
Metrics-based Analysis of Requirements for Object-Oriented
systems: An empirical approach

ANANYA KANJILAL 1

GOUTAM KANJILAL 2

SWAPAN BHATTACHARYA 3

1Dept. of Information Technology, B. P. Poddar Institute of Management and Technology,
137, V.I.P Road, Kolkata - 700052, India

ag_k@rediffmail.com
2Cognizant Technology Solutions, Plot GN-34/3, Sector V,

Salt Lake Electronic Complex, Kolkata - 700091, India
goutam.kanjilal@cognizant.com

3National Institute of Technology, Durgapur - 713209, India
bswapan2000@yahoo.co.in

Abstract. In an object-oriented environment, it is necessary to ensure that all the requirements are ad-
dressed in the design as well as implemented in a consistent manner in UML diagrams like sequence
and class diagrams, which model the behavioral and structural aspects of the system. Metrics, which
measures the degree of coverage of requirements and the extent of consistency between related models,
will be a powerful tool for developers to have a quantitative feedback about the correctness of a sys-
tem. We have proposed a new set of metrics namely Requirement Coverage Metrics (RCM) and Design
Compliance Metrics (DCM) based on UML design models. RCM indicates the extent of coverage of
requirements in design and highlights any missing requirements or inadequate coverage in design. It also
helps in measuring progress of a project and thus helps in project management. DCM verifies whether
the requirements that have been covered in design have been consistently realized in sequence and class
diagrams or not. A case study has been considered and calculation of RCM and DCM has been done
for illustration of our approach. We have also discussed implementation methodology using an XML
based approach and in this paper we present implementation of a part of the metrics suite (DCM) for
substantiation of our approach.

Keywords: Metrics based analysis, Requirement metrics, Requirement analysis, Design Compliance,
Consistency, Requirement coverage.

(Received February 01, 2008 / Accepted March 26, 2008)

1 Introduction

In an object-oriented environment, requirements are mod-
eled as use cases and they are implemented as methods
of various classes defined in the class diagram and used
in the behavioral diagrams. It is necessary to ensure that
each and every requirement is addressed as use case and
every event of the use cases are implemented as meth-
ods of classes and used in behavioral diagrams in a con-

sistent manner. In this paper, we have proposed a met-
rics based methodology to ensure requirement coverage
and consistency of its implementation in design. Met-
rics act as indicators that provide a quantitative feed-
back to software developers about various aspects of
the software and pinpoint problem areas in their sys-
tems. We have proposed a new set of metrics named Re-
quirement Coverage metrics (RCM) and Design Com-

ag_k@rediffmail.com
goutam.kanjilal@cognizant.com
bswapan2000@yahoo.co.in

pliance metrics (DCM) and presented methods to derive
the metrics from a given set of requirements and UML
design models - use case, sequence and class diagrams.
We have presented analysis based on them to provide
a quantitative feedback regarding coverage of require-
ments and consistency of its implementation such that
developers can take steps before coding starts. Since
changes are less expensive the earlier in the develop-
ment lifecycle they are made, this can save the project
considerable time and money. An XML based proto-
type has been developed that implements this approach.
Observations for one of the metrics- DCM have been
presented to illustrate our work.

2 RELATED WORK

This section presents a review of some of the research
works that have been done in the area of coverage of
requirements and consistency verification of UML de-
signs. Kim et al. in [11] proposes a set of metrics ap-
plicable for UML models. They have defined a large
set of metrics separately for model, classes, messages,
use case, etc and made a comparison with the more
commonly used CK metrics [4]. The metrics suite has
been developed on the elements used in the UML mod-
els and can be use to predict various characteristics of
a project during early phases of software development.
Some works as in [19], [2] has developed metrics to
ensure coverage of requirements. In [19] high-level re-
quirements expressed formally have been used to define
structural coverage metrics as well generate requirement
based test cases that can be directly traceable to require-
ments. In [2], a specification based coverage metrics
has been defined to evaluate test sets. They focus on
test coverage, however we focus on coverage of require-
ments in design models. In [9] a metrics suite is defined
to measure the quality of design like dynamic complex-
ity and object coupling based on measures from UML
architectural specification diagrams. Several works have
proposed methodologies for verification of consistency
within the UML models. Some like [13], [8], [21],
[10], [12], [16], [14], [7], [17], [6], [20], [18] have used
formal techniques for verification. Formal techniques
range from Object-Z in [12], algebra in [16], attributed
graph grammars in [18] focusing mainly on class di-
agrams and behavioral diagrams. An algorithmic ap-
proach to a consistency check between UML Sequence
and State diagrams is described in [3] while [14] pro-
poses a declarative approach using process algebra CSP
for consistency checking between sequence and state-
charts. In [5] an approach for automated consistency
checking named VIEWINTEGRA has been developed
and in [15] strategies to ensure consistency in object-

