + σ2
et ,

E(MSBC) = arσ2
BC + rσ2

ABC + σ2
et ,

E(MSABC) = rσ2
ABC + σ2

et .

2.4 Expected mean squares when only B is fixed

Here we have that A and C will be random with variances σ2
A and σ2

C ,
respectively. Also, AB, AC, BC and ABC will be random with variances σ2

AB ,
σ2
AC , σ

2
BC and σ2

ABC , respectively. So we obtain:

E(MSA) = bcrσ2
A + bcσ2

eA + crσ2
AB + cσ2

eAB
+ brσ2

AC + rσ2
ABC + σ2

et ,

E(MSB) =
acr

b− 1

b∑
j=1

(Bj −B.)
2 + acσ2

eB + crσ2
AB + cσ2

eAB
+ arσ2

BC + rσ2
ABC + σ2

et ,

E(MSAB) = crσ2
AB + cσ2

eAB
+ rσ2

ABC + σ2
et ,

E(MSC) = abrσ2
C + brσ2

AC + arσ2
BC + rσ2

ABC + σ2
et ,

E(MSAC) = brσ2
AC + rσ2

ABC + σ2
et ,

E(MSBC) = arσ2
BC + rσ2

ABC + σ2
et ,

E(MSABC) = rσ2
ABC + σ2

et .
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2.5 Expected mean squares when only C is fixed

In this case, A and B are random with variances σ2
A and σ2

B , respectively.
Also, AB, AC, BC and ABC will be random with variances σ2

AB, σ
2
AC , σ

2
BC and

σ2
ABC , respectively. So we obtain:

E(MSA) = bcrσ2
A + bcσ2

eA + crσ2
AB + cσ2

eAB
+ brσ2

AC + rσ2
ABC + σ2

et ,

E(MSB) = acrσ2
B + acσ2

eB + crσ2
AB + cσ2

eAB
+ arσ2

BC + rσ2
ABC + σ2

et ,

E(MSAB) = crσ2
AB + cσ2

eAB
+ rσ2

ABC + σ2
et ,

E(MSC) =
abr

c− 1

c∑
k=1

(Ck − C.)
2 + brσ2

AC + arσ2
BC + rσ2

ABC + σ2
et ,

E(MSAC) = brσ2
AC + rσ2

ABC + σ2
et ,

E(MSBC) = arσ2
BC + rσ2

ABC + σ2
et ,

E(MSABC) = rσ2
ABC + σ2

et .

2.6 Expected mean squares when only A is random

In this case, A, AB, AC and ABC are random with variance σ2
A, σ

2
AB , σ

2
AC

and σ2
ABC , respectively. Thus, we get:

E(MSA) = bcrσ2
A + bcσ2

eA + crσ2
AB + cσ2

eAB
+ brσ2

AC + rσ2
ABC + σ2

et ,

E(MSB) =
acr

b− 1

b∑
j=1

(Bj −B. +BCj. −BC ..)
2 + acσ2

eB + crσ2
AB + cσ2

eAB
+ rσ2

ABC + σ2
et ,

E(MSAB) = crσ2
AB + cσ2

eAB
+ rσ2

ABC + σ2
et ,

E(MSC) =
abr

c− 1

c∑
k=1

(Ck − C . +BC .k −BC ..)
2 + brσ2

AC + rσ2
ABC + σ2

et ,

E(MSAC) = brσ2
AC + rσ2

ABC + σ2
et ,

E(MSBC) =
ar

(b− 1)(c− 1)

b∑
j=1

c∑
k=1

(BCjk −BC .k −BCj. +BC ..)
2 + rσ2

ABC + σ2
et ,

E(MSABC) = rσ2
ABC + σ2

et .
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2.7 Expected mean squares when only B is random

In this case, B, AB, BC and ABC are random with variance σ2
B , σ

2
AB , σ

2
BC

and σ2
ABC , respectively. Thus, we get:

E(MSA) =
bcr

a− 1

a∑
i=1

(Ai −A. +ACi. −AC ..)
2 + bcσ2

eA + crσ2
AB + cσ2

eAB
+ rσ2

ABC + σ2
et ,

E(MSB) = acrσ2
B + acσ2

eB + crσ2
AB + cσ2

eAB
+ arσ2

BC + rσ2
ABC + σ2

et ,

E(MSAB) = crσ2
AB + cσ2

eAB
+ rσ2

ABC + σ2
et ,

E(MSC) =
abr

c− 1

c∑
k=1

(Ck − C. +AC .k −AC ..)
2 + arσ2

BC + rσ2
ABC + σ2

et ,

E(MSAC) =
br

(a− 1)(c− 1)

a∑
i=1

c∑
k=1

(ACik −AC.k −ACi. +AC..)
2 + rσ2

ABC + σ2
et ,

E(MSBC) = arσ2
BC + rσ2

ABC + σ2
et ,

E(MSABC) = rσ2
ABC + σ2

et .

