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1 Introduction

Ghitany et al. (2008) investigated many properties of the Lindley distribution
and outlined that such model provide better fit than the exponential distribution.
From then on, many generalizations of the Lindley distribution have been introduced
in the literature, such as the generalized Lindley (ZALERZADEH and DOLATI,
2009), weighted Lindley (GHITANY et al., 2011), extended Lindley (BAKOUCH et
al., 2012), among others. Let T be a random variable representing a lifetime data
with weighted Lindley (WL) distribution, the probability density function (p.d.f)
is given by

f(t|λ, φ) =
λφ+1

(λ+ φ)Γ(φ)
tφ−1(1 + t)e−λt, (1)

for all t > 0, φ > 0 and λ > 0 and Γ(φ) =
∫∞
0
e−xxφ−1dx known as gamma

function. The hazard function can has an increasing or bathtub shape depending
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on the values of the parameters, in which provided a great flexibility for be used in
different areas.

Ghitany et al. (2011) discussed many mathematical properties of the WL
distribution and also the parameter estimation based on the maximum likelihood
method (MLE). Mazucheli et al. (2013) compared the efficiency of four estimation
methods: the MLE, method of moments, ordinary least-squares, and weighted
least-squares and conclude that the weighted least-squares method reproduces
similar results to those obtained using the maximum likelihood. Wang (2015)
proposed a bias-corrected technique for the MLEs and argues that such procedure is
highly recommended instead of estimators without bias-correction. Considering the
Bayesian approach, Ali (2013) discussed different non-informative and informative
priors for the parameters of the WL distribution. In the reliability context,
Al-Mutairi et al. (2015) deals with the estimation of the stress-strength parameter
R = P (Y < X), when X and Y are two independent random variables with WL
distribution.

In studies that involves temporal responses, it is common the presence of
incomplete or partial data, widely known as censored data (LAWLESS, 2002). Such
partial data even incomplete, provide important information about the unknown
parameters of interesting and the omission could result in biased estimators. For
the WL distribution the estimation procedures available in the literature are not
capable to include censored data. Therefore, in this paper we discuss the maximum
likelihood estimation considering different types of censoring, such as type I, type II
and random censoring. Some referred papers regarding to the reliability applications
of those types of censoring can be seen in Ghitany and Al-Awadhi (2002), Goodman
et al. (2006), Joarder et al. (2011), Iliopoulos and Balakrishnan (2011), Arbuckle
et al. (2014). The originality of this study comes from the fact that for the
WL distribution, there has been no previous work considering those censoring
mechanisms.

The paper is organized as follows. In Section 2, we review some properties
of the weighted Lindley distribution. In Section 3 we presented the maximum
likelihood estimators of the parameters of the WL distributions considering different
censoring mechanism. In Section 4 we carry out a simulation study in order to
verify our proposed methods. In Section 5 we illustrate our proposed methodology
by considering two real lifetime data sets. Finally, some comments are presented in
Section 6.

2 Weighted Lindley distribution

Let T be a random variable representing a lifetime data with weighted Lindley
distribution then its p.d.f can be expressed as a two-component mixture

f(t|λ, φ) = pf1(t|λ, φ) + (1− p)f2(t|λ, φ),

where p = λ/(λ + φ) and fj(t|λ, φ) has p.d.f Gamma(φ + j − 1, λ) distribution,
for j = 1, 2. These results are useful in order to derive different mathematical
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properties for the WL distribution. The mean and variance of the WL distribution
can be easily computed by

µ =
φ(λ+ φ+ 1)

λ(λ+ φ)
, σ2 =

(φ+ 1)(λ+ φ)2 − λ2

λ2(λ+ φ)2
.

The survival function of T representing a probability of an observation not fail
until a specified time t is

S(t|λ, φ) =
(λ+ φ)Γ(φ, λt) + (λt)

φ
e−λt

(λ+ φ)Γ(φ)
,

where Γ(x, y) =
∫∞
x
wy−1e−xdw is the upper incomplete gamma.