oriented models has been developed by integrating el-
ements in UML Tool Object Technology Workbench.
Our work is closely related to some these works as in
[10], [20] and [18] as far as domain of work i.e. class
and sequence diagrams are concerned. However, most
of these works focus on verifying consistency whereas
our work focuses on quantitative analysis and measure-
ment of design to indicate the degree of consistency be-
tween these two diagrams apart from determining ex-
tent of requirement coverage. It differs from [11] in the
sense that here they have defined metrics separately for
each UML artifact like message, use case, etc whereas
we have defined metrics that consider related UML mod-
els from the perspective of requirement analysis. Our
metrics will be able to measure the extent of require-
ment implementation in design and also the degree of
consistency within the design.

3 SCOPE OF WORK

In this paper we have proposed a new set of metrics
based on requirements and UML design models for an
object oriented system which will help in measuring the
degree of coverage of requirements in design and the
degree of compliance and consistency of design mod-
els with respect to requirements. In an object-oriented
system, use case diagrams of UML form the basis of
requirements and Class and Sequence diagrams model
the implementation of use cases (requirements) in the
design showing the static and dynamic aspects respec-
tively. We have proposed RCM and DCM, which will
address two important issues -
1) Measuring coverage of requirements and ensuring
that all use cases are at least implemented in a sequence
diagram i.e. requirements are captured in the design
2) Measuring the extent of consistency between the Class
and Sequence diagrams that will ensure that the require-
ments have been consistently implemented in design
and design is compliant with the given set of require-
ments.
We have used XML as a standard for expressing the
UML use case, class and sequence diagrams in a struc-
tured manner based on the XMI standard so that the
metrics can be automatically calculated. We have con-
sidered a library system as our example and our ap-
proach has been applied to this case study and metrics
have been calculated. A prototype has been described
that shows implementation of one of the metrics.

4 UML DIAGRAM RELATIONSHIPS

The UML model consists of several diagrams that de-
pict overlapping aspects of an object-oriented system.

In our work we have considered Use case, Class and Se-
quence diagrams that show the requirements and their
implementations within the design. We have used E-

Figure 1: Requirement to UML model mapping: UML Relationships

R representation in Fig 1 to show these relationships
between Requirements, Use cases, Sequence, Methods
and Classes.
The relationship between Use case, Sequence and Class
diagrams are based on the existence of common ele-
ments between the diagrams. Thus every requirement
is eventually implemented through a set of methods de-
fined in Classes (as shown by dotted line). This forms
the basis of definition of RCM & DCM discussed in
next section.

5 PROPOSED WORK

In this section we define metrics RCM and DCM, which
will be useful in requirement management as well as
project management of object-oriented software projects.
We have formulated the metrics based on the relation-
ships that has been identified in earlier section. Met-
rics are measurements based on project parameters that
serve to give a quantitative measurement of various as-
pects about the system and can be effectively used to
control and manage projects and processes.
Definition: Requirement Coverage
A Requirement is fulfilled or realized through a num-
ber of methods defined in classes (as indicated by the
dotted line in Fig 1). We define coverage as the entire
path of a requirement from Requirement document to
use case and through sequence diagram to class meth-
ods. If the path is incomplete at any point, coverage is
not 100 per cent. The Requirement Coverage metrics
(RCM) is thus a measure of the extent of traceability of
requirements.
Definition: Design Compliance
A design is compliant with requirements if the behav-
ioral model (here sequence diagram) uses methods which
are identically defined (i.e. signatures are same) in the

structural model (here Class diagram) for realization of
a set of use cases modeling a requirement. The Design
Compliance Metrics (DCM) is thus a measure of the
extent of consistency between sequence and class dia-
grams for a use case.

5.1 Notations used

In this section the set of three metrics is defined which
will be useful in requirement management as well as
project management of object-oriented software projects.
The following notations are used during metrics defini-
tions:
R - Set of Requirements
U - Set of Use cases
UC - Set of Use case diagrams
C - Set of Classes
CL - Set of Class diagrams
SQ - Set of Sequence diagrams
M - Set of Methods (Methods include name and param-
eter)
N(S) - Cardinality or Size of a set i.e. number of ele-
ments in the set S.

