
Hierarchical Clustering for Identifying Crosscutting Concerns in
Object Oriented Software Systems

ISTVAN GERGELY CZIBULA1

GABRIELA CZIBULA1

GRIGORETA SOFIA COJOCAR1

Babeş-Bolyai University
Department of Computer Science

1, M. Kogalniceanu Street 400084 - Cluj-Napoca, Romania
1(istvanc,gabis,grigo)@cs.ubbcluj.ro

Abstract. Crosscutting concerns are parts of a program that affect or crosscut other concerns. Usually
these concerns cannot be cleanly decomposed from the rest of the system, and they are mixed with many
core concerns from the system leading to code scattering and code tangling, and, also, to systems that
are hard to explore and understand. Identifying crosscutting concerns automatically improves both the
maintainability and the evolution of the software systems. Aspect mining is a research direction that
tries to identify crosscutting concerns in already developed software systems, without using the aspect
oriented paradigm. The goal is to identify them and then to refactor them to aspects, to obtain a system
that can be easily understood, maintained and modified. In this paper we are focusing on the problem of
identifying crosscutting concerns in object oriented software systems using a hierarchical agglomerative
clustering approach. We experimentally validate our approach on the open source case study JHotDraw
and on a real software system. A comparison of our approach with similar existing work is also provided.

Keywords: Aspect mining, crosscutting concern, clustering.

(Received May 21, 2009 / Accepted August 11, 2009)

1 Introduction

Separation of concerns [21] is a very important prin-
ciple of software engineering that, in its most general
form, refers to the ability to identify, encapsulate and
manipulate those parts of software that are relevant to a
particular concept, goal, or purpose.

Crosscutting concerns [12] are parts of a program
which affect or crosscut other concerns. Usually these
concerns cannot be cleanly decomposed from the rest
of the system, and they are mixed with many core con-
cerns from the system leading to code scattering and
code tangling, and, also, to systems that are hard to
explore and understand. Identifying crosscutting con-
cerns automatically improves both the maintainability
and the evolution of the software system. Crosscutting
concerns are a relevant source of problems to program

comprehension and software maintenance. Examples
of crosscutting concerns are persistence, synchroniza-
tion, exception handling, error management and log-
ging.

The aspect oriented programming paradigm (AOP)
is one of the approaches proposed, so far, for designing
and implementing crosscutting concerns [12]. Aspect
oriented techniques allow crosscutting concerns to be
implemented in a new kind of module called aspect, by
introducing new language constructs like pointcuts and
advices.

Aspect mining is a research direction that tries to
identify crosscutting concerns in already developed soft-
ware systems, without using AOP. The goal is to iden-
tify them and then to refactor them to aspects, to achieve
a system that can be easily understood, maintained and

(istvanc, gabis, grigo)@cs.ubbcluj.ro

modified. There exists many reasons for migrating a
legacy system to an aspect oriented based system. An
inadequate solution for crosscutting concerns implemen-
tation has a negative impact on the final system with
consequences like duplicated code, scattering of con-
cerns throughout the entire system and tangling of con-
cern-specific code with that of other concerns. These
consequences lead to software systems that are hard to
maintain and to evolve. When aspect oriented tech-
niques are used, the crosscutting concerns are cleanly
separated from the core concerns, the latters becoming
oblivious of them.

Unsupervised classification, or clustering, as it is
more often referred as, is a data mining activity that
aims to differentiate groups (classes or clusters) inside
a given set of objects [7], being considered the most
important unsupervised learning problem. The result-
ing subsets or groups, distinct and non-empty, are to be
built so that the objects within each cluster are more
closely related to one another than objects assigned to
different clusters.

The main contribution of this paper is to introduce a
hierarchical agglomerative clustering approach for iden-
tifying crosscutting concerns in existing software sys-
tems.

The rest of the paper is structured as follows. Sec-
tion 2 presents some existing work in the field of as-
pect mining. A hierarchical agglomerative clustering
approach for identifying crosscutting concerns is pro-
posed in Section 3. An experimental evaluation of the
proposed approach and a comparison of our approach
with similar existing approaches is presented in Section
4. Section 5 contains some conclusions of the paper and
also outlines further research directions.

2 Related Work

Aspect mining is a relatively new research domain. How-
ever, many aspect mining techniques have been pro-
posed. Some use metrics [16], some use formal concept
analysis [2, 27, 28], or execution relations [1]. There
are also a few approaches that use clone detection tech-
niques [3, 25] or natural language processing [22]. A
few techniques use clustering in order to identify cross-
cutting concerns [8, 19, 24, 26].