2.8 Expected mean squares when only C is random

Here C, AC, BC and ABC are random with variance σ2
C , σ2

AC , σ2
BC and

σ2
ABC , respectively. Thus, we get:

E(MSA) =
bcr

a− 1

a∑
i=1

(Ai −A. +ABi. −AB..)
2 + bcσ2

eA + cσ2
eAB

+ brσ2
AC + rσ2

ABC + σ2
et ,

E(MSB) =
acr

b− 1

b∑
j=1

(Bj −B. +AB.j −AB..)
2 + acσ2

eB + cσ2
eAB

+ arσ2
BC + rσ2

ABC + σ2
et ,

E(MSAB) =
cr

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(ABij −AB.j −ABi. +AB..)
2 + rσ2

ABC + cσ2
eAB

+ σ2
et ,

286 Rev. Bras. Biom., Lavras, v.34, n.2, p.279-303, 2016



E(MSC) = abrσ2
C + brσ2

AC + arσ2
BC + rσ2

ABC + σ2
et ,

E(MSAC) = brσ2
AC + rσ2

ABC + σ2
et ,

E(MSBC) = arσ2
BC + rσ2

ABC + σ2
et ,

E(MSABC) = rσ2
ABC + σ2

et .

3 F tests

In this section we present the F tests in tables. When required, we will specify
the approximated df by means of the famous estimator developed by Satterthwaite
(1946); for the cases in which the complex estimation is a function of two variance
components we will use the estimator proposed by Ames and Webster (1991),
which is a correction to Satterthwaite for this particular case. Let us start with the
estimator by Satterthwaite:

If θ is variance which is a linear combination of m independent variances, i.e.,
if θ =

∑m
i=1 aiθi, with estimator θ̂ =

∑m
i=1 aiMS2

i , we say that θ̂ is a complex
estimator of θ. Since for our case the coefficients ai = 1, for i = 1, . . . ,m, we
will omit them on what follows. For the cases in which the variance estimator is
complex, Satterthwaite (1946) proposed the following estimator for the df :

f̂s =
(
∑m

i=1 MSi)
2∑m

i=1 MS2
i /ni

, (2)

where ni are the df of the source of variation corresponding to i. This is so because
fθ̂
θ can be approximated to a χ2 with f degrees of freedom.

Ames and Webster (1991) consider this estimator unstable —and they are
right— because of its denominator. Notice that on this denominator each variance
estimator is first squared and then added. Since in the numerator, the terms are
first added and the result is squared, f̂s can be affected. Moreover, if the variance
components are underestimated, there is the undesirable risk of overestimating the
degrees of freedom. For these reasons they propose the following estimator:

When the variance θ is a function of two mean squares, θ1 and θ2, call ϕ1 = 1
and ϕ2 = θ2/θ1, and consider the class of estimators given by ϕ̂2 = rMS2/MS1,
where r is a constant, then we can approximate the df by

f̂aw(r) =

(∑2
i=1 ϕ̂i

)2

∑2
i=1 ϕ

2
i /ni

. (3)

Note that f̂aw(1) = f̂s and that min(n1, n2) ≤ f̂aw(r) ≤ n1+n2. Thus, we can vary
r in order to get better properties. For instance,

r∗ =
n2

n2 − 2

(
2(n1 + n2 − 2)

n1(n2 − 4)
+ 1

)
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minimizes the mean square of the error of 1/ϕ̂2. Also r∗ > 1 and f̂aw(r
∗) < fs. In

this paper, every time we calculate the Ames-Webster estimator (3), we will also
calculate its respective value r∗. Using the Ames-Webster approach we have two
possible estimations for every value of r. Then, if both of them are less than f̂s, it
is advisable to use the larger one, since the smaller one usually has a negative bias.

With these tools at hand, we proceed to present the F test for every model.
The first column in each of the tables will be the source of variation, the second one
will tell us if the effects are random or fixed, the third one will be the corresponding
F test and the last one will be the null hypothesis under consideration. When the
effects are random, the null hypothesis will be that the corresponding variance of
the source has 0 variance; when the effects are fixed, the null hypothesis will be
that all effects are equal (to 0).

3.1 F tests when all effects are fixed

To construct the F tests in Table 2, we use the expected mean squares found in
Subsection 2.1. Note that R will have the same structure for the F test, regardless
of it being constant or random (although, of course, the hypothesis will change).

