
A Formal Model for Partitioning based Aspect Mining

GRIGORETA SOFIA (MOLDOVAN) COJOCAR1

GABRIELA SERBAN1

Babeş Bolyai University
Department of Computer Science

1, M. Kogalniceanu Street, Cluj - Napoca
RO-400085, Romania

1(grigo,gabis)@cs.ubbcluj.ro

Abstract. Separation of concerns is a very important principle of software engineering that, in its most
general form, refers to the ability to identify, encapsulate and manipulate those parts of a software system
that are relevant to a particular concept, goal, or purpose. Aspect Oriented Programming provides means
to encapsulate concerns which cannot be modularized using traditional programming techniques. These
concerns are called crosscutting concerns. Aspect Mining is a research direction that tries to identify
crosscutting concerns in legacy systems. The aim of this paper is to introduce a new formal model for
partitioning based aspect mining. Such a model was not defined in the literature, yet. The applicability
of the proposed formal model is studied on three different aspect mining techniques.

Keywords: formal model, aspect mining, partitioning.

(Received November 17, 2006 / Accepted March 27, 2007)

1 Introduction

Separation of concerns ([10]) is a very important prin-
ciple of software engineering that, in its most general
form, refers to the ability to identify, encapsulate and
manipulate those parts of a software system that are rel-
evant to a particular concept, goal, or purpose. Some
of the benefits of a good separation of concerns are: re-
duced software complexity, improved comprehensabil-
ity, limited impact of change, easy evolution and reuse.

Aspect Oriented Programming (AOP) ([5]) provides
means to encapsulate concerns which cannot be modu-
larized using traditional programming techniques. These
concerns are called crosscutting concerns. Logging and
exception handling are well known examples of cross-
cutting concerns. The aspect oriented paradigm offers
a powerful technology for supporting the separation of
crosscutting concerns. Such a concern is explicitly spec-
ified as an aspect. Aspects encapsulate the implemen-
tation of a crosscutting concern. A special tool, called
weaver, integrates a number of aspects to obtain the fi-

nal software system.
In order to apply AOP principles to legacy software

systems, it is necessary to analyze the existing imple-
mentation to discover the crosscutting concerns and to
refactor them into aspects. The research on aspect min-
ing refers to the identification and analysis of non-local-
ized crosscutting concerns throughout an existing legacy
software system ([3]). The goal of aspect mining is to
support aspect-oriented refactoring to improve software
comprehensibility, reusability and maintainability.

Crosscutting concerns in non AO systems have two
symptoms: code scattering and code tangling. Code
scattering means that the code that implements a cross-
cutting concern is spread across the system, and code
tangling means that the code that implements some con-
cern is mixed with code from other (crosscutting) con-
cerns.

A software system cannot contain only crosscutting
concerns. It is composed of core concerns and concerns
that crosscut them.

There is no general formal model for aspect mining

(grigo,gabis)@cs.ubbcluj.ro

defined in the literature, yet. In [7, 8] we have defined a
formal model for clustering based aspect mining tech-
niques. This is the only formal model defined for aspect
mining, so far.

The paper is structured as follows. In Section 2 we
briefly present the formal model for clustering based
aspect mining ([7, 8]), that is extended by our model.
Section 3 presents the new formal model for partition-
ing based aspect mining. The applicability of this for-
mal model on three different aspect mining techniques
is presented in Section 4. Some conclusions and further
work are given in Section 5.

2 Formal Model For Clustering Based Aspect
Mining

In this section we briefly present the formal model for
clustering based aspect mining that we have previously
introduced in [7, 8]. We aim at extending this model for
partitioning based aspect mining.

2.1 Definitions

Let S = {s1, s2, . . . , sn} be a software system, repre-
sented by a multiset of elements. An element si can be
a statement, a method, a class, a module, etc.