5.2 Requirement Coverage Metrics (RCM)

UR: The set of unique use cases defined in use case di-
agram corresponding to a particular requirement
UR = {ui | ui ∈ U,U ∈ UC, ui implementsri, ri ∈
R}
If this set is empty, it indicates that requirements have
not been captured in the use case diagrams of UML.
SU : The set of sequence diagrams used to implement a
particular use caseui in UUC

SU = {sqi | sqi ∈ SQ, sqi implementsui, uiεUR}
If this set is empty it means that the use case U has not
been implemented in any sequence diagrams.
U :The set of implemented use cases i.e. those use cases
that have at least one corresponding sequence diagram
for implementation (i.e. for whichSU 6= φ)
MS : The set of methods used in all the sequence dia-
grams for all use cases for a particular requirement.
MS = {mi | mi ∈ sqi, sqi ∈ SU}
If this set is empty it means that the sequence diagram
S has not used any methods.
MC : The set of methods defined in a class diagram
MC = {mj | mj ∈ M,mi ∈ ci, ci ∈ C,C ∈ CL}
MS−C : The set of implemented methods i.e. methods
that are used in a sequence diagram as well as defined
in any class of class diagram.
MS−C = {mi | mi ∈ MS and mi ∈ MC}
The coverage of a requirement i.e. the path of its defini-
tion in requirement document till its implementation as

methods in Class diagram has several parts. Thus RCM
consists of
1) Requirements-Use Case coverage (RUC)
This factor indicates whether a requirement has been
mapped to use cases or not. It can be either 0 or 1. If
there is at least one use case for a requirement, RUC is
1 otherwise 0.
This measures trace of requirements into use cases.
2) Use Case-Sequence coverage (USC)
The ratio of number of use cases implemented in se-
quence diagrams to the total number of use cases for a
particular requirement
USC = N(U)/N(UR)
This measures trace of use cases into sequence diagrams.
3) Sequence-Class coverage (SCC)
The ratio of number of implemented methods (i.e. meth-
ods used in sequence as well as defined in class) to total
number of methods used in a sequence diagram
SCC = N(MS−C)/N(MS)
This measures trace of sequence methods into class di-
agrams.
Significance of RUC, USC and SCC
The coverage factors assume values within 0 and 1. A
value of 1 indicates 100 per cent implementation and 0
indicates no implementation.
If RUC is 0, it is understood that USC and SCC will be
zero. This signifies that if no requirement has been im-
plemented as use cases (RUC = 0), naturally, use case-
sequence coverage and successively sequence-class cov-
erage will have no meaning.
Likewise, if USC is 0, it is understandable that SCC
will also be zero. This signifies that if no use case
has been implemented as sequence diagrams, naturally,
sequence-class coverage will have no meaning.
RCF (Requirement Coverage Factor)
This defines requirement coverage factor i.e. the extent
of coverage of a requirement. We define RCF as

RCF =
RUC + USC + SCC

3
This depends upon the coverage of requirement in each
of the successive phases of its implementation in use
case, sequence and class. We give equal importance to
all the trace paths (Requirements-Use case, Use Case-
Sequence, Sequence-Class) and hence it is defined as an
average of all the coverage values in each of the phases.
Thus0 ≥ RCF ≤ 1
Significance of RCF
The value of RCF varies from 0 to 1.
A value of 0 indicates that all the coverage factors RUC,
USC and SCC are 0 i.e. requirements have not been
captured in the design (as use cases) at all. Since if
RUC=0, USC and SCC are 0

A value of 1 indicates that RUC, USC and SCC are all 1.
It means that all requirements have been implemented
as use cases and all the use cases have sequence dia-
gram implementations and all the methods used in the
sequence diagrams are defined in classes.
If RCF is neither 0 nor 1 that means there is incomplete
coverage. There may be three cases -
1) If SCC = 0, requirements can be traced to sequence
diagram methods but there is no corresponding method
definition in class for all the methods used.
2) If USC = 0, requirements can be traced to use cases
only but there is no corresponding sequence diagram
implementation for all the use cases.
3) If neither SCC nor USC is zero, then it indicates the
overall coverage of requirements.
Requirement Coverage Metrics
The RCM for a system is defined as the average of all
the RCF values for all the requirements taken together.

RCM =
Sum Total of RCF for all requirements

Total Number of requirements

=
∑n

Rid=1 RCF

N(R)

Thus RCM gives a quantitative measurement of extent
of coverage of requirements of a system in design.