Using the Satterthwaite estimator in (2), we approximate the df for R as:

v1 =
(MSR +MSeAB )

2

MS2
R

r−1 +
MS2

eAB

(r−1)(a−1)(b−1)

,

v2 =
(MSeA +MSeB )

2

MS2
eA

(r−1)(a−1) +
MS2

eB

(r−1)(b−1)

,

where v1 and v2 are the df for the enumerator and the denominator, respectively.
When we adjust using the Ames-Webster estimator (3), we obtain two

estimators for each case. First let us see the df for the numerator: Let MS1 = MSR

and MS2 = MSeAB , then

p1 =
(r − 1)(a− 1)(b− 1)

(r − 1)(a− 1)(b− 1)− 2

(
2[(r − 1)(a− 1)(b− 1) + r − 3]

(r − 1)[(r − 1)(a− 1)(b− 1)− 4]
+ 1

)
,

f̂aw(p1) =
(1 + p1MSeAB

/MSR)
2

1
r−1 +

(p1MSeAB
/MSR)2

(r−1)(a−1)(b−1)

;

on the other hand, when MS1 = MSeAB and MS2 = MSR:

p∗1 =
r − 1

r − 3

(
2[(r − 1)(a− 1)(b− 1) + r − 3]

(r − 1)(a− 1)(b− 1)(r − 5)
+ 1

)
,

f̂aw(p
∗
1) =

(1 + p∗1MSR/MSeAB
)2

1
(r−1)(a−1)(b−1) +

(p∗
1MSR/MSeAB

)2

r−1

.
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Table 2 - F tests for the fixed effects model

Source Effect F H0

R f
MSR+MSeAB
MSeA

+MSeB
σ2
R = 0

A f MSA
MSeA

A1 = A2 = · · · = Aa = 0

eA r
MSeA
MSeAB

σ2
eA = 0

B f MSB
MSeB

B1 = B2 = · · · = Bb = 0

eB r
MSeB
MSeAB

σ2
eB = 0

AB f MSAB
MSeAB

(AB)ij = 0, ∀i, ∀j.

eAB r
MSeAB
MSet

σ2
eAB

= 0

C f MSC
MSet

C1 = C2 = · · · = Cc = 0

AC f MSAC
MSet

(AC)ik = 0, ∀i, ∀k.

BC f MSBC
MSet

(BC)jk = 0, ∀j, ∀k.

ABC f MSABC
MSet

(ABC)ijk = 0, ∀i, ∀j, ∀k.
et r –

Now, for the denominator, when MS1 = MSeA and MS2 = MSeB we have:

p2 =
(r − 1)(b− 1)

(r − 1)(b− 1)− 2

(
2{(r − 1)[(a− 1) + (b− 1)]− 2}
(r − 1)(a− 1)[(r − 1)(b− 1)− 4]

+ 1

)
,

f̂aw(p2) =
(1 + p2MSeB/MSeA)

2

1
(r−1)(a−1) +

(p2MSeB
/M−3)2

(r−1)(b−1)

;

and when MS1 = MSeB and MS2 = MSeA we have:

p∗2 =
(r − 1)(a− 1)

(r − 1)(a− 1)− 2

(
2{(r − 1)[(a− 1) + (b− 1)]− 2}
(r − 1)(b− 1)[(r − 1)(a− 1)− 4]

+ 1

)
,

f̂aw(p
∗
2) =

(1 + p∗2MSeA/MSeB )
2

1
(r−1)(b−1) +

(p∗
2MSeA

/M−5)2

(r−1)(a−1)

.

The estimators for the df of R will always be the same. For this reason they
will be omitted on the tables to come.
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3.2 F tests when all effects are random

When all effects are random, we construct the F tests on Table 3 based on the mean
squares developed in Subsection 2.2.

Table 3 - F tests for the random effects model

Source Effect F H0

R r
MSR+MSeAB
MSeA

+MSeB
σ2
R = 0

A r
MSA+MSeAB

+MSABC

MSeA
+MSAB+MSAC

σ2
A = 0

eA r
MSeA
MSeAB

σ2
AR = 0

B r
MSB+MSeAB

+MSABC

MSeB
+MSAB+MSBC

σ2
B = 0

eB r
MSeB
MSeAB

σ2
BR = 0

AB r
MSAB+MSet

MSeAB
+MSABC

σ2
AB = 0

eAB r
MSeAB
MSet

σ2
eAB

= 0

C r MSC+MSABC
MSAC+MSBC

σ2
C = 0

AC r MSAC
MSABC

σ2
AC = 0

BC r MSBC
MSABC

σ2
BC = 0

ABC r MSABC
MSet

σ2
ABC = 0

et r –

Since the complex estimators for effects A and B in Table 3 have three variance
components, we will use only (2) with them to find their approximate df . For the
effects of A, the df in the numerator and the denominator v1 and v2, respectively,
will be given by:

v1 =
(MSA +MSeAB

+MSABC)
2

MS2
A

a−1 +
MS2

eAB

(a−1)(b−1)(r−1) +
MS2

ABC

(a−1)(b−1)(c−1)

,

v2 =
(MSeA +MSAB +MSAC)

2

MS2
eA

(r−1)(a−1) +
MS2

AB

(a−1)(b−1) +
MS2

AC

(a−1)(c−1)