In the following, we will consider a crosscutting
concern as a multiset of elements that implement this
concern, C ⊂ S, C = {c1, c2, . . . , ccn}, C 6= ∅. The
number of elements in the crosscutting concern C is
cn = |C|. Let CCC = {C1, C2, . . . , Cq} be the set
of all crosscutting concerns that exist in the system S,
Ci ∩ Cj = ∅, ∀i, j, 1 ≤ i, j ≤ q, i 6= j. Let

NCCC = S\(
q⋃

i=1

Ci) be the multiset of elements from

the system S that do not implement any crosscutting
concerns. As a software system cannot be composed
only of crosscutting concerns, NCCC 6= ∅.

Definition 1 ([7, 8]) Partition of a system S.
The set K = {K1,K2, ...,Kp} is called a partition of
the system S iff:
(1) 1 ≤ p ≤ n
(2) Ki ⊆ S, Ki 6= ∅,∀ i, 1 ≤ i ≤ p

(3) S =
p⋃

i=1

Ki

(4) Ki ∩Kj = ∅, ∀ i, j, 1 ≤ i, j ≤ p, i 6= j.

In the following, we will refer to K as a set of clus-
ters and to Ki as the i-th cluster of K.

Formally, the problem of aspect mining can be viewed
as the problem of identifying a partition K of the soft-
ware system S.

A partition of a software system S can be obtained
by an aspect mining technique, as a clustering based
aspect mining one ([12]) or a graph based one ([11]).

Abstractly, a clustering based aspect mining tech-
nique T can be viewed as a tuple of functions:

T = (divide, select, order),

where:

• divide is a function that maps a software system S
to a partition K of the system S, i.e., divide(S) =
K. Consequently, the domain of divide is the set
of all software systems, and its codomain is the set
of partitions of software systems.

• select is a function that indicates the clusters from
K that will be analyzed by the user of the aspect
mining technique, i.e., select(S,K) = SK,SK ⊆
K.

• order is a function that indicates the order in which
the selected clusters (given by the function select)
will be analyzed by the user of the technique.

In order for a technique T , to be efficient, Equation
(1) should hold:

CCC = SK. (1)

In practice, the above equality is hard to be satisfied,
that is why, it is acceptable that CCC ⊆ SK. However,
as smaller the set SK \ CCC is, as efficient T is.

The following definitions classify the partitions ob-
tained by a clustering based aspect mining technique
considering the efficiency condition given by Equation
(1).

Definition 2 ([7, 8]) Good partition of a system S.
Being given a partition K = {K1,K2, ...,Kp} of the
system S, K is called a good partition of the system S
with respect to the set CCC = {C1, C2, ..., Cq} of its
crosscutting concerns, iff:
(1) p ≥ q
(2) ∀ C,C ∈ CCC, ∃KC ∈ K such that C ⊆ KC

and ∀ A,A ∈ CCC \ {C}, A ∩KC = ∅.

Intuitively, K is a good partition of the system S
if all the elements implementing a crosscuting concern
Ci (1 ≤ i ≤ q) are in the same cluster Kji

(1 ≤ ji ≤ p)
and this cluster does not contain elements from other
crosscutting concerns.

Definition 3 ([7, 8]) Optimal partition of a system S.
Being given a partition K = {K1,K2, ...,Kp} of the
system S, K is called an optimal partition of the system

S with respect to the set CCC = {C1, C2, ..., Cq} of
all crosscutting concerns, iff:
(1) p ≥ q
(2) ∀ C,C ∈ CCC, ∃KC ∈ K such that C = KC .

Intuitively, K is an optimal partition of the system S
if all the elements implementing a crosscuting concern
Ci (1 ≤ i ≤ q) are in the same cluster Kji (1 ≤ ji ≤ p)
and they are the only elements in Kji .

Remark 1 An optimal partition of a software system S
is a good partition in which the elements implementing
a crosscutting concern are the only elements in their
corresponding cluster.

2.2 Quality Measures

In this subsection we briefly present two quality mea-
sures that can be used to determine if a partition K of a
software system S is optimal with respect to its set of
crosscutting concerns CCC. The proofs of Lemma 1,
Lemma 2, and Theorem 4 can be found in [7, 8].

