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Abstract. Given a set of consecutive slices resulting from a non-invasive examining device, there is
an expectation to be able to reconstruct the 3D original object regardless if it is a human organ or the
channeling of underground petroleum resources. The sliceshowever, identify a set of curves, which need
to be properly connected to give rise of a coherent representation of the object. This analysis is made by
a correspondence algorithm within a 3D reconstruction software. This paper presents∆-connection, a
simple and flexible algorithm for the correspondence problem. ∆-connection relies on the well-known
heuristic approach of proximal curves. Tests have shown that ∆-connection grows linearly with the size
of the raw-data (the slices) and can be fine-tuned by a user-defined parameter to produce a 3D model.
The heuristic, advantages and limitations of∆-connection will also be shown in detail.
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1 Introduction

The increasingly popular use of non-invasive measure-
ment devices, such as Magnetic Resonance Imaging
(MRI) and Computerized Tomography (CT), has made
it possible to visualize a sequence of planar sections of
three-dimensional objects. This fact has motivated the
development of many (such as [1, 3, 8, 9] which will
be presented later) three-dimensional object reconstruc-
tion techniques. Three-dimensional reconstruction be-
came a very interesting and importante research tech-
nique since it builds a 3D model of the object that is
being analyzed through the use of two-dimensional im-
ages.

3D reconstruction can be executed in order to obtain
various information about the original model, basically
for two reasons:

• To study the model’s structure, the relationship a-

mong parts, understanding of the whole and the
existence or non-existence of certain formations
(tumors, swellings, etc.), and;

• To obtain measurable characteristics of the model
(volume, area, length, etc.).

Figure 1 illustrates a slice obtained from a CT scan-
ner already treated in order to separate the contours for
the reconstruction (a); the reconstruction process exe-
cuted over two of these slices (b) and; the finished pro-
cess (c) of a skull [1].

Figure 2 shows the sequence of two-dimensional
slices that represent blood veins (a) and the interpola-
tion (b) of these slices generating all the corresponding
channels/veins [8].

This is an example of reconstruction where the mod-
el visualization as a whole is more important than the
intrincacies and details between slices.
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Figure 1: The 3D Reconstruction Process on a Skull: (a) one slice,
(b) two connected slices and (d) the complete model [1].

Figure 2: The 3D Reconstruction of Veins: (a) the set of slices and
(b) the reconstructed model [8].

It can be observed that this division leads to two
possible approaches regarding the application of the 3D
reconstruction techniques: one aimed at the object vi-
sualization, and the other at accurately representing the
object. For the former objective, the reconstruction pro-
cess can be done in a simpler way, without the need to
accurately represent the saddle point on the branching,
for instance. On the other hand, if the reconstruction
does not take into account the accuracy of the conse-
quent branching and surfacing, any measurements taken
from the model can be misleading.

Reconstruction techniques aiming the visualization
of structures are useful to applications such as the iden-
tification of increasing density of capillaries (several
grouped ramifications), a congenital bad formation (the
appearance of a strange geometry), tumors (protrusions
on the geometry) or even undesired/unexpected connec-
tions. These applications take advantage of the power
such techniques have to make visible a formation whose
visualization would be, in other ways, invasive. For
these techniques the flexibility and the rules of corre-
spondence identification are of great importance along
with the fact that a fast response is needed.

This paper will present an algorithm to identify the
correspondence between curves in consecutive slices
aimed at object visualization and focused on flexibil-
ity and efficiency. The text will initially identify the
problem and then, show related approaches. After that,
heuristic solutions will be thoroughly discussed so that,
in the following section, the∆-connection algorithm
will be presented. Implementation details, results, anal-

ysis and the conclusion will finish this text.

2 Problem definition

The 3D reconstruction solution is usually performed con-
sidering three clearly separated steps (correspondence,
branching and tiling) having a set of techniques that are
specified to decide the geometry and topology of the
final model.

The correspondence problem arises when there is
more than one curve in each of parallel consecutive slices
and some of them must be connected to generate the
3D object model. The correspondence problem can be
stated as:

Given a set ofi curvesCij , wherei =
1, . . . , n andn is the number of different curves
in the planeXj , identify all subset of curves
in planeXk that correspond (must be con-
nected) to some in planeX(k+1).

The correspondence step has been considered the
main problem of the 3D reconstruction from planar sec-
tions [8]. Figure 3 presents 3 of 11 possible correspon-
dence solutions that can be generated from the two ini-
tial sections shown on the upper-leftmost corner of the
figure.