The hazard function of T that quantify the instantaneous risk of failure at a
given time is given by

h(t|λ, φ) =
f(t|λ, φ)

S(t|λ, φ)
=

λφ+1tφ−1(1 + t)e−λt

(λ+ φ)Γ(φ, λt) + (λt)
φ
e−λt

. (2)

Ali (2013) obtain the Bonferroni and the Lorenz curves, various entropies
and order statistics for the WL distribution. Ghitany et al. (2011) present some
structural properties of the p.d.f, hazard function and the mean residual life function
of the WL distribution. Moreover, Ghitany et al. (2011) proved that the hazard
rate function (2) is bathtub (increasing) shaped if 0 < φ < 1 (φ ≥ 1) for all λ > 0.
Figure 1 gives examples from the shapes of the hazard function for different values
of φ and λ.
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Figure 1 - Hazard rate for WL distribution considering different values of φ and λ.
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3 Maximum likelihood estimation

Among the statistical inference methods, the maximum likelihood method is
widely used due to its better asymptotic properties. We discuss the maximum
likelihood estimator for the two parameters of the weighted Lindley distribution
considering different types of censoring, such as type II, type I and random
censoring. Other mechanisms of censoring as the progressive type II censoring
(BALAKRISHNAN and AGGARWALA, 2000) and Hybrid censoring mechanism
(BALAKRISHNAN and KUNDU, 2013) could also be obtained to WL distribution.

3.1 Type II censoring

In industrial experiments, the study of the lifetime of electronic components
are usually finished after a fixed number of failures r, in this case n− r will be the
number of censored components. This mechanism of censoring is known as type II
censoring (for more details see LAWLESS, 2002) and its likelihood function is given
by

L(λ, φ|t) =
n!

(n− r)!

r∏
i=1

f(t(i)|λ, φ)S(t(r)|λ, φ)n−r,

where t(i) denotes the ith order statistic. Let T1, · · · , Tn be a random sample with
WL distribution the likelihood function considering type II censoring is given by

L(λ, φ|t) =
n!

(n− r)!

λr(φ+1)
(

(λ+ φ)Γ(φ, λt(r)) +
(
λt(r)

)φ
e−λt(r)

)n−r
(λ+ φ)nΓ(φ)n

×

×
r∏
i=1

tφ−1(i) (1 + t(i))e
−λti .

(3)

The logarithm of the likelihood function (3) without the constant term is

l(λ, φ|t) =− λ
r∑
i=1

ti + (φ− 1)

r∑
i=1

log(ti)− n log (Γ(φ)) + r(φ+ 1) log(λ)

− n log(φ+ λ) + (n− r) log
(

(λ+ φ)Γ(φ, λt(r)) + (λt(r))
φ
e−λt(r)

)
.

(4)

From ∂l(λ, φ|t)/∂λ = 0 and ∂l(λ, φ|t)/∂φ = 0 we obtain the likelihood
equations respectively given by

n

λ+ φ
− r(φ+ 1)

λ
+

r∑
i=1

ti =
(n− r)

(
Γ(φ, λt(r))e

−λt(r) − (t(r) + 1)
(
λt(r)

)φ)(
(λ+ φ)Γ(φ, λt(r))e

−λt(r)
)

+
(
λt(r)

)φ , (5)

(n− r)
(

Γ(φ, λt(r)) + (λ+ φ)Ψ(φ, λt(r)) +
(
λt(r)

)φ
log(λt(r))e

−λt(r)
)

(
(λ+ φ)Γ(φ, λt(r))

)
+
(
λt(r)

)φ
e−λt(r)

= −r log(λ)
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+
n

λ+ φ
+ nψ(φ) −

r∑
i=1

log(ti), (6)

where Ψ(k, x) =
∫∞
x
wk−1 log(w)e−wdw. Numerical methods such as Newton-

Raphson are required to find the solution of these non-linear system.