Definition 4 ([7, 8]) DISPersion of crosscutting con-
cerns - DISP.
The dispersion of the set CCC in the partition K, de-
noted by DISP (CCC,K), is defined as

DISP (CCC,K) =
1

|CCC|

|CCC|∑
i=1

disp(Ci,K). (2)

In (2) disp(Ci,K) is the dispersion of a crosscutting
concern Ci and is defined as:

disp(Ci,K) =
1

|DCi(K)|
, (3)

where

DCi(K) = {k | k ∈ K and k ∩ Ci 6= ∅}. (4)

DCi is the set of clusters that contain elements from Ci.

DISP (CCC,K) defines the dispersion degree of
crosscutting concerns in clusters. For a crosscutting
concern C, disp(C,K) indicates the number of clusters
that contain elements belonging to C.

Lemma 1 ([7, 8]) If K is a partition of the software
system S and CCC is the set of crosscutting concerns
in S, then inequality (5) holds:

0 < DISP (CCC,K) ≤ 1. (5)

Remark 2 Larger values for DISP indicate better par-
titions with respect to CCC, meaning that DISP has
to be maximized.

Definition 5 ([7, 8]) DIVersity of a partition - DIV.
The diversity of a partition K with respect to the set
CCC, denoted by DIV (CCC,K), is defined as

DIV (CCC,K) =
1
|K|

|K|∑
i=1

div(CCC, Ki). (6)

div(CCC, k) is the diversity of a cluster k ∈ K and is
defined as:

div(CCC, k) =
1

|Vk|+ τ(k)
(7)

where

Vk = {C | C ∈ CCC and k ∩ C 6= ∅} (8)

is the set of crosscutting concerns that have elements in
k, and

τ(k) =
{

1 if k ∩NCCC 6= ∅
0 if k ∩NCCC = ∅. (9)

τ(k) is 1 if the cluster k contains elements that do
not implement any crosscutting concerns, and 0 other-
wise.

DIV (CCC,K) defines the degree to which each
cluster contains elements from different crosscutting con-
cerns or elements from other concerns.

Lemma 2 ([7, 8]) If K is a partition of the software
system S and CCC is the set of crosscutting concerns
in S, then inequality (10) holds:

0 < DIV (CCC,K) ≤ 1. (10)

Remark 3 Larger values for DIV indicate better par-
titions with respect to CCC, meaning that DIV has to
be maximized.

In the following we introduce Lemma 3 that gives
a necessary (but not sufficient) condition that must ex-
ist between the number p of elements of a partition K
and the number q of crosscutting concerns, in order to
obtain the maximum value for DIV .

Lemma 3 If K = {K1,K2, . . . ,Kp} is a partition of
a software system S, CCC = {C1, C2, . . . , Cq} is the
set of crosscutting concerns in S, and p ≤ q then
DIV (CCC,K) < 1.

Proof: We prove this lemma by contradiction. We sup-
pose that DIV (CCC,K) is 1.

From Definition 5, Equations (7), (8), and (9) we
have that:

0 < div(CCC, k) ≤ 1, ∀ k, k ∈ K. (11)

From Equation (6) and inequality (11) it follows
that:

DIV (CCC,K) = 1 ⇔ div(CCC, k) = 1, ∀k, k ∈ K.
(12)

From (8) and (9) we have that |Vk| ∈ N and τ(k) ∈
{0, 1}, so

|Vk|+ τ(k) ∈ N. (13)

Based on (7) and (13) we have that ∀k, k ∈ K,
div(CCC, k) = 1 iff |Vk|+ τ(k) = 1.

Using (8) and (9) it follows that:

∀ k, k ∈ K, |Vk|+ τ(k) = 1 iff

|Vk| = 1 and τ(k) = 0 (14)

or

|Vk| = 0 and τ(k) = 1. (15)

Since DIV (CCC,K) = 1, from (12), (14), and
(15) we have that: there exists a t, 0 ≤ t ≤ p and two
subsets SK1 and SK2 of K, such that:

(i) K = SK1 ∪ SK2 and SK1 ∩ SK2 = ∅;

(ii) |SK1| = t and |SK2| = p− t;

(iii) ∀ k, k ∈ SK1, |Vk| = 0 and τ(k) = 1;

(iv) ∀ k, k ∈ SK2, |Vk| = 1 and τ(k) = 0.