5.3 Design Compliance Metrics (DCM)

Once the coverage of a requirement is determined, we
next consider those requirements that have been imple-
mented in sequence diagram i.e. U6= φ and naturally,
RUC 6= 0 and USC6= 0. We measure the extent of
consistency achieved in the implementation of these re-
quirements. The DCM value is calculated which deter-
mines whether the requirement is consistently imple-
mented in the design and measures the extent of con-
sistency between sequence and class diagrams i.e. be-
tween the structural and behavioral design. This is com-
puted for a particular use case and only for those use
cases where U6= φ
CSQ: The set of unique classes used in all the sequence
diagrams (for a use case) taken together (Classes whose
objects are used in sequence diagram)
CSQ = {ci | ci ∈ SQ}
CCL: The set of unique classes defined in class dia-
gram.
CCL = {cj | cj ∈ CL}
CD (Class Differential)
The class differential is computed for every class C used
in all the sequence diagrams used for implementing a
particular use case. It is defined as -
CD = i-j

(where i = 1 ifci ∈ CSQ, else i = 0
and j = 1 ifcj ∈ CCL, else j = 0)
Here i and j are used as indicators and can assume val-
ues 0 and 1. This simply indicates whether a class is
nonexistent or existent in a sequence diagram or a class
diagram respectively. Therefore for every class C, The
class differential is a measure of existence of a partic-
ular class in both the diagrams - structural and behav-
ioral.
Significance of CD
If CD=0, class is either present in sequence as well as
class diagram or else absent in both the diagrams.
If CD=1 then class is used in sequence diagram but not
defined in class diagram.
If CD=-1 then it means that class is defined in class di-
agram but not used in sequence diagram.
MSQ: The set of unique methods of a class used in all
the sequence diagrams used for realizing a particular
use case.
MSQ = {mi | mi ∈ SQ}
MCL: The set of unique methods defined for a specific
class in the class diagram.
MCL = {mi | mi ∈ CL}
MD (Method Differential)
The method differential is computed for every method
M belonging to class C of the system. It is defined as -
MD = i-j
(where i = 1 ifmi ∈ MSQ, else i = 0
and j = 1 ifmi ∈ MCL, else j = 0)
Here i and j are used as indicators and can assume val-
ues 0 and 1. This simply indicates whether a method is
nonexistent or existent in a sequence diagram or a class
diagram. Therefore for every method m of class C, the
method differential is a measure of existence of a par-
ticular method of a class in both the diagrams.
Significance of MD
If MD=0, method is present in sequence as well as class
diagram or else absent in both.
If MD=1 then method is used in sequence diagram but
not defined in class diagram.
If MD=-1 then it means that the method is defined in
class diagram but not used in sequence diagram.
1) UC (Underfined Classes)
The undefined class metrics gives a measure of number
of classes used in sequence diagrams but not defined in
class diagram.
UC = Σi (i stands forith class whose CD = 1)
This is the summation of all the classes having positive
class differentials.
2) CC (Consistent classes)
The consistent class metrics gives a measure of number
of classes, which have been defined as well as used in

sequence diagram.
CC =Σi (i stands forith class whoseCDi= 0)
This is the summation of all the classes having zero
class differentials.
3) CCF (Class Consistency Factor)
This factor gives a measure of consistency of the classes
used for implementation of a use case.
CCF = Consistent classes / Total Classes used
CC + UC = Total number of classes used
Therefore, CCF = CC / (CC+UC)
This factor can be computed for every class used for
implementation of a use case i.e. for the setCU .
Significance of CCF
If CCF = 1, it indicates that all the classes that have been
used in the sequence diagram have been defined in class
diagram i.e. UC = 0. This indicates that the design is
consistently compliant with requirements as far as class
definition and usage is concerned.
If CCF < 0, it indicates that there objects of certain
classes used in sequence diagram which are not defined
in the class diagram i.e. UC >0. This is a measure of the
level of consistency of classes used for implementation
of a use case.
4) UM (Undefined methods - for a class)
The undefined method metrics gives a measure of num-
ber of methods used in sequence diagrams but not de-
fined in class diagram.
UM = Σi (i stands forith method whoseMDi = 1)
This is the summation of all the methods having posi-
tive method differentials.
5) CM (Consistent methods -for a class)
The consistent method metrics gives a measure of num-
ber of methods, which have been defined in class dia-
gram as well as used in sequence diagram.
CM = Σi (i stands forith method whoseMDi = 0)
This is the summation of all the methods having zero
class differentials.
6) MCF (Method Consistency Factor)
This gives a measure of consistency of the methods used
of a class for implementing a use case.
MCF = Consistent methods / Total methods used
CM + UM = Total number of methods used
Therefore, MCF = CM / (CM+UM)
This factor can be computed for every method used for
implementation of a use case i.e. for the setMU .
Significance of MCF
If MCF = 1, it indicates that all the methods that have
been used in the sequence diagram have been defined in
class diagram i.e. UM = 0. This indicates that the de-
sign is consistently compliant with requirements as far
as method definition and usage is concerned.
If MCF < 0, it indicates that there certain methods used

in sequence diagram which are not defined in the class
diagram i.e. UM >0. This is a measure of the level of
consistency of methods used for implementation of a
use case.
Design Compliance Metrics (DCM)
The design compliance metrics (DCM) is computed from
CCF and MCF for each use case as follows:
For all classes, DCM is calculated and finally an aver-
age is taken for a particular use case.