Figure 3: Three Examples of Correspondence Alternatives (a), (b)
and (c) from Slicesx1 andx2.

In one of the cases (a) each curve on a plane is con-
nected with only one nearest curve on the next plane; in
another, one of the curves from the inferior slice is con-
nected with the two others on the superior slice, while
the other is connected only with the nearest (b) and; on
the last illustration only one of the curves form the in-
ferior slice is connected with the curves of the superior
plane (c).



3 Related work

Various techniques have been developed to deal with
the correspondence between curves. The following can
be highlighted:

The deformable modelsapproach uses geometry,
physics and the theory of approximation for reconstruc-
tion. The geometry is used to represent the shape of
the object, the physics impose confinements on how
the shape can vary in space and time, and the theory
of approximation provides mechanisms and techniques
to approximate the reconstructed models to the original
measured data. On this method, deformations are made
on an initial model, to reach the final object.

McInerney and Terzopoulos [7] presented a recon-
struction work applied to medicine that uses deformable
models, and proved to be efficient to start from a sphere
and promote deformations and approximations until a
desired model is achieved. One advantage of this tech-
nique is that the image segmentation process, where a
polygonal representation of the curves from the original
image is obtained, is part of the reconstruction process.
The authors asserted that deformable models overcome
many of the limitations of low-level techniques for im-
age processing, providing compact and analytical rep-
resentations of the object’s shape. However, the recon-
struction process is not an isolated process and it can
be said that the reconstruction techniques through de-
formable methods use more image processing concepts
than geometric modeling.

The implicit approach uses an implicit function to
interpolate the curves and generate the object, in a way
that the object surface (the edge of the object) is on
the zero set of this function, that is, inf(x, y) = 0.
This function is determined from the interpolation of
the functions of each parallel planar section (slice) that
contain the curves to be connected.

Peixoto and Gattass [9] describe the implicit ap-
proaches through two steps: the definition of the func-
tions that represent the curves’ slices, called field func-
tions, and; the interpolation of these functions to form
the implicit function that will represent the final object’s
surface as a whole.

For this approach the matrix-based (also raster-
based) representation of curves is more adequate, since
there is a natural correspondence between the matrix
representation and the implicit function, i.e., a curve
represented as a matrix can be defined as the set of
points (x, y) of the slice, such thatf(x, y) represents
each field function used to generate implicit function.

The correspondence definition step does not have
much flexibility in the implicit approach because (i) they
are automatically defined by the function; (ii) the result

Figure 4: Curves on two slices are projected in one plane and the
resulting correspondence.

is a unique interpolation solution for a given initial set
of curves [9], not all alternatives and; (iii) the connec-
tion determination for this type of approach is consid-
ered one of it’s major problems [10:page 3]. Implicit
approaches deals with the reconstruction problem in an
automatic way but it does not generate all the possible
models from a set of curves.

Approaches that useheuristics deal with the corre-
spondence criteria with more flexibility. According to
Peixoto and Gattas [9], the decision of the correspon-
dence can be taken computing somehow the distances
between curves.

The heuristics used in the work of Barequet and
Sharir [3] decide on the correspondence of the curves
based on aXY projection of two consecutive planes.
The heuristic is the following: if there is an intersection
on the projected area of the curves they are connected,
otherwise they are not.

The work of Treece and colleagues [10] is based
on the calculation of the distance between regions of
the curves. To each plane containing the curves a set
of discs is created. Internal discs are used to repre-
sent internal regions of each curve and are considered
to loosely represent the shape of a curve.

Figure 4 shows an example of slices with many
curves (one at the bottom slice and three at the top one,
see left-most drawing); theirXY projection (shown in
the center), and; the resulting correspondence (at the
right-most drawing one can see that the bottom curve
was found to correspond to two of the top ones).

To each disc, its center is calculated, called centroid,
which will be used to calculate the distance between
each pair of discs of two consecutive planes. The corre-
spondence calculation is based on the distance of each
pair of discs. The heuristics defined in this algorithm
is the following: the regions on two consecutive planes
will be connected if the distance between the related
discs is smaller than the radius of both discs. Then, to
each two consecutive planes, a comparison of distances
between the centroids of each pair of discs is done. In
this way, the necessary distance to connect to discs may
vary without user control. Also, the correspondence



Figure 5: Reconstruction viaβ-connection [8].

does not take into account the whole area of the curve,
but each region represented by a disc.