As NCCC 6= ∅, it must exist at least one k ∈ K
such that k∩NCCC 6= ∅, which implies that τ(k) = 1
(from (9)). We can deduce that:

|SK1| 6= 0 and t ≥ 1. (16)

From definition of Vk and (iv) it follows that each
cluster from SK2 contain elements from only one cross-
cutting concern. As the elements of a crosscutting con-
cern can appear in two different clusters, we have that:

q ≤ p− t. (17)

Using (16) we have that:

p− t < p. (18)

From (17) and (18) it follows that: q ≤ p − t < p,
but p ≤ q (from the lemma’s hypothesis), which is a
contradiction. It follows that our hypothesis
DIV (CCC,K) = 1 is false. Consequently,
0 ≤ DIV (CCC,K) < 1, and this concludes our proof.
ut

Theorem 4 gives the necessary and sufficient condi-
tions for a partition of a software system to be optimal
with respect to its set of crosscutting concerns.

Theorem 4 ([7, 8]) If K is a partition of the software
system S and CCC is the set of crosscutting concerns
in S, then K is an optimal partition iff
DISP (CCC,K) = 1 and DIV (CCC,K) = 1.

3 Formal Model For Partitioning Based Aspect
Mining

The results obtained by a clustering based aspect min-
ing technique T , as the technique introduced in [12],
do not contain empty clusters, but if other methods are
used to divide (split) the software system, it is possible
to obtain empty clusters. That is why, in this section
we extend the formal model for clustering based as-
pect mining, considering the possibility to obtain empty
clusters in a partition. For this purpose, we introduce
the notion of division of a software system S, that lessens
the conditions imposed for a partition.

Definition 6 Division of a system S.
The set D = {D1, D2, ..., Dr} is called a division of
the system S = {s1, s2, . . . , sn} if the following condi-
tions hold:
(1) 1 ≤ r ≤ n
(2) Di ⊆ S, ∀i, 1 ≤ i ≤ r

(3) S =
r⋃

i=1

Di

(4) Di ∩Dj = ∅, ∀ i, j, 1 ≤ i, j ≤ r, i 6= j.

A division is similar to a partition, but it may contain
empty elements.

It can be proved that for any division D of a soft-
ware system S, a partition can be obtained. Lemma 5
given below indicates the way to obtain a partition of a
software system from a division of it.

Lemma 5 If D is a division of the software system S,
then 〈D〉 = {d | d ∈ D, d 6= ∅} is a partition of S.

Proof: From the definition of a division D and the def-
inition of 〈D〉 we have the following:

(i) 〈D〉 ⊆ D implies that |〈D〉| ≤ |D|. It follows
that 1 ≤ |〈D〉| ≤ r, and as r ≤ n, we have 1 ≤
|〈D〉| ≤ n.

(ii) ∀d, d ∈ 〈D〉 we have that d ∈ D and d 6= ∅. As
∀d, d ∈ D, d ⊆ S it follows that ∀d, d ∈ 〈D〉, d ⊆
S and d 6= ∅.

(iii) ∀Di, Dj ∈ 〈D〉 ⇒ Di, Dj ∈ D
Definition 6

=⇒ Di ∩
Dj = ∅.

From (i), (ii) and (iii) it follows that the conditions
(1), (2) and (4) from Definition 1 are satisfied. Now we
just have to prove that S =

⋃
d∈〈D〉

d.

From Definition 6 we have:

S =
⋃

d∈D

d = (
⋃

d∈D, d 6=∅

d) ∪ (
⋃

d∈D, d=∅

d). (19)

But ⋃
d∈D, d=∅

d = ∅ (20)

and
{d | d ∈ D, d 6= ∅} = 〈D〉 (21)

From Equations (19), (20) and (21), it follows that S =⋃
d∈〈D〉

d, meaning that condition (3) from Definition 1 is

also satisfied and this concludes our proof. ut
The following definitions classify the divisions ob-

tained by an aspect mining technique considering the
efficiency condition (Equation (1)).