MCFav =
ΣMCFi

n

where i=1..n are classes used

DCMU =
CCF + MCFav

2

The value of DCM will be between 0 and 1 and we
compute the average of all DCM’s for all classes used
for use case in the set U (implemented use case).
Finally the DCM for a requirement is calculated as the
average of DCM value for all the use cases used to re-
alize a requirement.

DCM =
ΣDCMi

n

where i=1..n are implemented use cases for a require-
ment.
A value of 1 indicates that the requirement has been
consistently implemented in sequence and class diagrams.
This implies that all methods and classes (objects) used
in sequence diagrams are defined in class diagram.
A value less than 1 indicates the level of inconsistency
in the behavioral and structural design.

6 CASE STUDY

We have considered an example of a Library manage-
ment System (LMS) where a member can register, issue
and return books from the library or cancel member-
ship. The requirements document is shown in Fig 2.

Figure 2: Requirements Document

6.1 UML Diagrams

The use case diagram is shown in Fig 3 where each re-
quirement maps to a use case. The class diagram is
shown in Fig 4. The sequence diagrams correspond-
ing to the use cases “Issue Book", “Return Book" are
shown in Fig 7 and Fig 8 respectively in the Appendix.
Table-7 in Appendix shows the relationship between the

Figure 3: Use case Diagram of LMS

requirements and the design artifacts for the case study
based on the definition in Fig 1 in the form of a trace
table. As evident from the table, we have highlighted
areas where certain methods and classes are not defined
as well as the use cases that are not implemented in se-
quence diagrams.

Figure 4: Class Diagram of LMS

6.2 Measuring Requirement-Design Metrics for LMS

In this section we show the results of application of our
metrics on the case study we have chosen. The Table-7
in Appendix lists the trace of requirements to use cases,
sequence diagrams methods and class methods. This ta-
ble is referred in this section for calculation of the met-
rics.

Requirement Coverage Metrics - RCM
This consists of RUC, USC and SCC as defined earlier.
For our case study, R = 5 (set of requirements)
Calculation of RUC
We calculateUR for each requirement, i.e. set of use
cases of each requirement and then RUC as in Table-1.
Calculation of USC

Table 1: Calculation of RUC
Requirement UR RUC

01 Issue Book 1
02 Return Book 1
03 Registration 1
04 Cancel Memebers 1
05 None 0

We calculateSU for each use case, i.e. set of sequence
diagrams corresponding to each requirement and then
U as shown in Table 2.

Table 2: Calculation ofSU and U

R(rid) UR SU U

01 Issue Book Issue (Fig 5) Issue Book
02 Return Book Return (Fig 6) Return Book
03 Registration None Φ
04 Cancel Memebers None Φ

For Requirements ‘01’ and ‘02’, there is only one
use case and they have one sequence diagram imple-
mentation. Hence U is 1. For requirements ‘03’ and
‘04’, the use cases have not been implemented and hence
U is 0. Therefore, USC for each requirement can be
calculated as shown in Table-3. This indicates that only

Table 3: Calculation of USC
Require N(UR) N(U) USC

ment N(U)/N(UR)

01 1 1 1
02 1 1 1
03 1 0 0
04 1 0 0

“Issue Book" and “Return Book" use cases have been
captured in design and the rest are missing from design
models.
Calculation of SCC
We calculate MS i.e. the set of methods used in all
the sequence diagrams for each requirement. Referring
to Table-7, the number of methods used for every re-
quirement in sequence diagrams and the methods that
are defined in a class can be identified and tabulated

as in Table-4 The USC value is zero for requirements

Table 4: Calculation of SCC
Requirement N(MS) N(MS−C) SCC

01 11 7 0.636
02 8 5 0.625

(03,04) and hence they are not considered for calcula-
tion of SCC. Finally from Table 1, Table 3 and Table
4, we calculate the RCF value for each requirement as
shown in Table-5. Thus

Table 5: Calculation of RCF
Requirement RUC USC SCC RCF

01 1 1 0.636 0.878
02 1 1 0.625 0.875
03 1 0 0 0.33
04 1 0 0 0.33
05 0 0 0 0

RCM = (0.878 + 0.875 + 0.33 + 0.33)/5 = 0.48
This indicates that only 48% of requirements have been
implemented in design.
Design Compliance Metrics-DCM
This metrics calculates CCF, MCF and hence DCM for

Table 6: Metrics (Class and Method Differential)