Another technique that uses heuristics is proposed
by Nonato et al. [8]. It is a volumetric reconstruction
strategy calledβ-Connection that has the flexibility to
produce a family of objects constructed from the same
set of planar sections, making it possible to obtain mul-
tiple options of a final object.

To solve the correspondence problem the algorithm
performs a calculation of the smaller distance between
each two curves in terms of tetrahedrons. Afterwards,
it takes a user defined integer parameter, calledβ, to
perform the heuristics: if the distance between any two
curves (measured by the number of inbetweening tetra-
hedrons) is less than the value of theβ parameter de-
fined by the user, then these curves are connected.

Figure 5 shows different connection solutions re-
sulting from the strategy proposed by [8]: Beginning
with the curves situated in parallel sections (a); in the
first solution (b) the value of theβ parameter is less
than all the distances between the curves of two con-
secutive planes, with no connection occurring; in the
second solution (c) the value of the parameterβ is 3,
then all the curves of two consecutive planes with dis-
tances between each other less than or equal to 3 are
connected, and; when the value ofβ is greater than the
distance between any curves of two consecutive planes
all of the curves of those consecutive planes are con-
nected (d).

An important feature of the work of Treece and col-
leagues [10] is that the regions represented by the discs
will only connect with the other closest regions of each
consecutive plane if this relation is reciprocal; this al-
lows regions to be left without connection. These au-
thors also emphasize that traditional branching and cor-
respondence problems are combined by determining “re-
gions correspondence”. For Barequet and Sharir [3] it
is not necessary for two curves to overlap to connect to
each other.

According to Nonato et al. [8], theβ-Connection
reconstruction technique offers more flexibility on the

choice of the connected components, since from a same
set of planar sections it is possible to obtain different
shapes of objects, which is difficult through other algo-
rithms in the literature.

Comparing the heuristic approaches presented, one
notices that all existing algorithms employ some form
of distance calculation between curves:

• This can be a very detailed and time consuming
comparison of point by point of the curves in search
for the smaller edges (as in [4], apud [8]);

• Indirectly, by enclosed or enclosing discs (as in
[10]);

• Indirectly by the resulting overlapping of the pro-
jections that occur when the curves are next to each
other (as in [3]).

• Ingenious calculations, that take into account the
distance in units of volume (tetrahedron), has also
been tried and by-producing tiling with great flex-
ibility of results with the cost of greater computa-
tional demand (as in [8]).

This paper presents another solution to the calcula-
tion of the curves proximity with the same flexibility
as in [8] but keeping the correspondence stage totally
isolated from any others.

4 The ∆ connection solution

The ∆-connection algorithm has the following scope
for its proper functioning:

• Curves represented in a polygonal form (vector-
ized) with the same orientation;

• Convex and not self-intercepting concave curves;

• Closed non self-intercepting curves and that do not
contain other curves in its interior;

• Resulting object represented in Boundaring-repre-
sentation, using VRML;

• The saddle point of the branching calculation is not
dealt with;

• The preferential application is structure visualiza-
tion (such as channels).

The ∆-connection solution defines the correspon-
dence of the curves in 3 steps:

• The centroid of each curve is calculated regardless
its slice (Z value).



Figure 6: Curves’ Distances in the∆-connection.

• The matrix is built with the Euclidian distances
of the curve’s centroid in consecutive slices alto-
gether with the minimum and maximum distances
(∆min,∆max);

• Given a user-defined∆, the heuristics is evaluated.

Figure 6 illustrates, from a projection of two planes,
the distances between two centroids of the curves (la-
beledd[x, y]) and the matrix where they are stored. The
curves drawn in dotted lines belong to the projected
plane.

The minimum and maximum distances in the matrix
have the purpose of informing the user which is the in-
terval of distances among all the curves. The centroids
are calculated as the center of the curve’s bounding box.
The distances are calculated with the curves projected
in the same plane, that is, despising the height between
planes, which simplifies the distance calculation.

The detailed description of the heuristic is as fol-
lows:

• If ∆ is less than the minimum distance in the ma-
trix, no curve is connected;

• If ∆ greater than or equal to the maximum distance
in the matrix, all curves on those two consecutive
slices are connected;

• If ∆ in-between the minimum and maximum dis-
tances, the following rule is adopted:

– If the distance in the matrix is less than or
equal to∆, then these curves are connected;

– If the distance is greater than∆, then no con-
nection between these two curves will occur.