. (4)
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With B, the df of the F test will be for the numerator and denominator
respectively:

v1 =
(MSB +MSeAB

+MSABC)
2

MS2
B

b−1 +
MS2

eAB

(a−1)(b−1)(r−1) +
MS2

ABC

(a−1)(b−1)(c−1)

,

v2 =
(MSeB +MSAB +MSBC)

2

MS2
eB

(r−1)(b−1) +
MS2

AB

(a−1)(b−1) +
MS2

BC

(b−1)(c−1)

. (5)

The df for AB approximated by (2) will be respectively for the numerator and
the denominator:

v1 =
(MSAB +MSet)

2

MS2
AB

(a−1)(b−1) +
MS2

et

ab(c−1)(r−1)

,

v2 =
(MSeAB

+MSABC)
2

MS2
eAB

(a−1)(b−1)(r−1) +
MS2

ABC

(a−1)(b−1)(c−1)

. (6)

Adjusting by means of (3), there are two possible estimators in each case. First,
let us see the degrees of freedom in the numerator. Let MS1 = MSAB and MS2 =
MSet , then

p1 =
ab(c− 1)(r − 1)

ab(c− 1)(r − 1)− 2

(
2[(a− 1)(b− 1) + ab(c− 1)(r − 1)− 2]

(a− 1)(b− 1)[ab(c− 1)(r − 1)− 4]
+ 1

)
,

f̂aw(p1) =
(1 + p1MSet/MSAB)

2

1
(a−1)(b−1) +

(p1MSet/MSAB)2

ab(c−1)(r−1)

; (7)

on the other hand, when MS1 = MSet and MS2 = MSAB:

p∗1 =
(a− 1)(b− 1)

(a− 1)(b− 1)− 2

(
2[(a− 1)(b− 1) + ab(c− 1)(r − 1)− 2]

ab(c− 1)(r − 1)[(a− 1)(b− 1)− 4]
+ 1

)
,

f̂aw(p
∗
1) =

(1 + p∗1MSAB/MSet)
2

1
ab(c−1)(r−1) +

(p∗
1MSAB/MSet )

2

(a−1)(b−1)

. (8)

And for the denominator, when MS1 = MSeAB and MS2 = MSABC we have:

p2 =
(a− 1)(b− 1)(c− 1)

(a− 1)(b− 1)(c− 1)− 2

(
2[(a− 1)(b− 1)(c+ r − 2)− 2]

(a− 1)(b− 1)(r − 1)[(a− 1)(b− 1)(c− 1)− 4]
+ 1

)
,

f̂aw(p2) =
(1 + p2MSABC/MSeAB

)2

1
(a−1)(b−1)(r−1) +

(p2MSABC/MSeAB
)2

(a−1)(b−1)(c−1)

; (9)
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when MS1 = MSABC and MS2 = MSeAB we get:

p∗2 =
(a− 1)(b− 1)(r − 1)

(a− 1)(b− 1)(r − 1)− 2

(
2[(a− 1)(b− 1)(c+ r − 2)− 2]

(a− 1)(b− 1)(c− 1)[(a− 1)(b− 1)(r − 1)− 4]
+ 1

)
,

f̂aw(p
∗
2) =

(1 + p∗2MSeAB
/MSABC)

2

1
(a−1)(b−1)(c−1) +

(p∗
2MSeAB

/MSABC)2

(a−1)(b−1)(r−1)

. (10)

With C, using f̂s, the df for the numerator and denominator will be
respectively:

v1 =
(MSC +MSABC)

2

MS2
C

c−1 +
MS2

ABC

(a−1)(b−1)(c−1)

,

v2 =
(MSAC +MSBC)

2

MS2
AC

(a−1)(c−1) +
MS2

ABC

(a−1)(b−1)(c−1)

. (11)

For f̂aw these were the estimators for the df of the numerator when MS1 =
MSC and MS2 = MSABC :

p1 =
(a− 1)(b− 1)(c− 1)

(a− 1)(b− 1)(c− 1)− 2

(
2[(a− 1)(b− 1)(c− 1) + c− 3]

(c− 1)[(a− 1)(b− 1)(c− 1)− 4]
+ 1

)
,

f̂(p1) =
(1 + p1MSABC/MSC)

2

1
c−1 + (p1MSABC/MSC)2

(a−1)(b−1)(c−1)

; (12)

still for the numerator, but exchanging the order of MS1 and MS2, we obtain:

p∗1 =
c− 1

c− 3

(
2[(a− 1)(b− 1)(c− 1) + c− 3]

(a− 1)(b− 1)(c− 1)(c− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSC/MSABC)

2

1
(a−1)(b−1)(c−1) +

(p∗
1MSC/MSABC)2

c−1

. (13)