3.2 Type I censoring

Consider that n patients is in a treatment and suppose that d < n has died
before tc, then n−d patients are alive and will be censored. The likelihood function
in this case is given by

L(θ, t) =
n∏
i=1

f(ti|θ)δiS(tc|θ)n−d,

where δi = I(ti ≤ tc) is an indicator function and d =
∑n
i δi is a random variable.

Let T1, · · · , Tn be a random sample with WL distribution, in this case the likelihood
function is given by

L(λ, φ|t) =
λd(φ+1)

(
(λ+ φ)Γ(φ, λtc) + (λtc)

φ
e−λtc

)n−d
(λ+ φ)nΓ(φ)n

×

×
n∏
i=1

(
tφ−1i (1 + ti)e

−λti
)δi

. (7)

The logarithm of the likelihood function (7) without the constant term is given
by

l(λ, φ|t) = + (φ− 1)

n∑
i=1

δi log(ti)− λ
n∑
i=1

δiti + d(φ+ 1) log(λ)− n log(φ+ λ)

+ (n− d) log
(

(λ+ φ)Γ(φ, λtc) + (λtc)
φ
e−λtc

)
− n log (Γ(φ)) .

(8)

From ∂l(λ, φ|t)/∂λ = 0 and ∂l(λ, φ|t)/∂φ = 0, the likelihood equations are

n

λ+ φ
− d(φ+ 1)

λ
+

n∑
i=1

δiti =
(n− d)

(
Γ(φ, λtc)e

−λtc − (tc + 1) (λtc)
φ
)

((λ+ φ)Γ(φ, λtc)e−λtc) + (λtc)
φ

,

(n− d)
(

Γ(φ, λtc) + (λ+ φ)Ψ(φ, λtc) + (λtc)
φ

log(λtc)e
−λtc

)
((λ+ φ)Γ(φ, λtc)) + (λtc)

φ
e−λtc

= −d log(λ)

+
n

λ+ φ
+ nψ(φ)−

n∑
i=1

δi log(ti).

Numerical methods such as Newton-Raphson are required to find the solution
of these non-linear system.
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3.3 Random censoring

In medical survival analysis and industrial life testing, random censoring
schemes has been receive special attention. Suppose that the ith individual has
a lifetime Ti and a censoring time Ci, moreover the random censoring times Cis are
independent of Tis and that their distribution does not depend on the parameters,
then the data set is (ti, δi), where ti = min(Ti, Ci) and δi = I(Ti ≤ Ci). This
type of censoring have as special case the type I and II censoring mechanism. The
likelihood function for θ is given by

L(θ, t) =

n∏
i=1

f(ti|θ)δiS(ti|θ)1−δi .

Let T1, · · · , Tn be a random sample of WL distribution, the likelihood function
considering data with random censoring is given by,

L(λ, φ|t) =
λd(φ+1)

(λ+ φ)nΓ(φ)n

n∏
i=1

(
(λ+ φ)Γ(φ, λti) + (λti)

φ
e−λti

)1−δi
×

×
(
tφ−1i (1 + ti)e

−λti
)δi

.

(9)

The logarithm of the likelihood function (9) without the constant term is given
by,

l(λ, φ|t) = (φ− 1)

n∑
i=1

δi log(ti)− λ
n∑
i=1

δiti + d(φ+ 1) log(λ)− n log(φ+ λ)

+

n∑
i=1

(1− δi) log
(

(λ+ φ)Γ(φ, λti) + (λti)
φ
e−λti

)
− n log (Γ(φ)) .