Definition 7 Good division of a system S.
Being given a division D = {D1, D2, ..., Dp} of the
system S, D is called a good division of the system S
with respect to the set CCC = {C1, C2, ..., Cq} of its
crosscutting concerns, iff 〈D〉 is a good partition of the
system S.

Definition 8 Optimal division of a system S.
Being given a division D = {D1, D2, ..., Dp} of the
system S, D is called an optimal division of the system
S with respect to the set CCC = {C1, C2, ..., Cq} of
its crosscutting concerns, iff 〈D〉 is an optimal partition
of the system S.

In the following, the quality measures DISP and
DIV from Subsection 2.2 are redefined for divisions.
We denote by CCC the set of crosscutting concerns
from the software system S.

Definition 9 DISPersion of crosscutting concerns in
a division- DISPDV .
The dispersion of the set CCC in a divisionD of a soft-
ware system S, denoted by DISPDV (CCC,D), is de-
fined as

DISPDV (CCC,D) =
1

|CCC|

|CCC|∑
i=1

dispDV (Ci,D).

(22)
In (22) dispDV (Ci,D) is the dispersion of a crosscut-
ting concern Ci and is defined as:

dispDV (Ci,D) =
1

|DCi(D)|
, (23)

where

DCi(D) = {d | d ∈ D and d ∩ Ci 6= ∅}. (24)

DCi
is the set of elements from D that contain elements

which are also in Ci.

Lemma 6 If S is a software system, CCC is the set of
crosscutting concerns from S, and D is a division of S,
then

DISPDV (CCC,D) = DISP (CCC, 〈D〉).

Proof: In order to prove that DISPDV (CCC,D) =
DISP (CCC, 〈D〉), we will prove that:

∀C, C ∈ CCC, DC(D) = DC(〈D〉). (25)

From the definition of 〈D〉 we have that 〈D〉 ⊆ D.
From Equations (4) and (24) it follows that

∀C,C ∈ CCC, DC(〈D〉) ⊆ DC(D).

But, from the definition of 〈D〉 we also have that
∀d, d ∈ D \ 〈D〉, d = ∅. We deduce that ∀d, d ∈
D \ 〈D〉, d /∈ DC(D) (as d ∩ C = ∅), ∀C ∈ CCC.
So, Equation (25) is proven.

From Equations (3), (23), and (25) we have that:

dispDV (C,D) = disp(C, 〈D〉) ∀C ∈ CCC. (26)

From Equations (2), (22) and (26) it follows that

DISPDV (CCC,D) = DISP (CCC, 〈D〉),

and this concludes our proof. ut

Definition 10 DIVersity of a division - DIVDV .
The diversity of a division D with respect to the set
CCC, denoted by DIVDV (CCC,D), is defined as

DIVDV (CCC,D) =
1

|〈D〉|

|D|∑
i=1

divDV (CCC, Di).

(27)
divDV (CCC, d) is the diversity of an element of the
division d ∈ D and is defined as:

divDV (CCC, d) =
{ 1

|Vd|+τ(d) if d 6= ∅
0 otherwise

(28)

where Vd and τ(d) are defined as in Definition 5.

Lemma 7 If S is a software system, CCC is the set of
crosscutting concerns from S, and D is a division of S,
then

DIVDV (CCC,D) = DIV (CCC, 〈D〉).

Proof: In order to prove Lemma 7, based on Equations
(6) and (27), we have to prove the following equality:

∑
d∈〈D〉

div(CCC, d) =
|D|∑
i=1

divDV (CCC, Di). (29)

We have that:
|D|∑
i=1

divDV (CCC, Di) = X + Y (30)

where:

X =
∑

d∈D, d 6=∅

divDV (CCC, d)

and
Y =

∑
d∈D, d=∅

divDV (CCC, d).