For the denominator, taking MS1 = MSAC and MS2 = MSBC , we get the
following estimations:

p2 =
(b− 1)(c− 1)

(b− 1)(c− 1)− 2

(
2{(c− 1)[(a− 1) + (b− 1)]− 2}
(a− 1)(c− 1)[(b− 1)(c− 1)− 4]

+ 1

)

f̂(p2) =
(1 + p2MSBC/MSAC)

2

1
(a−1)(c−1) +

(p2MSBC/MSAC)2

(b−1)(c−1)

; (14)
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once again for the denominator, but exchanging to MS1 = MSBC and MS2 =
MSAC , we get:

p∗2 =
(a− 1)(c− 1)

(a− 1)(c− 1)− 2

(
2{(c− 1)[(a− 1) + (b− 1)]− 2}
(b− 1)(c− 1)[(a− 1)(c− 1)− 4]

+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSAC/MSBC)

2

1
(b−1)(c−1) +

(p∗
2MSAC/MSBC)2

(a−1)(c−1)

. (15)

3.3 F tests when only one factor has fixed effects

With respect to Table 3, the only difference for the three cases considered here
(only A has fixed effects, only B has fixed effects, and only C has fixed effects) will
occur in the row corresponding to the fixed effect: first, obviously, its effect will be f
instead of r; second, its null hypothesis will be about the equality of all treatments
inside that factor. So when A is the only factor of fixed effects, its effect is f and
its null hypothesis is A1 = · · · = Aa = 0, all other fields remaining equal to Table
3; when B is the only factor with fixed effects, its effect is f and its null hypothesis
is B1 = · · · = Bb = 0, all other fields remaining equal to Table 3; and when the
only fixed effects are those corresponding to C, its value at effect is f and the null
hypothesis will be C1 = · · · = Cc = 0, all other fields remaining equal to Table 3.
This can be easily verified with the information in Subsections 2.3, 2.4 and 2.5

Since, in particular, the structure of the complex variance estimators is
identical to the structure of the model with random effects, the approximate df
for each of these three cases are exactly the same to those found in Subsection 3.2.

3.4 F tests when only A has random effects

When the effects of A are random, we obtain Table 4 based on the E(MS)’s
found in Subsection 2.6.

The estimators for the df of A are those in (4). The estimators of the df by
Satterthwaite for AB are those in (6); the estimators by Ames-Webster are given in
equations (7) and (8) for the numerator, and (9) and (10) for the denominator. Now
we procede to evaluate the df for the F test of B, first by means of the Satterthwaite
estimator in equation (2):

v1 =
(MSB +MSeAB

)2

MS2
B

b−1 +
MS2

eAB

(a−1)(b−1)(r−1)

,

v2 =
(MSeB +MSAB)

2

MS2
eB

(b−1)(r−1) +
MS2

AB

(a−1)(b−1)

. (16)
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Table 4 - F tests when only A is random

Fuente Efecto F H0

R r
MSR+MSeAB
MSeA

+MSeB
σ2
R = 0

A r
MSA+MSeAB

+MSABC

MSeA
+MSAB+MSAC

σ2
A = 0

eA r
MSeA
MSeAB

σ2
eA = 0

B f
MSB+MSeAB
MSeB

+MSAB
B1 = B2 = · · · = Bb = 0

eB r
MSeB
MSeAB

σ2
eB = 0

AB r
MSAB+MSet

MSeAB
+MSABC

σ2
AB = 0

eAB r
MSeAB
MSet

σ2
eAB

= 0

C f MSC
MSAC

C1 = C2 = · · · = Cc = 0

AC r MSAC
MSABC

σ2
AC = 0

BC f MSBC
MSABC

(BC)jk = 0, ∀j, k.

ABC r MSABC
MSet

σ2
ABC = 0

et r –

Still with B, the first Ames-Webster estimator for the df of the numerator of the
F , taking MS1 = MSB and MS2 = MSeAB

will be:

p1 =
(a− 1)(b− 1)(r − 1)

(a− 1)(b− 1)(r − 1)− 2

(
2{(b− 1)[(a− 1)(r − 1) + 1]− 2}
(b− 1)[(a− 1)(b− 1)(r − 1)− 4]

+ 1

)
,

f̂(p1) =
(1 + p1MSeAB

/MSB)
2

1
b−1 +

(p1MSeAB
/MSB)2

(a−1)(b−1)(r−1)

;

and exchanging the order to MS1 = MSeAB
and MS2 = MSB , we obtain:

p∗1 =
b− 1

b− 3

(
2{(b− 1)[(a− 1)(r − 1) + 1]− 2}

(a− 1)(b− 1)(r − 1)(b− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSB/MSeAB

)2

1
(a−1)(b−1)(r−1) +

(p∗
1MSB/MSeAB

)2

b−1

.