Figure 7: A Curve Editor for a Given Slice.

To each two curves that are connected from the de-
fined heuristics, these curves are marked in the algo-
rithm as “connected”. After correspondence determi-
nation, the algorithm performs tiling. To the curves that
had no connection (unmarked curves), a face from its
vertices (to work as top or base to the visualization) will
be generated.

The novelty of∆-connection is three-folded:

1. It considers the distances between the center of the
curves (centroids) in consecutive planes for prox-
imity reasoning;

2. It is a conceptually simple solution and;

3. The flexibility that can be found in (i) a parameter-
controlled reconstruction process; (ii) the possi-
bility to use several alternatives for distance cal-
culation and; (iii) a variety of ways to define the
curves’ centers.

4.1 Implementing ∆-Connection

Firstly, a curve editor application (Figure 7) was imple-
mented that reads and writes the curves in a standard
XML file format (that will be defined latter). The∆-
connection reconstruction algorithm will use these data
and perform the heuristics, creating a VRML file with
the geometrical information of the resulting object.

The VRML file format was chosen as an output for-
mat as it is an ISO standard for 3D data definition across
the internet and can be visualized at any web browser
with the appropriate, usually free of charge, plug in.

During the implementation, input files containing
curves from real data [2], ISO standards [5] and vec-
torized data in VTK format [11] were analyzed. The



Figure 8: Reconstructed Test Case.

former uses specific but not readily explicit data organi-
zation. The second is a too verbose solution and the lat-
ter divided the representation of an object in many files,
each containing a plane, which contradicts the idea of
storing all the set of planes pertaining to an object in a
single file.

The XML file is used as storage format for the edited
curves and as input to the reconstruction algorithm and
it was preferred because it could be organized in a way
that the representation of the curves was made clear and
as close as possible to the raw data from [2].

5 Results and analysis

In order to demonstrate the capabilities of the algorithm,
curves were created using the curve editor with the pur-
pose of generating specific and controlled situations (all
tests were carried out considering a constant distance
between slices). A set of curves was confectioned aim-
ing to create many possibilities of branching to exercise
the influence of the∆ parameter.

The first set of curves generated (see Figure 8) pro-
duced many situations of connection and non-connection
as well as top and bottom faces.

In Figure 9, another set of curves at various slices
can be seen (a) which is also the result of performing
∆-connection with∆ equals to 0. As∆ increases, more
(b) and more (c) connections are formed at consecutive
slices. For a very large value of∆, all curves are con-
nected. These results are visually and functionally sim-
ilar to those obtained with other approaches (see Figure
5) but instead; the distance is Euclidean, fast and simple
to follow.

Once the proof-of-concept was validated, and some
visualization resources were refined in the application
(the list of curves that originated the object, its wire-
frame model and the rendered object), the behavior of
the∆-connection with real data was then, evaluated.

To do this, data available in [2] were converted to
XML and the Figures 10 to 13 were generated. These
figures shows at the left-hand side the set of slices used

Figure 9: Proving the Concept.

Figure 10: The Reconstruction of a Femur.

for the reconstruction process and, at the right-hand side
the complete reconstructed and rendered model.

An interesting case to highlight was the reconstruc-
tion of a heart, presented in Figure 13, formed by a set
of 1285 points distributed in30 slices.

In Figure 13, one notices that the top region of the
model possess a fair amount of curves which are close
to each other if compared to the rest of the model that
possesses fewer and larger curves. A model with these
features may have an undesirable result whatever the∆
value is because a given value can be good for large

Figure 11: The Reconstruction of Veins.



Figure 12: The Reconstruction of Lungs.

Figure 13: The 3D Reconstruction of a Heart.

curves but generate undesirable connections in the re-
gion of much smaller curves, as in Figure 13(a) where,
practically all the curves are connected to each other
(note the connection configuration inX in the superior
part of the Figure 13(a)).

On the other hand, defining a smaller value of∆,
in order to control the excess of connections between
small curves (top of the model in Figure 13(b)), may
result in the lack of connections in the region of larger
curves (as in the bottom part of Figure 13(b)).

Another analysis that was done was in relation to the
correspondence parameter∆ used to generate each one
of the real examples illustrated.