(10)

From ∂l(λ, c|t)/∂λ = 0 and ∂l(λ, φ|t)/∂φ = 0, we get the likelihood equations,

n

λ+ φ
− d(φ+ 1)

λ
+

n∑
i=1

δiti =

n∑
i=1

(1− δi)
(

Γ(φ, λti)e
−λti − (ti + 1) (λti)

φ
)

((λ+ φ)Γ(φ, λti)e−λti) + (λti)
φ

, (11)

n∑
i=1

(1− δi)
(

Γ(φ, λti) + (λ+ φ)Ψ(φ, λti) + (λti)
φ

log(λti)e
−λti

)
((λ+ φ)Γ(φ, λti)) + (λti)

φ
e−λti

= −d log(λ)

+
n

λ+ φ
+ nψ(φ)−

n∑
i=1

δi log(ti) (12)

Numerical methods are also required to find the solution of these non-linear
equations.
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4 Simulation study

In this section we present a simulation study via Monte Carlo methods. The
main goal of these simulations is to study the efficiency of methodology. The
results were computed using the software R (R CORE TEAM, 2016). The following
procedure was adopted:

1. Generate values of the WL(φ, λ) with size n;

2. Using the values obtained in step 1, calculate the MLE φ̂ e λ̂;

3. Repeat the steps 1 and 2 N times;

4. Using θ̂ = (φ̂, λ̂) and θ = (φ, λ), compute the mean relative estimates

(MRE)
∑N
j=1

θ̂i,j/θi
N , the mean square errors (MSE)

∑N
j=1

(θ̂i,j−θi)2
N , the bias∑N

,=1
θ̂i,j
N − θi for i = 1, 2 and the 95% coverage probability.

Considering this approach it is expected that the Bias and MSE return values
closer to zero and the MREs closer to one. The 95% coverage probabilities were
also computed considering the 95% confidence interval. For a large number of
experiments using a 95% confidence intervals, the frequencies of these intervals that
covered the true values of θ should be closer to 0.95. The coverage probabilities
were calculated using the numeric observed information matrix obtained from the
maxLik package results.

The seed used in the pseudo-random number generators was 2014. We fixed
N = 100, 000, n = (5, 10, 25, 50, 100) and θ = ((0.5, 2), (3, 2)) with 20% and 40% of
censored data, these values of θ were selected in order to obtain the two possible
hazard rate functions (increasing and bathtub shape). Moreover, we drawn the type
II censored data setting the first r values as complete data and n− r were censored
in t(r). To generate type I and random censored data, we considered respectively the
same procedures used by Goodman et. al. (2006) and Bayoud (2012). Considering
these approaches it is expected that the mean for the proportions of the censored
data (E[p]) will be approximately 0.2 and 0.4, where pj , j = 1, . . . , N are proportions
of the censored data for each sample. The maximum likelihood estimates were
computed using the log-likelihood functions (4), (8) and (10) with the routine
maxLik available in R to maximize such functions in which was able to locate
the maximum for a wide range of initial values. The solution for the maximum was
unique for all initial values.

Tables 1-3 displays the Mean, MREs, MSEs, Bias and the coverage probability
(C95%) with a 95% confidence level for the MLEs considering N simulated samples,
different values of n, 20% and 40% of censoring.

Some of the points are quite clear from the tables. The Bias and MSE for
all parameters tend to zero as n increases, i.e. all estimators are consistent for
the parameters and also as expected the values of MREs tend to one, i.e. the
estimators are asymptotically unbiased for the parameters. Moreover, the coverage
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Table 1 - Mean, MRE, MSE, Bias and C estimates for N samples of sizes n =
(5, 10, 25, 50, 100), with 20% and 40% of type II censored data

Mean MRE MSE Bias C95% Mean MRE MSE Bias C95%

n r φ = 0.5 λ = 2

5 4 0.922 1.845 0.810 0.422 0.969 4.764 2.382 30.240 2.764 0.961
10 8 0.699 1.399 0.199 0.199 0.971 3.354 1.677 8.414 1.354 0.965
25 20 0.565 1.131 0.033 0.065 0.963 2.435 1.217 1.243 0.435 0.962
50 40 0.530 1.061 0.012 0.030 0.957 2.198 1.099 0.393 0.198 0.957
100 80 0.515 1.029 0.005 0.015 0.953 2.095 1.048 0.157 0.095 0.954