From (28) we deduce that
divDV (CCC, d) = div(CCC, d) if d 6= ∅. It follows
that:∑

d∈D, d 6=∅

divDV (CCC, d) =
∑

d∈D, d 6=∅

div(CCC, d).

Consequently, we have:∑
d∈D, d 6=∅

div(CCC, d) =
∑

d∈〈D〉

div(CCC, d). (31)

From (28) we also have that divDV (CCC, d) = 0,
∀d, d ∈ D, d = ∅. It follows that:∑

d∈D, d=∅

divDV (CCC, d) = 0. (32)

From Equations (30), (31), and (32) we have that:

|D|∑
i=1

divDV (CCC, Di) =
∑

d∈〈D〉

div(CCC, d).

So, equality (29) is proven, and this concludes our
proof. ut

From the above lemmas we can conclude that the
properties (characteristics) of partitions of a software
system S, are also true for divisions of S, as for any
division D of S, we can obtain the corresponding parti-
tion 〈D〉.

As the problem of aspect mining can be viewed as
the problem of finding a partition or a division of a soft-
ware system S, we introduce the notion of partitioning
aspect mining technique.

Definition 11 Partitioning aspect mining technique.
Let T be an aspect mining technique and S a software
system to be mined. We say that T is a partitioning
aspect mining technique if the result obtained by T is
a partition K or a division D of S.

Based on Definition 11, the aspect mining techniques
that will be analyzed in Section 4 are all partitioning as-
pect mining techniques.

4 Applicability

In this section we describe how the formal model in-
troduced in Section 3 can be applied to different aspect
mining techniques.

In order to emphasize the generality of the proposed
formal model, we are focusing only on aspect mining
techniques that do not use clustering.

4.1 Aspect Mining using Event Traces

This technique was introduced in [1] and [2] and it de-
tects crosscutting concerns in legacy systems based on
dynamic analysis. We will denote this technique by
TEvents.

The analysis uses program traces that are generated
in different program executions as underlying data pool.
These traces are then investigated for recurring execu-
tion patterns based on different constraints, such as the
requirement that the patterns have to exist in different
calling contexts in the program trace. The authors have
defined four execution relations that may exist between
two methods in a program trace: outside-before-execu-
tion relation (denoted by ⇀), outside-after-execution
relation (denoted by ↼), inside-first-execution relation
(denoted by ∈>) and inside-last-execution relation (de-
noted by∈⊥) and two constraints: uniformity and cross-
cutting. The following notations are used in this ap-
proach ([1, 2]):

• S<rel> denotes the multiset of all < rel >-rela-
tions that exist in the program trace, where
< rel > ∈ {⇀, ↼, ∈>, ∈⊥}.

• U<rel> denotes the multiset of all < rel >-rela-
tions that satisfy the uniformity constraint, where
< rel > ∈ {⇀, ↼, ∈>, ∈⊥}.

• R<rel> denotes the set of all < rel >-relations
from U<rel> that also satisfy the crosscutting con-
straint, where < rel > ∈ {⇀, ↼, ∈>, ∈⊥}.

The sets R<rel> are searched to find crosscutting
concerns (< rel > ∈ {⇀, ↼, ∈>, ∈⊥}).

This technique can be formalized using the proposed
formal model as follows:

1. The elements of the software system S are execu-
tion relations from the program trace:

S = S↼ ∪ S⇀ ∪ S∈> ∪ S∈⊥ .

2. In our model, TEvents =

(divideEvents, selectEvents, orderEvents),

where:

• divideEvents(S) = D, where
D = {R↼, R⇀, R∈> , R∈⊥ , RT}.
R↼, R⇀, R∈> , R∈⊥ are the sets of execu-
tion relations that satisfy the crosscutting con-
traint, and RT = S \ (R↼ ∪ R⇀ ∪ R∈> ∪
R∈⊥). The result of the divide function is a
division as some (or all) sets R↼, R⇀, R∈> ,
R∈⊥ may be empty.