294 Rev. Bras. Biom., Lavras, v.34, n.2, p.279-303, 2016



For the denominator of the the F test of B, taking MS1 = MSeB y MS2 = MSAB :

p2 =
(a− 1)(b− 1)

(a− 1)(b− 1)− 2

(
2[(b− 1)(a+ r − 2)− 2]

(b− 1)(r − 1)[(a− 1)(b− 1)− 4]
+ 1

)
,

f̂(p2) =
(1 + p2MSAB/MSeB )

2

1
(b−1)(r−1) +

(p2MSAB/MSeB
)2

(a−1)(b−1)

;

and exchanging the order of MS1 and MS2:

p∗2 =
(b− 1)(r − 1)

(b− 1)(r − 1)− 2

(
2[(b− 1)(a+ r − 2)− 2]

(a− 1)(b− 1)[(b− 1)(r − 1)− 4]
+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSeB/MSAB)

2

1
(a−1)(b−1) +

(p∗
2MSeB

/MSAB)2

(b−1)(r−1)

.

3.5 F tests when only B has random effects

When only A and C have fixed effects, based on Subsection (2.7), we get
Table 5.

The approximated df for the F test of B were found using the Satterthwaite
estimator (5). The approximation of the df for AB using Satterthwaite is given by
(6); using Ames-Webster, the estimator for the df of AB are given in equations (7)
and (8) for the numerator, and (9) and (10) for the denominator. Now we procede
to evaluate the df for the F test of A, first by means of the Satterthwaite estimator
in equation (2):

v1 =
(MSA +MSeAB

)2

MS2
A

a−1 +
MS2

eAB

(a−1)(b−1)(r−1)

,

v2 =
(MSeA +MSAB)

2

MS2
eA

(r−1)(a−1) +
MS2

AB

(a−1)(b−1)

.

The Ames-Webster estimator for the numerator is the following when MS1 = MSA

and MS2 = MSeAB :

p1 =
(a− 1)(b− 1)(r − 1)

(a− 1)(b− 1)(r − 1)− 2

(
2{(a− 1)[(b− 1)(r − 1) + 1]− 2}
(a− 1)[(a− 1)(b− 1)(r − 1)− 4]

+ 1

)
,

f̂(p1) =
(1 + p1MSeAB

/MSA)
2

1
a−1 +

(p1MSeAB
/MSA)2

(a−1)(b−1)(r−1)

;
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Table 5 - F tests when only B is random

Source Effect F H0

R r
MSR+MSeAB
MSeA

+MSeB
σ2
R = 0

A f
MSA+MSeAB
MSeA

+MSAB
A1 = A2 = · · · = Aa = 0

eA r
MSeA
MSeAB

σ2
eA = 0

B r
MSB+MSeAB

+MSABC

MSeB
+MSAB+MSBC

σ2
B = 0

eB r
MSeB
MSeAB

σ2
eB = 0

AB r
MSAB+MSet

MSeAB
+MSABC

σ2
AB = 0

eAB r
MSeAB
MSet

σ2
eAB

= 0

C f MSC
MSBC

C1 = C2 = · · · = Cc = 0

AC f MSAC
MSABC

(AC)ik = 0, ∀i, k.

BC r MSBC
MSABC

σ2
BC = 0

ABC r MSABC
MSet

σ2
ABC = 0

et r –

still with the numerator but taking MS1 = MSeAB and MS2 = MSA, we get:

p∗1 =
a− 1

a− 3

(
2{(a− 1)[(b− 1)(r − 1) + 1]− 2}

(a− 1)(b− 1)(r − 1)(a− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSA/MSeAB

)2

1
(a−1)(b−1)(r−1) +

(p∗
1MSA/MSeAB

)2

a−1

.

For the denominator, doing MS1 = MSeA and MS2 = MSAB , we get:

p2 =
(a− 1)(b− 1)

(a− 1)(b− 1)− 2

(
2[(a− 1)(b+ r − 2)− 2]

(a− 1)(r − 1)[(a− 1)(b− 1)− 4]
+ 1

)
,

f̂(p2) =
(1 + p2MSAB/MSeA)

2

1
(a−1)(r−1) +

(p2MSAB/MSeA
)2

(a−1)(b−1)

;
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finally, exchanging the order of MS1 and MS2, we obtain:

p∗2 =
(a− 1)(r − 1)

(a− 1)(r − 1)− 2

(
2[(a− 1)(b+ r − 2)− 2]

(a− 1)(b− 1)[(a− 1)(r − 1)− 4]
+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSeA/MSAB)

2

1
(a−1)(b−1) +

(p∗
2MSeA

/MSAB)2

(a−1)(r−1)

.

3.6 F tests when only C has random effects

Table 6 was constructed using the E(MS)’s in Subsection 2.8. Note that the
approximate degrees of freedom for AB were described in equations (6) by means
of Satterthwaite; also for AB, the approximations of its degrees of freedom using
Ames-Webster were given in equations (7) and (8) for the numerator , and (9) and
10 for the denominator.