In the following we will briefly present some of the
existing approaches in aspect mining.

Marin et al [16] have proposed an aspect mining
technique that uses the fanin metric [9]. Their idea is
to search for crosscutting concerns among the methods
that have the value of the fanin metric greater than a
given threshold.

A graph based approach in aspect mining is intro-
duced in [23]. The basic idea of this technique is to
determine methods that are similar. The approach is
to construct a graph between the methods of the soft-
ware system, to determine the connex components of
this graph, called clusters, and then to identify cross-
cutting concerns in the obtained clusters.

There are in the literature some aspect mining tech-
niques, briefly presented in the following, that do not
provide a partition of the entire analyzed software sys-
tem, but a subset of it. Breu and Krinke [1] have pro-
posed an aspect mining technique based on dynamic
analysis. The mined software system is run and pro-
gram traces are generated. From program traces, re-
curring execution relations that satisfy some constraints
are selected. Among these recurring execution rela-
tions they search for aspect candidates. This approach
is adapted to static analysis in [14]. In this approach
the recurring execution relations are obtained from the
control flow graph of the program.

Tonella and Ceccato [27] have also proposed an as-
pect mining technique based on dynamic analysis. An
instrumented version of the mined software system is
run and execution traces for each use case are obtained.
Formal concept analysis [6] is applied on these exe-
cution traces and the concepts that satisfy some con-
straints are considered as aspect candidates.

Tourwé and Mens [28] have proposed an aspect min-
ing technique based on identifier analysis. The identi-
fiers associated with a method or class are computed by
splitting up its name based on where capitals appear in
it. They apply formal concept analysis on the identifiers
to group entities with the same identifiers. The groups
that satisfy some constraints and that contain a number
of elements larger than a given threshold are considered
as aspect candidates.

Bruntink et al [3] have studied the effectiveness of
clone detection techniques in aspect mining. They did
not propose a new aspect mining technique, but they
tried to evaluate how useful clone detection techniques
are in aspect mining.

Shepherd et al [25] have proposed an aspect mining
technique based on clone detection. They search for
code duplication in the source code using the program
dependency graph. The obtained results are further an-
alyzed to discover crosscutting concerns.

Breu and Zimmermann [2] have proposed an his-
tory based aspect mining technique. They mine CVS
repositories for add-call transactions on which they ap-
ply formal concept analysis. Concepts that satisfy some
constraints are considered aspect candidates.

Sampaio et al [22] have proposed an aspect min-

ing technique to discover aspect candidates early in the
development lifecycle. They use natural language pro-
cessing techniques on different documents (requirements,
interviews, etc.) to discover words that are used in many
sentences. The words that have a high frequency and
have the same meaning in all the sentences are consid-
ered aspect candidates.

There are a few aspect mining techniques proposed
in the literature that use clustering in order to identify
crosscutting concerns [8, 24, 26].

He and Bai [8] have proposed an aspect mining tech-
nique based on dynamic analysis. They obtain execu-
tion traces for each use case, but they apply clustering
and association rules to discover aspect candidates.

Shepherd and Pollock [26] have proposed an aspect
mining tool based on clustering. They use hierarchical
clustering to find methods that have common substrings
in their names. The obtained clusters are then manually
analyzed to discover crosscutting concerns.

A clustering approach for identifying crosscutting
concerns is proposed and a partitional clustering algo-
rithm named kAM is introduced in [24]. kAM algorithm
is based on the idea of k-means clustering and uses an
heuristic for choosing the initial centroids and the initial
number of clusters. The similarity between two meth-
ods is computed using a vector space model based ap-
proach.

3 A Hierarchical Clustering Algorithm for Cross-
cutting Concerns Identification (HACO)

In this section we introduce a hierarhical agglomerative
clustering algorithm (HACO) (Hierarchical Clustering
Algorithm for Crosscutting Concerns Identification) for
identifying crosscutting concerns in existing software
systems. In order to discover the crosscutting concerns
from the system, we first analyze the source code of
the software system to be mined. All classes, methods
and relations between them are computed. Afterwards,
HACO algorithm is used to identify a partition of a
software system S in which the methods belonging to
a crosscutting concern should be grouped together. The
final step is to manually analyze the obtained results.