5 3 0.975 1.950 0.990 0.475 0.968 5.840 2.920 55.550 3.840 0.950
10 6 0.750 1.501 0.281 0.250 0.971 4.162 2.081 19.370 2.162 0.959
25 15 0.589 1.177 0.049 0.089 0.968 2.767 1.383 3.220 0.767 0.962
50 30 0.540 1.081 0.016 0.040 0.960 2.335 1.168 0.867 0.335 0.960
100 60 0.519 1.039 0.006 0.019 0.953 2.158 1.079 0.309 0.158 0.956

n r φ = 3 λ = 2

5 4 4.385 1.462 10.280 1.385 0.950 2.978 1.489 4.874 0.978 0.955
10 8 4.007 1.336 5.116 1.007 0.959 2.678 1.339 2.243 0.678 0.961
25 20 3.514 1.171 1.802 0.514 0.959 2.338 1.169 0.753 0.338 0.961
50 40 3.265 1.088 0.740 0.265 0.958 2.172 1.086 0.303 0.172 0.958
100 80 3.129 1.043 0.304 0.129 0.955 2.084 1.042 0.125 0.084 0.955

5 3 4.395 1.465 12.250 1.395 0.944 3.108 1.554 7.022 1.108 0.947
10 6 4.050 1.350 5.994 1.050 0.954 2.785 1.393 3.159 0.785 0.956
25 15 3.623 1.208 2.342 0.623 0.960 2.447 1.224 1.158 0.447 0.961
50 30 3.351 1.117 1.048 0.351 0.958 2.247 1.124 0.499 0.247 0.959
100 60 3.175 1.058 0.428 0.175 0.956 2.123 1.062 0.201 0.123 0.957

probabilities of the parameters tend to 0.95 as n increase. Based on these results
and through the maximum likelihood method we achieved good inferences for the
parameters of the WL distribution considering different types of censoring.
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Table 2 - Mean, MRE, MSE, Bias, C and E[p] estimates for N samples of sizes
n = (5, 10, 25, 50, 100), with 20% and 40% of type I censored data

Mean MRE MSE Bias C95% Mean MRE MSE Bias C95% E[p]

n φ = 0.5 λ = 2

5 0.870 1.740 0.844 0.370 0.950 4.168 2.084 25.800 2.168 0.926 0.202
10 0.651 1.301 0.159 0.151 0.961 2.841 1.420 4.533 0.841 0.946 0.199
25 0.549 1.097 0.028 0.049 0.958 2.269 1.134 0.799 0.269 0.949 0.199
50 0.523 1.046 0.011 0.023 0.955 2.127 1.063 0.313 0.127 0.949 0.199
100 0.511 1.022 0.005 0.011 0.952 2.062 1.031 0.139 0.062 0.951 0.199

5 0.796 1.592 0.536 0.296 0.947 4.314 2.157 27.270 2.314 0.909 0.390
10 0.668 1.336 0.205 0.168 0.957 3.111 1.556 7.256 1.111 0.929 0.400
25 0.558 1.115 0.039 0.058 0.959 2.380 1.190 1.478 0.380 0.941 0.401
50 0.527 1.053 0.014 0.027 0.956 2.177 1.089 0.563 0.177 0.944 0.401
100 0.513 1.026 0.006 0.013 0.952 2.087 1.043 0.247 0.087 0.948 0.401

n φ = 2 λ = 3

5 3.935 1.645 25.380 1.935 0.903 4.315 1.658 11.720 1.315 0.902 0.209
10 2.922 1.307 5.907 0.922 0.941 3.591 1.296 2.455 0.591 0.941 0.205
25 2.406 1.135 1.593 0.406 0.954 3.251 1.126 0.623 0.251 0.954 0.201
50 2.205 1.068 0.663 0.205 0.954 3.127 1.063 0.261 0.127 0.954 0.201
100 2.101 1.034 0.287 0.101 0.953 3.063 1.031 0.115 0.063 0.952 0.201