Class Diagram Sequence Diagram CD
Class Class Method MD

Method
isMemberValid 1
isBookIssued 1

Interfac isOnHold 1
eClass isBookAvl 1 1

issuAllowd 1
isBookidValid 1

getMember getMember 0
Details Details

BookIssue bookIssue 0
Member Membe bookReturn 1 0

getMaxIs r -1
sueLimit

Book getBook Book getBook 0 0
Details Details

getStockBal getStockBal 0
getStatus getStatus 0
setStatus setStatus 0

Book BookD
Detail Issue etails Issue 0 0

s Reissue Reissue 0
Return 1

LibTr getMemberTrans LibTr getMemberTrans 0
ans addTrans ans addTrans 0

each Use case. In this case only two use cases have been
further implemented in design and we show the results
for one use case “Issue Book" as an example.
Table-6 lists the class and method differential of each
class and method used to implement the use case. From
this we show the results of calculation of CCF, MCF
and DCM.
From Table-6, the following metrics can be deduced-
UC=1,CC=4
CCF=Class Consistency Factor
=CC/(CC+UC)=4/5=0.8
This indicates that for the Library management system,
about 80% of the classes are consistent and present in
both class and sequence diagram.
Similarly, MCF can be calculated as given below-
For class InterfaceClass, MCF = 0
For class Member, MCF = 0.67
For class LibTrans, MCF = 1
For class Book DEtails, MCF = 0.8
For class Book, MCF = 1
MCFav = (0 + 1 + 0.67 + 0.8 + 1)/5 = 0.694
Thus overall Design Compliance Metrics for “Issue Book"
use case,
DCM = (CCF + MCFav)/2 = (0.8 + 0.694)/2 =
.75
Since Requirement ‘Members can issue books’ (Rid =
01) implements only one use case ‘Issue Book’, this
value of DCM indicates that the level of consistency of
implementation of this requirement is 75%.
Likewise DCM for other requirements may be com-
puted.

7 IMPLEMENTATION METHODOLOGY

UML is semi-formal nature and hence not suited for
the process of automation or computerization, which
requires well-defined precise formal semantics. XML
bridges part of the gap by providing building blocks for
serializing UML data textually. XMI (XML Metadata
Interchange) is an open industry standard that applies
XML to abstract systems such as UML [1].
We base our UML model transformations to XML on
this standard. The XML schemas for these artifacts
are shown in Schema 1, Schema 2 and Schema 3. For
brevity, XML schemas for UML models are shown and
of requirements document is omitted.
<xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="URI"
. xmlns:xmi="http://www.omg.org/XMI"
...
<xsd:complexType name="ud">
<xsd:complexType name="u"»
<xsd:sequence>

<xsd:element name="uid" type="xsd:integer"/>
<xsd:element name="udesc" type="xsd:string"/>
<xsd:element name=”actor” type=”xsd:string”
maxOccurs=”unbounded”/>
<xsd:element name=”rid” type=”xsd:integer” minOccurs=”1”/>
</xsd:sequence>
</xsd:complexType>
</xsd:complexType>
Schema 1: XML schema for Use Case Diagrams
<xsd:complexType name="sequence">
<xsd:sequence>
<xsd:element name=”sid” type=”xsd:string”>
<xsd:element name=”uid” type=”xsd:string”>
<xsd:complexType name="message"»
<xsd:element name="Torder" type="xsd:integer"/>
<xsd:choice>
<xsd:element name="fromClass" type="xsd:string"/>
<xsd:element name="fromActor" type="xsd:string"/>
</xsd:choice>
<xsd:choice>
<xsd:element name="toClass" type="xsd:string"/>
<xsd:element name="toActor" type="xsd:string"/>
</xsd:choice>
<xsd:choice>
<xsd:element name=”method” type=”xsd:string”/>
<xsd:element name=”text” type=”xsd:string”/>
</xsd:choice>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>
Schema 2: XML schema for Sequence Diagram
<xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="URI"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsd="http://www.w3.org/2001/
XMLSchema" xmlns:p="URI">
<xsd:import namespace=http://www.omg.org/XMI
schemaLocation="xmi20.xsd"/>
<xsd:complexType name="cl">
<xsd:complexType name="c"»
<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element name="attr" type="xsd:string"
minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”method” type=”xsd:string” minOccurs=”0”
maxOccurs=”unbounded”/>
</xsd:sequence>
</xsd:complexType>
</xsd:complexType>
</xsd:schema>
Schema 3: XML schema for class diagram