Let us consider that the software system to be mined
consists of a set of classes CLS = {c1, c2, . . . , cs},
each class containing one ore more methods. In our
clustering approach, the objects to be clustered are the
methods from the software system S, i.e.,M = {m1,
m2, . . . ,mn}. Our focus is to group the methods such
that the methods that belong to the same crosscutting
concern are placed in the same cluster.

In order to apply a clustering approach for identi-
fying the crosscutting concerns from a software system

S, the dissimilarity degree between any two methods
have to be considered. The idea is that methods from
the same crosscutting concerns to have low dissimilar-
ity values between them, and methods from different
(crosscutting) concerns to have high dissimilarity val-
ues between them. We will consider the fact that cross-
cutting concerns in non AO systems have two symp-
toms: code scattering and code tangling. The code
scattering symptom means that the code that implements
a crosscutting concern is spread across the system. The
code tangling symptom means that the code that im-
plements some concern is mixed with code from other
(crosscutting) concerns.

In the following we will define a distance function
in order to express the dissimilarity degree between the
methods from the software system from the aspect min-
ing point of view. This means that methods from differ-
ent crosscutting concerns have to be distant, and meth-
ods from the same crosscutting concern have to be close
to each other.

For a given method m we denote by C(m) a collec-
tion consisting of: the method itself, the class in which
the method is defined, the classes and methods that in-
voke m and the classes in which the classes and meth-
ods that invoke m are contained. The distance function
that we propose will consider both the scattering and
tangling symptoms. Consequently, we will consider the
distance d(mi,mj) between two methodsmi andmj as
expressed in Equation (1).

d(mi, mj) =

0 i = j

1− |C(mi)∩C(mj)|
|C(mi)|+|C(mj)| if C(mi) ∩ C(mj) 6= ∅

∞ otherwise

,

(1)

In our view, the distance between two methods as
defined in (1) expresses the following idea: if two meth-
ods are invoked by common methods or classes, they
should belong to the same cluster. This means that scat-
tered and tangled methods would be placed in the same
cluster, and the methods that do not represent aspects
would not be placed together with methods from as-
pects as the latters are invoked from multiple places.
Consequently, methods that belong to the same crosc-
cutting concern are close (considering distance d) to
each other.

Many programming languages allow the definition
of inner classes, classes that are defined inside of an-
other class. The definition of classes inside of other
classes are used in order to group classes that are re-
lated. This semantic information can be relevant for
identifying crosscutting concerns. Grouping of classes
frequently appears in real life software projects, and

our distance consider this situation, too. The collec-
tion C(m) contains not only the class c that invokes the
method, but also the class that contains class c.

Based on the definition of distance d (Equation (1))
it can be easily proved that d is a semi-metric function,
so a clustering approach can be applied.

HACO is based on the idea of hierarchical agglom-
erative clustering, and uses an heuristic for determin-
ing the number of clusters. In order to determine the
number k of clusters, we are focusing on determining
k representative methods from the software system S.
The method chosen as the first representative method is
the most “distant” method from the set of all methods
(the method that maximizes the sum of distances from
all the other methods). At each step we select from the
remaining methods the most distant method relative to
the already chosen methods. If the selected method is
close enough to the already chosen representative meth-
ods, then the process is stopped, otherwise the selected
method is considered as a new representative method.
We consider a method close to a set of representative
methods if the distances between the method and any of
the representative methods from the considered set are
less than a given threshold, distMin. We have chosen
the value 0.75 for the threshold based on the follow-
ing intuition: as distances greater than 1 are obtained
only for unrelated methods (Equation (1)), the thresh-
old value has to be less or equal to 1. The chosen value
for the threshold was experimentally confirmed, but the
most appropiate value for distMin may depend on the
analyzed system. In the future we plan to find the most
appropriate value for the threshold distMin using su-
pervised learning techniques [17].

We have considered complete link [11] as linkage
metric in the agglomerative hierarchical clustering pro-
cess. The main steps of HACO algorithm are:

• Each method from the software system is put in its
own cluster (singleton).

• The following steps are repeated until k clusters
are reached (k is determined with the heuristic pre-
sented above):

– Select the two most similar clusters Ki and
Kj from the current partition, i.e, the pair of
clusters that minimize the distance between
them.

– The clusters Ki and Kj will be merged, oth-
erwise the partition remains unchanged.

HACO algorithm provides a partition of a software
system S, partition that ideally would contain separate
clusters for each crosscutting concern.