5 3.413 1.471 17.960 1.413 0.906 4.053 1.526 9.547 1.053 0.903 0.404
10 2.835 1.278 5.844 0.835 0.937 3.566 1.283 2.581 0.566 0.935 0.405
25 2.458 1.153 2.076 0.458 0.951 3.300 1.150 0.908 0.300 0.949 0.401
50 2.250 1.083 0.914 0.250 0.954 3.162 1.081 0.403 0.162 0.953 0.400
100 2.125 1.042 0.390 0.125 0.953 3.082 1.041 0.176 0.082 0.952 0.400
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Table 3 - Mean, MRE, MSE, Bias, C and E[p] estimates for N samples of sizes
n = (5, 10, 25, 50, 100), with 20% and 40% of random censored data

Mean MRE MSE Bias C95% Mean MRE MSE Bias C95% E[p]

n φ = 0.5 λ = 2

5 0.943 1.887 1.436 0.443 0.951 4.564 2.282 32.600 2.564 0.931 0.200
10 0.665 1.330 0.188 0.165 0.961 2.980 1.490 5.651 0.980 0.951 0.201
25 0.552 1.104 0.028 0.052 0.958 2.304 1.152 0.862 0.304 0.953 0.201
50 0.524 1.048 0.011 0.024 0.955 2.141 1.070 0.317 0.141 0.952 0.201
100 0.512 1.024 0.005 0.012 0.952 2.067 1.033 0.136 0.067 0.951 0.201

5 0.934 1.868 1.431 0.434 0.940 4.984 2.492 45.140 2.984 0.904 0.409
10 0.690 1.381 0.295 0.190 0.955 3.271 1.636 10.050 1.271 0.927 0.418
25 0.558 1.117 0.037 0.058 0.959 2.397 1.198 1.529 0.397 0.943 0.419
50 0.527 1.053 0.013 0.027 0.956 2.182 1.091 0.554 0.182 0.947 0.419
100 0.513 1.025 0.006 0.013 0.953 2.085 1.042 0.239 0.085 0.949 0.419

n φ = 2 λ = 3

5 4.880 1.960 43.730 2.880 0.885 4.875 1.938 18.630 1.875 0.890 0.193
10 3.322 1.441 10.330 1.322 0.936 3.837 1.419 4.027 0.837 0.937 0.202
25 2.486 1.162 1.813 0.486 0.955 3.305 1.153 0.708 0.305 0.957 0.203
50 2.231 1.077 0.657 0.231 0.956 3.146 1.073 0.259 0.146 0.956 0.203
100 2.111 1.037 0.274 0.111 0.952 3.070 1.035 0.109 0.070 0.953 0.203

5 5.119 2.040 55.450 3.119 0.861 5.171 2.086 26.760 2.171 0.862 0.382
10 3.580 1.527 16.540 1.580 0.916 4.040 1.520 6.972 1.040 0.916 0.404
25 2.568 1.189 2.501 0.568 0.951 3.368 1.184 1.053 0.368 0.952 0.407
50 2.273 1.091 0.869 0.273 0.956 3.178 1.089 0.373 0.178 0.955 0.407
100 2.130 1.043 0.353 0.130 0.953 3.084 1.042 0.153 0.084 0.952 0.407
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5 Application

In this section, we illustrated our proposed methodology by considering two
data set. The results obtained from the WL distribution were compared with the
Weibull, Gamma, Lognormal, and Logistic distributions and the nonparametric
survival curve adjusted through the Kaplan-Meier estimator (KAPLAN and
MEIER, 1958).