For C, its approximate df using Satterthwaite were found in (11). And
the Ames-Webster estimators of the df of C are given by (12) and (13) for the
numerator, and by (14) and (15) for the denominator.

We procede to evaluate the approximate df for the F test of A, first by means
of the Satterthwaite estimator in equation (2):

v1 =
(MSA +MSet)

2

MS2
A

a−1 +
MS2

et

ab(c−1)(r−1)

,

v2 =
(MSeA +MSAC)

2

MS2
eA

(r−1)(a−1) +
MS2

AC

(a−1)(c−1)

.

The Ames-Webster estimator for the numerator is the following when MS1 = MSA

and MS2 = MSet :

p1 =
ab(c− 1)(r − 1)

ab(c− 1)(r − 1)− 2

(
2[ab(c− 1)(r − 1) + a− 3]

(a− 1)[ab(c− 1)(r − 1)− 4]
+ 1

)
,

f̂(p1) =
(1 + p1MSet/MSA)

2

1
a−1 +

(p1MSet/MSA)2

ab(c−1)(r−1)

;

still with the numerator but taking MS1 = MSet and MS2 = MSA, we get:

p∗1 =
a− 1

a− 3

(
2[ab(c− 1)(r − 1) + a− 3]

ab(c− 1)(r − 1)(a− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSA/MSet)

2

1
ab(c−1)(r−1) +

(p∗
1MSA/MSet )

2

a−1

.
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Table 6 - F tests when only C is random

Source Effect F H0

R r
MSR+MSeAB
MSeA

+MSeB
σ2
R = 0

A f
MSA+MSet

MSeA
+MSAC

A1 = A2 = · · · = Aa = 0

eA r
MSeA
MSeAB

σ2
eA = 0

B f
MSB+MSet

MSeB
+MSBC

B1 = B2 = · · · = Bb = 0

eB r
MSeB
MSeAB

σ2
eB = 0

AB f
MSAB+MSet

MSeAB
+MSABC

(AB)ij = 0, ∀i, j.

eAB r
MSeAB
MSet

σ2
eAB

= 0

C r MSC+MSABC
MSAC+MSBC

σ2
C = 0

AC r MSAC
MSABC

σ2
AC = 0

BC r MSBC
MSABC

σ2
BC = 0

ABC r MSABC
MSet

σ2
ABC = 0

et r –

For the denominator, doing MS1 = MSeA and MS2 = MSAC , we get:

p2 =
(a− 1)(c− 1)

(a− 1)(c− 1)− 2

(
2[(a− 1)(r + c− 2)− 2]

(a− 1)(r − 1)[(a− 1)(c− 1)− 4]
+ 1

)
,

f̂(p2) =
(1 + p2MSAC/MSeA)

2

1
(a−1)(r−1) +

(p2MSAC/MSeA
)2

(a−1)(c−1)

;

finally, exchanging the order of MS1 and MS2, we obtain:

p∗2 =
(a− 1)(r − 1)

(a− 1)(r − 1)− 2

(
2[(a− 1)(r + c− 2)− 2]

(a− 1)(c− 1)[(a− 1)(r − 1)− 4]
+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSeA/MSAC)

2

1
(a−1)(c−1) +

(p∗
2MSeA

/MSAC)2

(a−1)(r−1)

.
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Now, we evaluate the approximate df for the F test of B, first by means of
the Satterthwaite estimator in equation (2):

v1 =
(MSB +MSet)

2

MS2
B

b−1 +
MS2

et

ab(c−1)(r−1)

,

v2 =
(MSeB +MSBC)

2

MS2
eB

(r−1)(b−1) +
MS2

BC

(b−1)(c−1)

.

The Ames-Webster estimator for the numerator is the following when MS1 = MSB

and MS2 = MSet :

p1 =
ab(c− 1)(r − 1)

ab(c− 1)(r − 1)− 2

(
2[ab(c− 1)(r − 1) + b− 3]

(b− 1)[ab(c− 1)(r − 1)− 4]
+ 1

)
,

f̂(p1) =
(1 + p1MSet/MSB)

2

1
b−1 +

(p1MSet/MSB)2

ab(c−1)(r−1)

;

still with the numerator but taking MS1 = MSet and MS2 = MSB , we get:

p∗1 =
b− 1

b− 3

(
2[ab(c− 1)(r − 1) + b− 3]

ab(c− 1)(r − 1)(b− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSB/MSet)

2

1
ab(c−1)(r−1) +

(p∗
1MSB/MSet )

2

b−1

.