Once the diagrams are represented in a structured man-
ner as above, it would be easy to verify the rules by
comparing the XML documents. For brevity, we present
only some of them belonging to the Design Compliance
metrics set.
1) Set of unique classes used in all the sequence dia-
grams
Refer to Schema 2, the contents of the tag <fromClass>
and <toClass> constitute the set of all classes used in
the sequence diagram. This is repeated if there are more
than one sequence diagrams.
2) Set of unique classes defined in class diagram.
Refer to Schema 3, the contents of <name> tag consti-
tute the set of all classes defined in class diagram.
3) Class Differential (CD)
This can be easily computed by comparing the sets (set1
and set2 say) obtained from metrics 1 and metrics2.
Any class occurring only in set 1 will have CD=1, classes
occurring in both the sets will have CD=0 and those oc-
curring in only set 2 will have CD=-1.
Proceeding in the same manner, we can also implement
the other metrics based on the XML documents. For
brevity, examples for all the metrics have been omitted.
The results if applied on the case study will yield the
same results as discussed in the previous section.

Figure 5: DFD of the Prototype

8 PROTOTYPE

A prototype has been developed which is XML based
for implementing our approach. It accepts UML dia-
grams in XML format as input and calculates the met-
rics. The 1st level DFD is shown in Fig 5.A sample
screen calculating CCF is shown in Fig 6.

Figure 6: CCF-Class consistency Factor

9 CONCLUSION

UML has become a common standard for modeling de-
sign specifications of object-oriented systems, but being
a visual language, is semi-formal in nature and hence
verification of design in UML is necessary. In this pa-
per we present a metrics based analysis of requirements.
We propose two new set of metrics based on UML mod-
els namely - Requirement Coverage metrics and De-
sign Compliance Metrics. RCM gives a measure of
the degree of coverage of a requirement in use case,
sequence and class diagrams. This will help in identi-
fying missing requirements, or incomplete implementa-
tion of requirements as well as the progress of a project
at any point of time. This would prove a valuable in-
put for quality assessment of software systems. DCM
proposes a unique method for studying consistency be-
tween Class and sequence diagrams of UML by provid-
ing quantitative feedback on the level of consistency in
design at any point of time. We have also proposed an
XML based implementation and presented a prototype.
In our future work we intend to extend this concept fur-
ther and fine-tune the metrics by including other UML
diagrams like collaboration, activity and state charts.

References

[1] Omg standard xmi specification 2.0.
http://www.omg.org, 2008.

[2] Ammann, P. and Black, P. E. A specification-
based coverage metric to evaluate test sets.Proc.
of 4th IEEE Intl. Symposium on High-Assurance
Systems Engineering, pages 239–248, Nov 17-19
1999.

[3] Boris Litvak, S. T. and Yehudai, A. Behavioral
consistency validation of uml diagrams.First In-
ternational Conference on Software Engineering

and Formal Methods (SEFM’03), Brisbane, Aus-
tralia, page pp 118, September 22-27 2003.

[4] Chidamber, S. R. and Kemerer, C. F. A met-
rics suite for object-oriented design.IEEE Trans-
actions on Software Engineering, 20(6):476–493,
1994.

[5] Egyed, A. Scalable consistency checking between
diagrams-the viewintegra approach.16th IEEE
International Conference on Automated Software
Engineering (ASE’01), , San Diego, California,
November 26-29 2001.

[6] Egyed, A. F. Automatically validating model
consistency during refinement.23rd Interna-
tional Conference on Software Engineering (ICSE
2001), Toronto, Ontario, Canada, May 12-19
2001.

[7] Gregor Engels, R. H., Jan Hendrik Hausmann and
Sauer, S. Testing the consistency of dynamic uml
diagrams.Sixth International conference on Inte-
grated Design and Process Technology, Pasadena,
California, June 23-28 2002.

[8] Hamed, H. and Salem, A. Uml-l: An uml based
design description language.ACS/IEEE Interna-
tional Conference on Computer Systems and Ap-
plications (AICCSA’01), Beirut, Lebanon, page
pp 0438, June 25-29 2001.

[9] Hassan, A., Rabie, W., Moez, A., and Ammar,
H. H. An approach to measure the quality of soft-
ware architectures from uml specifications.5th
World Multi-Conference on Systems, Cybernetics
and Informatics and the 7th international confer-
ence on information systems, analysis and synthe-
sis ISAS, July 2001.

[10] Jing Liu, J. H., Zhiming Liu and Li, X. Link-
ing uml models of design and requirement.
2004 Australian Software Engineering Confer-
ence (ASWEC’04) Melbourne, Australia, page pp
329, April 13-16 2004.

[11] Kim, H. and Boldyreff, C. Developing software
metrics applicable to uml models.Proceedings
of 6th ECOOP Workshop on Quantitative Ap-
proaches in Object-Oriented Software Engineer-
ing, June 11th 2002.