Initially, in order to verify the behavior of the empirical hazard function it
will be considered the TTT-plot (total time on test) proposed by Barlow and
Campo (1975). The TTT-plot is achieved through the consecutive plot of the values
[r/n,G(r/n)] where

G(r/n) =

(
r∑
i=1

ti + (n− r)t(r)

)
/

n∑
i=1

ti, r = 1, . . . , n, i = 1, . . . , n (13)

and ti is the order statistics. If the curve is concave (convex), the hazard function is
increasing (decreasing), when it starts convex and then concave (concave and then
convex) the hazard function will have a bathtub (inverse bathtub) shape.

Different discrimination criterion methods based on log-likelihood function
evaluated at the MLEs were also considered. Let k be the number of parameters to
be fitted and θ̂ the MLEs of θ, the discrimination criterion methods are, respectively,
the Akaike information criterion (AIC) computed through AIC = −2l(θ̂;x) + 2k,

Corrected Akaike information criterion AICC = AIC + 2 k (k+1)
(n−k−1) , Hannan-Quinn

information criterion HQIC = −2 l(θ̂;x) + 2 k log (log(n)) and the consistent
Akaike information criterion CAIC = AIC + k log(n) − k. The best model is
the one which provides the minimum values of those criteria.

5.1 Rats with vaginal cancer

Presented by Pike (1966) the data set represent the lifetimes of 40 rats with
vaginal cancer exposed to the carcinogen DMBA. In Table 4, we reproduce the
data related to the survival times (in days) of 40 rats (+ indicates the presence of
censorship).

Table 4 - Dataset related to the lifetimes of 40 rats with vaginal cancer exposed to
the carcinogen DMBA

143 164 188 188 190 192 206 209 213 216
220 227 230 234 246 265 304+ 216+ 244 142
156 173 198 205 232 232 233 233 233 233
239 240 261 280 280 296 296 323 204+ 344+

Based on Table 4, the data clearly has random censoring mechanism,
consequently the equations (11) and (12) were used to compute the MLEs. Table 5
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displays the MLEs, standard-error and 95% confidence intervals for φ and λ. Table
6 presents the results of AIC, AICc, HQIC and the CAIC criteria, for different
probability distributions.

Table 5 - MLE, Standard-error and 95% confidence intervals for φ and λ

θ MLE S.E CI95%(θ)
φ 21.7545 1.3254 (19.1566; 24.3523)
λ 0.0978 0.0066 (0.0848; 0.1109)

Table 6 - Results of AIC, AICc, HQIC, CAIC criteria for different probability
distributions considering the dataset related to rats with vaginal cancer
exposed to the carcinogen DMBA

Test W. Lindley Weibull Gamma Lognormal Logistic
AIC 390.342 394.423 390.648 390.361 391.352
AICc 386.666 390.748 386.972 386.686 387.676
HQIC 391.563 395.645 391.869 391.583 392.573
CAIC 395.719 399.801 396.026 395.739 396.730

In the Figure 2, we have the TTT-plot, survival function adjusted by different
distributions and Kaplan–Meier estimator.
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Figure 2 - TTT-plot, survival function adjusted by different distributions and the
Kaplan–Meier estimator considering the lifetimes of 40 rats with cancer.
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Based on the TTT-plot there is an indication that the hazard function has
increasing failure rate. Comparing the empirical survival function with the adjusted
models we observed a goodness of the fit for the weighted Lindley distribution.
This result is also confirmed from the different discrimination criterion methods
considered since WL distribution has the minimum value. Since φ̂ = 21.7545
(increasing shape, φ > 1), then the hazard function is increasing, confirming the
result obtained from TTT-plot. Therefore, through our proposed methodology the
data related to rats with vaginal cancer can be described by the weighted Lindley
distribution.