For the denominator, doing MS1 = MSeB and MS2 = MSBC , we get:

p2 =
(b− 1)(c− 1)

(b− 1)(c− 1)− 2

(
2[(b− 1)(r + c− 2)− 2]

(b− 1)(r − 1)[(b− 1)(c− 1)− 4]
+ 1

)
,

f̂(p2) =
(1 + p2MSBC/MSeB )

2

1
(b−1)(r−1) +

(p2MSBC/MSeB
)2

(b−1)(c−1)

;

finally, exchanging the order of MS1 and MS2, we obtain:

p∗2 =
(b− 1)(r − 1)

(b− 1)(r − 1)− 2

(
2[(b− 1)(r + c− 2)− 2]

(b− 1)(c− 1)[(b− 1)(r − 1)− 4]
+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSeB/MSBC)

2

1
(b−1)(c−1) +

(p∗
2MSeB

/MSBC)2

(b−1)(r−1)

.
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4 Application

In Zimmermann (2004), a real example was considered when all the effects
are fixed. The data in Tables 7 and 8 show the weight of 100 beans obtained by Luis
Fernando Stone and Regis Vilela Bagatini on an experiment in 1998. It is a complete
block design with two replicates on which each horizontal strip corresponds to the
water layer irrigated, the vertical strips are soil tillage systems and the subplots are
Nitrogen doses. The experiment was done at the Capivara farm in Embrapa Rice
and Bean.

Table 7 - Block 1

Water Soil 1 Soil 2 Soil 3

Nit 1 Nit 2 Nit 3 Nit 1 Nit 2 Nit 3 Nit 1 Nit 2 Nit 3

Water 1 26.33 27.85 27.13 25.10 27.67 24.93 25.00 28.03 29.65
Water 2 24.04 25.22 28.32 25.19 27.77 27.28 25.89 24.27 25.83
Water 3 25.85 25.70 26.97 25.63 27.11 25.62 26.16 24.86 25.51
Water 4 23.20 20.32 23.94 29.28 26.03 28.60 26.23 25.49 24.65

Table 8 - Block 2

Water Soil 1 Soil 2 Soil 3

Nit 1 Nit 2 Nit 3 Nit 1 Nit 2 Nit 3 Nit 1 Nit 2 Nit 3

Water 1 25.87 28.64 29.31 27.80 27.25 25.56 28.53 26.38 32.45
Water 2 27.16 26.49 25.99 24.63 26.91 28.47 26.68 27.64 24.80
Water 3 27.11 24.44 28.06 25.77 27.46 26.20 26.83 27.55 27.19
Water 4 23.00 23.43 23.42 28.71 26.45 26.25 26.64 26.82 26.88

The water layers (the vertical strips, A) are averaged irrigation levels as follows:
366.1 mm for the first horizontal strip, 335.1 mm for the second one, 315.7 mm for
the third one, and 293.7 mm for the last one. There are three ways to prepare the
soil (the vertical strips B): heavy harrowing for the first vertical strip, moldboard
plowing for the second one, and notillage on the last one. The Nitrogen subdoses
(C) inside the subplots are, respectively for each subplot, 0, 20 and 40 kg ha−1. We
present in Anexo a SAS program for the situation just considered.

The MS and the df needed to construct the F tests are shown on Table 9.
These results show that there are significant effects on the water layer, its interaction
with the soil, and the interaction of the three factors.
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Table 9 - Example

Source df MS F (Pr > F )

R 1 9.4758
A 3 10.9903 26.04 (0.0119)
eA 3 0.4220
B 2 7.3937 2.91 (0.2556)
eB 2 2.5387
AB 6 11.2718 35.89 (0.0002)
eAB 6 0.3141
C 2 3.1476 2.11 (0.1432)
AC 6 2.3759 1.59 (0.1926)
BC 4 1.8678 1.25 (0.3161)
ABC 12 3.2911 2.21 (0.0479)
et 24 1.4921

ROZA, D. L.; MARTINEZ, E. Z. Testes para o planejamento do tipo strip-split
plot. Rev. Bras. Biom., Lavras, v.34, n.2, p.279-303, 2016.

RESUMO: Neste artigo, apresentamos a estrutura dos testes F , os componentes de

variância e os graus aproximados de liberdade para cada um dos oito posśıveis modelos

mistos do planejamento do tipo strip-split plot. Nós apresentamos um exemplo para

ilustrar o modelo e compará-lo com as configurações mais tradicionais como um

planejamento fatorial three-way e um modelo de parcelas sub-subdivididas

PALAVRAS-CHAVE: Planejamento de experimentos; modelos mistos.
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ANEXO - The SAS program.

data a;
input bloque trata tratb tratc x1;
cards;
.....
.....
;
proc anova;class bloque trata tratb tratc;
model x1 = bloque trata bloque*trata tratb bloque*trab
trata*tratb bloque*trata*tratb
tratc trata*tratc tratb*tratc trata*trab*tratc;
test h=trata e=bloque*trata;
test h=tratb e=bloque*trab;
test h=trata*tratb e=bloque*trata*tratb;
run;
quit;
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