• selectEvents(S,D) = {R↼, R⇀, R∈> , R∈⊥}
• orderEvents(D) = 1D, where by 1D we de-

note the identity function. No particular or-
der is specify for the analysis of the results.

3. The variation limits for the quality measures are as
follows:

DISPDV
1
5 ≤ DISPDV (CCC,D) ≤ 1, because
DC(D) ∈ {1, 2, 3, 4, 5}, ∀C ∈ CCC.

DIVDV

The interval remains the same, with one re-
mark. If |CCC| ≥ 5, then
DIVDV (CCC,D) < 1, based on Lemma 3,
and an optimal division cannot be obtained.

4.2 Aspect Mining using Fan-in Analysis

Fan-In Analysis ([6]) is another technique that can be
formalized using the formal model proposed in Section
3. We will denote this technique by TFanIn.

The considered technique is based on determining
methods that have a high fan-in value, in order to iden-
tify candidate aspects in a number of open-source Java
systems. The fan-in value of a method m is defined
as the number of distinct method bodies that invoke m
([4]).

TFanIn can be formalized using the proposed for-
mal model as follows:

1. The elements of the software system S are meth-
ods from it:

S = {m1,m2, . . . ,mn},

where mi is a method from the system.

2. In our model, TFanIn =

(divideFanIn, selectFanIn, orderFanIn),

where:

• divideFanIn(S) = D, whereD = {D1, D2},
D1 = {m ∈ S | fan−in(m) ≥ threshold},
D2 = {m ∈ S|fan− in(m) < threshold}.

The result is a division, as D1 or D2 may be
empty if the value of the threshold is not
properly chosen. The developers of the tech-
nique consider 10% of |S| as an appropriate
value for the threshold.

• selectFanIn(S,D) = {D1}.

• orderFanIn(D) = {D1, D2}, and the ele-
ments of D1 are analyzed in descending or-
der by their fan-in value.

3. The variation limits for the quality measures are as
follows:

DISPDV
1
2 ≤ DISP (CCC,D) ≤ 1 as |DC(D)| ∈
{1, 2}, ∀C ∈ CCC.

DIVDV

0 < DIV (CCC,D) ≤ 1+|CCC|
2·|CCC| .

Based on Lemma 3, if |CCC| ≥ 2, then
DIV (CCC,D) < 1 and an optimal division
cannot be obtained.

4.3 A Graph Based Approach in Aspect Mining

In ([11]) a graph based approach in Aspect Mining is
introduced. Let us denote this technique by TGraph.
TGraph can also be formalized using the proposed model.

The basic idea of this technique is to determine meth-
ods that are similar. The similarity between two meth-
ods is computed using different distance metrics and
the vector space model, where each method m is char-
acterized by a l-dimensional vector with real values:
m = (a1, a2, . . . , al). The approach is to construct a
graph (denoted by MGS) between the methods of the
software system, to determine the connex components
of this graph, called clusters, and then to identify cross-
cutting concerns in the obtained clusters.

TGraph can be formalized using the proposed formal
model as follows:

1. The elements of the software system S are meth-
ods from it:

S = {m1,m2, . . . ,mn},

where mi is a method from the system.

2. In our model, TGraph =

(divideGraph, selectGraph, orderGraph),

where:

• divideGraph(S) = K, where
K = {K1,K2, . . . ,Kr}, r ≤ n and Ki is a
connex component of the graph MGS , ∀i,
1 ≤ i ≤ r. The result of this function is a
partition because a connex component of a
graph cannot be empty.

• selectGraph(S,K) = {Ki1 ,Ki2 , . . . ,Kiz
}.

z ≤ r, and the distance between Kij and 0l is
greater than a given threshold, ∀j, 1 ≤ j ≤ z.
Here 0l represents the l-dimensional vector
having all the components 0.

• orderGraph(K) = {Ki1 ,Ki2 , . . . ,Kir
}. The

obtained clusters are analyzed in descending
order by their distance to the 0l point.

3. The limits for the quality measures remain unmodi-
fied (as given by Lemma 1 and Lemma 2), as the
number of clusters obtained by the technique de-
pends on the graph MGS .