5.2 Lifetime of electrical devises

Presented by Lawless (2002, p.112) the data set is related to 60 electrical
devices. The survival times is given in cycles to failure divided by 1000 and was
firstly presented without censoring. We considered that the experiment was finished
after r = 49 failure, therefore n − r = 11 components were censored. Table 7
reproduces the lifetimes from the first 49 electrical devices.

Table 7 - Dataset related to the lifetimes of 60 (in cycles) electrical devices
0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.165
0.210 0.381 0.464 0.479 0.556 0.574 0.839 0.917 0.969
0.991 1.064 1.088 1.091 1.174 1.270 1.275 1.355 1.397
1.477 1.578 1.649 1.702 1.893 1.932 2.001 2.161 2.292
2.326 2.337 2.628 2.785 2.811 2.886 2.993 3.122 3.248
3.715 3.79 3.857 3.912

Since the experiment was finished after a predetermined number of failures r,
then the data has type II censoring mechanism and the equations (5) and (6) were
used to compute the MLEs. Table 8 displays the MLEs, standard-error and 95%
confidence intervals for φ and λ. Table 9 presents the results of AIC, AICc, HQIC
and the CAIC considering different probability distributions for the electrical data.

Table 8 - MLE, Standard-error and 95% confidence intervals for φ and λ considering
the electrical devices data

θ MLE S.E CI95%(θ)
φ 0.6764 0.1341 (0.4137; 0.9392)
λ 0.5260 0.0954 (0.3391; 0.7129)

In the Figure 3, we have the TTT-plot and the survival function adjusted by
different distributions and the Kaplan-Meier estimator.
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Table 9 - Results of AIC, AICc, HQIC, CAIC considering different probability
distributions for the electrical data

Test W. Lindley Weibull Gamma Lognormal Logistic
AIC 185.174 186.596 186.218 195.022 220.103
AICc 181.384 182.807 182.428 191.233 216.314
HQIC 186.812 188.235 187.856 196.660 221.742
CAIC 191.363 192.785 192.407 201.211 226.292
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Figure 3 - TTT-plot, survival function and the hazard function adjusted by
weighted Lindley distribution considering the electrical data.

Similar to first data set, comparing the empirical survival function with the
adjusted by the parametric models and through the different discrimination criterion
methods we observed a goodness of the fit for the WL distribution. Moreover,
basead on the TTT-plot there is an indication that the hazard function has bathtub
shape. This result is confirmed by the MLEs since φ̂ = 0.6764 (bathtub shape when
0 < φ < 1). Therefore, considering our proposed methodology the data related to
the electrical devices can be described by the WL distribution.

6 Final Comments

In this paper we presented the maximum likelihood estimators for the
parameters of the weighted Lindley distribution considering the most common types
of censoring, such as the type I, type II and random censoring mechanism.

An extensive numerical simulation study was conducted in order verify the
performance of our proposed methodology in which is also fully illustrated with two
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real data set. We proved that using our method good estimates of the parameters
of WL distribution were obtained. These results are of great practical interest since
this will enable the use of the weighted Lindley distribution in various application
issues.

There are a large number of possible extensions of the current work. The
presence of covariates, as well as of long-term survivals, is very common in practice.
Our approach should be investigate in both contexts. A possible approach is to
consider the regression schemes adopted by Achcar and Louzada-Neto (1992) and
Perdona and Louzada-Neto (2011), respectively.
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RESUMO:

Neste trabalho apresentamos os estimadores de máxima verossimilhança para os

parâmetros da distribuição weighted Lindley considerando diferentes tipos de censura,

tais como, censura tipo I, tipo II e censura aleatória. Estudos de simulação numérica

também foram apresentados buscando-se verificar a eficiência da metodologia proposta.

Por fim, ilustramos nossa metodologia em dois conjuntos de dados reais.

PALAVRAS-CHAVE: Distribuição weighted de Lindley; estimadores de máxima

verossimilhança; dados censurados; censura aleatória.
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