[12] Kim, S.-K. and Carrington, D. A formal object-
oriented approach to defining consistency con-
straints for uml models. 2004 Australian Soft-
ware Engineering Conference (ASWEC’04), Mel-
bourne, Australia, page pp 87, April 13-16 2004.

[13] Krishnan, P. Consistency checks for uml.Sev-
enth Asia-Pacific Software Engineering Confer-
ence (APSEC’00), Singapore, page pp 162, De-
cember 05-08 2000.

[14] Küster, J. M. and Stehr, J. Towards explicit behav-
ioral consistency concepts in the uml.Second In-
ternational Workshop on Scenarios and State Ma-
chines : Models, Algorithms and Tools, Portland,
Oregon, USA, May 3 2003.

[15] Martin Wolf, R. B., Evgeni Ivanov and Philip-
pow, I. Uml tool support: Utilization of object-
oriented models.Technology of Object-Oriented
Languages and Systems (TOOLS 34’00), Santa
Barbara, California, page pp 529, July 30-August
3 2000.

[16] Pascal André, A. R. and Royer, J.-C. Check-
ing consistency of uml class diagrams using larch
prover. Electronic Workshops in Computing
(eWiC), Rigorous object-oriented Methods, York,
UK, 17th Jan 2000.

[17] Tom Mens, R., der Straeten, V., and Simmonds,
J. Maintaining consistency between uml mod-
els with description logic tools.Fourth Interna-
tional Workshop on Object-oriented Reengineer-
ing (WOOR2003), Darmstadt, Germany, July 21
2003.

[18] Tsiolakis, A. and Ehrig, H. Consistency analy-
sis of uml class and sequence diagrams using at-
tributed graph grammars.Proc. Of Joint APPLI-
GRAPH and GETGRATS workshop on graph
transformation systems, pages pp 77–86, March
25 2000.

[19] Whalen, M. W., Rajan, A., P.E., M., Steven, H.,
and Miller, P. Coverage metrics for requirements-
based testing.Proc. of the 2006 Intl. symposium
on Software testing and analysis, ISSTA, Portland,
USA, pages 25–36, 2006.

[20] Xia, F. and Kane, G. S. Definign the semantics
of uml class and sequence diagrams for ensuring
the consistency and executability of oo software
specification.First International Workshop on Au-
tomated Technology for Verification and Analysis
ATVA, National Taiwan University, pages pp 77–
86, December 10-13 2003.

[21] Zisman, A. and Kozlenkov, A. Knowledge base
approach to consistency management of uml spec-
ifications.16th IEEE International Conference on

Automated Software Engineering (ASE’01), San
Diego, California, page pp 359, November 26-29
2001.

APPENDIX

Figure 7: Sequence Diagram for “Issue Book" use case

Figure 8: Sequence Diagram for “Return Book" use case

Table 7: Requirements to Methods trace table

Require Use
Case

Sequence Diagram Class Class Dia-
gram

ments
ID

Name Name Methods Name Methods

01 Issue
Book

Issue
(Fig 7)

getMember
Details

Member getMember
Details

isMember
Valid

Interface
Class

-(Class
not de-
fined)

getMaxIssue
Limit

Member getMaxIssue
Limit

getBook
Details

Book getBook
Details

isBookID
Valid

Interface
Class

-(Class
not de-
fined)

getMember
Trans

LibTrans getMember
Trans

getStockBal Book getStockBal
isBookAvl Interface

Class
-(Class
not de-
fined)

addTrans LibTrans addTrans
Issue Book

Details
issue

issueBook Member -(Method
unde-
fined)

02 Return
Book

Return
(Fig 8)

getMember
Details

Member getMember
Details

05 isMember
Valid

Interface
Class

-(Class
not de-
fined)

getMember
Trans

LibTrans getMember
Trans

isBook Is-
sued

Interface
Class

-(Class
not de-
fined)

setStatus Book
Details

setStatus

Return Book
Details

return

addTrans LibTrans addTrans
bookReturn Member -(Method

unde-
fined)

03 Registr
ation

No Se-
quence
Dia-
grams

- - -

04 Cancel
Mem-
bers

No Se-
quence
Dia-
grams

- - -

	Introduction
	RELATED WORK
	SCOPE OF WORK
	UML DIAGRAM RELATIONSHIPS
	PROPOSED WORK
	Notations used
	Requirement Coverage Metrics (RCM)
	Design Compliance Metrics (DCM)

	CASE STUDY
	UML Diagrams
	Measuring Requirement-Design Metrics for LMS

	IMPLEMENTATION METHODOLOGY
	PROTOTYPE
	CONCLUSION