5 Conclusions and Further Work

In this paper we have presented a new formal model for
partitioning aspect mining. Two new quality measures
for evaluating the results of partitioning aspect mining
techniques were defined. The proposed quality mea-
sures are used to evaluate the optimality degree of the
results obtained by a partitioning aspect mining tech-
nique.

In order to show its generality, the proposed formal
model was applied to three different aspect mining tech-
niques ([2], [6], [11]).

Further work can be done in the following direc-
tions:

• To generalize the formal model to consider the case
when two crosscutting concerns have common el-
ements.

• To identify other possible measures for evaluating
partitioning approaches in aspect mining.

• To study the applicability of our model to other
aspect mining techniques ([9], [13]).

References

[1] Breu, S. Aspect Mining Using Event Traces. Mas-
ter’s thesis, University of Passau, Germany, March
2004.

[2] Breu, S. and Krinke, J. Aspect Mining Using
Event Traces. In Proceedings of International
Conference on Automated Software Engineering
(ASE), pages 310–315, 2004.

[3] Bruntink, M., van Deursen, A., van Engelen,
R., and Tourwe, T. On the Use of Clone
Detection for Identifying Crosscutting Concern
Code. IEEE Transactions on Software Engineer-
ing, 31(10):804–818, 2005.

[4] Henderson-Sellers, B. Object-oriented metrics:
measures of complexity. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1996.

[5] Kiczales, G., Lamping, J., Menhdhekar, A.,
Maeda, C., Lopes, C., Loingtier, J.-M., and Ir-
win, J. Aspect-Oriented Programming. In
Proceedings of European Conference on Object-
Oriented Programming, volume 1241, pages 220–
242. Springer-Verlag, 1997.

[6] Marin, M., van, A., Deursen, and Moonen, L.
Identifying Aspects Using Fan-in Analysis. In
Proceedings of the 11th Working Conference on
Reverse Engineering (WCRE2004), pages 132–
141. IEEE Computer Society, 2004.

[7] Moldovan, G. S. and Serban, G. A Formal Model
for Clustering Based Aspect Mining. In Pro-
ceedings of 8th WSEAS International Conference
on Mathematical Methods and Computational
Techniques in Electrical Engineering (MMACTEE
’06), pages 70–75, 2006.

[8] Moldovan, G. S. and Serban, G. Clustering Based
Aspect Mining Formalized. WSEAS Transactions
on Computers, 6(2):199–206, February 2007.

[9] Morales, O. A. M. Aspect Mining Using Clone
Detection. Master’s thesis, Delft University of
Technology, The Netherlands, August 2004.

[10] Parnas, D. L. On The Criteria To Be Used in De-
composing Systems Into Modules. Communica-
tions of the ACM, 15(12):1053–1058, 1972.

[11] Serban, G. and Moldovan, G. S. A Graph Al-
gorithm for Identification of Crosscutting Con-
cerns. Studia Universitatis Babes-Bolyai, Infor-
matica, LI(2):3–10, 2006.

[12] Serban, G. and Moldovan, G. S. A new k-
means based clustering algorithm in aspect min-
ing. In Proceedings of 8th International Workshop
on Symbolic and Numeric Algorithms for Scien-
tific Computing (SYNASC’06), Timisoara, Roma-
nia, pages 69–74. IEEE Computer Society Press,
2006.

[13] Tonella, P. and Ceccato, M. Aspect Mining
through the Formal Concept Analysis of Exe-
cution Traces. In Proceedings of the IEEE
Eleventh Working Conference on Reverse Engi-
neering (WCRE 2004), pages 112–121, November
2004.

	Introduction
	Formal Model For Clustering Based Aspect Mining
	Definitions
	Quality Measures

	Formal Model For Partitioning Based Aspect Mining
	Applicability
	Aspect Mining using Event Traces
	Aspect Mining using Fan-in Analysis
	A Graph Based Approach in Aspect Mining

	Conclusions and Further Work