Figure 14 shows the minimum and maximum∆ val-
ues to each model. The dot in the scale refers to the
value of∆ that was chosen as satisfactory to generate
the desired connections. The lines refer to∆ values
for the femur, lungs, hear and veins reconstructions, re-
spectively. One notices that, to all cases, the value given
to∆ is small (approximately 10%) in relation to the dis-
tance interval[∆min,∆max]. This occurs because the

Figure 14: Chosen values for∆.

Figure 15: ∆-connection Time Performance.

connections were considered necessary only for those
curves that were really close to each other.

The case in which∆ was farther from the minimum
distance value was in reconstruction of a femur, where
the branching only occurs once and most of the slices
had only one curve that was always interpolated with
the curve from the next slice. It can be concluded that,
since it is desirable to interpolate only the curves that
are next to each other, the value of∆ will have the ten-
dency to be small when compared to the distance inter-
val.

∆-connection efficiency was measured and the graph-
ic on Figure 15 was generated presenting the elapsed
time (shown as the vertical axis) registered for several
models with a different number of points (shown as the
horizontal axis), up to40000 generated points.

The curve in Figure 15 shows that the∆-connection
algorithm has a nearly linear growing pattern with the
increase of the number of points. The graphic however,
refers to the total time of the algorithm that, besides
the correspondence analysis, also deals with the tiling
between curves (which was not covered in this paper
due to the lack of space).



The tiling algorithm used was a straight-forward one
that aims to connect every single point in one curve to
one in the corresponding curve of the other slice so that
a triangular face is generated. The search starts at any
point and an edge is created. Then, the reference point
for the edge construction alternate from one curve to
the other up to all points are connected and all possible
triangles between the slices are created.

The experiments were carried out on an AMD Athlon
1.3 GHz processor with 512 MB of video memory, with-
out a 3D acceleration card. All the data relating to the
results obtained, as well as the developed application
and the algorithm’ source code, are available at the web
[6].

As a functional analysus, it can be said that the algo-
rithm expects the input of a parameter that makes it flex-
ible to decide on the result of the reconstructed 3D ob-
ject, feature not commonly available in other solutions.
The parameter∆ is directly related to the distances be-
tween the centers of the curves, that is, the heuristics in-
fers the proximity between the curves (a well accepted
heuristic for it happens in several solutions in the liter-
ature).

Both the distances calculation and the definition of
the center of the curves can be done using several al-
ternative forms (that weren’t explored in this work). To
this work decisions were taken in order to obtain per-
formance. To this end, as stated before, the square of
the curves distances projected in one of the planes (2D)
were used on distances comparisons instead of the square-
root (which is much more time demanding) of the dis-
tance in the 3D (where there is another axis do com-
pute) and; the centroid used was, in fact, the center of
the curve’s Bounding Box (and not an average of all
curve’s points). These decisions do not affect the accu-
racy of the results.

The∆ correspondence control value can be chosen
at random by the user, but the user receives informa-
tion about the limits for better guidance, avoiding the
choice of the parameter by simple trial-and-error. The
∆-connection has also the advantages of being inde-
pendent of the dimensions used to represent the curve;
gives the same result if executed top-down or bottom-
up, and; deals exclusively with the correspondence prob-
lem allowing fine-tuning without affecting other steps
of the reconstruction process.

6 Conclusion

A novel solution to the correspondence problem based
on the heuristic approach of three-dimensional recon-
struction has been presented. The solution considers
the Euclidean distance between the centers of the curves

(centroids) in consecutive planes. This solution has
speed, conceptual simplicity and, most importantly, the
flexibility as efficiency criteria. Flexibility is a major
advantage over other approaches and can be found in
(i) the control of the reconstruction result; (ii) in the
possibility to use several alternatives for distance calcu-
lation; as well as (iii) in a variety of ways to define the
curves’ centers.

The tests were performed with data generated by an
implemented curve editor and also with real data from
medical images. The algorithm generated satisfactory
visual results and presented linear performance with the
increase on the number of points and slices.

A limitation was observed when the algorithm is ap-
plied to models with great variability on the size and
distance between curves, which shows the need for fu-
ture work, experimenting alternatives that allow the def-
inition of different values to∆ for different regions of
the model and/or a way of automatically changing the
value of∆ depending of the size of the curve. For this,
however, one must further study the concept of what
can be understood as the size of the curve and how this
adaptation can occur.
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