We mention that our aproach can be applied irre-
spective of the software system size, however the size
influences the computational complexity of the tech-
nique.

4 Experimental Results

In this section we want to evaluate how well did HACO
algorithm succeed in grouping the elements from cross-
cutting concerns in clusters.

In order to evaluate the results we use two quality
measures, called DISP and DIV, that were previously
introduced by Moldovan and Serban [18].

We give below the formal definition of DISP and
DIV measure. In the following CCC denotes the set
of crosscutting concerns existing in a software system,
K denotes a partition of the set M of methods from
the software system to be mined. The partition K can
be obtained using a clustering algorithm (HACO in this
paper).

Definition 1 [18] DISPersion of crosscutting concerns
- DISP.
The dispersion of the set CCC of crosscutting concerns
in the partition K, denoted by DISP (CCC,K), is de-
fined as

DISP (CCC,K) =
1

|CCC|

|CCC|∑
i=1

disp(Ci,K). (2)

disp(C,K) is the dispersion of a crosscutting concern
C and is defined as:

disp(C,K) =
1
|DC |

, (3)

where

DC = {k|k ∈ K and k ∩ C 6= ∅}. (4)

DC is the set of clusters that contain elements which
are also in C.

DISP measure takes values in [0, 1] and defines the
dispersion degree of crosscutting concerns in clusters,
considering, for each crosscutting concern, the number
of clusters that contain elements belonging to the con-
cern. Larger values for DISP indicate better partitions
with respect to set of the crosscutting concerns to be
discovered, meaning that DISP has to be maximized.

Definition 2 DIVersity of a partition - DIV. [18]
The diversity of a partition K with respect to the set
CCC, denoted by DIV (CCC,K), is defined as

DIV (CCC,K) =
1
|K|

|K|∑
i=1

div(CCC,Ki). (5)

div(CCC, k) is the diversity of a cluster k ∈ K and
is defined as:

div(CCC, k) =
1

|Vk|+ τ(k)
(6)

where

Vk = {C|C ∈ CCC and k ∩ C 6= ∅} (7)

is the set of crosscutting concerns that have elements in
k, and

τ(k) =
{

1 if k ∩NCCC 6= ∅
0 if k ∩NCCC = ∅ (8)

.

τ(k) is 1 if the cluster k contains elements that do
not implement any crosscutting concern, and 0 other-
wise.

DIV measure takes values in [0, 1] and defines the
degree to which each cluster contains elements from
different crosscutting concerns or elements from other
concerns. Larger values for DIV indicate better parti-
tions with respect to set of the crosscutting concerns to
be discovered, meaning thatDIV has to be maximized.

Considering the fact that the user analyzes all the
clusters from the software system, our approach does
not obtain false negatives. The false positives are con-
sidered in the DIV measure.

4.1 A Simple Java Code Example

In this subsection we present a small example that shows
how methods are grouped in clusters by HACO algo-
rithm using distance d (Equation (1)). We have chosen
the example below in order to provide the reader with an
easy to follow example of crosscutting concerns identi-
fication.

Let us consider the Java code example given in Ta-
ble 1.

For the code illustrated in Table 1, the set of cross-
cutting concerns is CCC = {C1, C2}, where C1 =
{L.m1, L.m2} and C2 = {A.mB,A.mC}. The meth-
ods L.m1 and L.m2 are called from two different con-
texts (methods A.mA and B.mC) and they are mixed
with other code. This is an example of code scattering
(they are called from two different contexts) and code
tangling (they are mixed with some other code). The
same happens with methods A.mB and A.mC. These
methods are called only from one context, outside their
class, but this example is very small, compared to a real
application.

After applying HACO algorithm using distance d,
the obtained clusters are shown in Table 2. Analyzing

the results obtained for the Java code example described
in Table 1, we conclude the folowing:

• HACO algorithm identifies the existing crosscut-
ting concerns C1 and C2.

• The methods from each crosscutting concern, C1

(i.e., L.m1 and L.m2) and C2 (i.e, A.mB and
A.mC), are grouped together in separate clusters.

• The value of DISP and DIV measures for the
obtained partition are 1.

4.2 JHotDraw case study

In this subsection we consider the open source JHot-
Draw version 5.4b1 [5] case study for evaluating HACO
algorithm. It is a Java GUI framework for technical
and structured graphics, developed by Erich Gamma
and Thomas Eggenschwiler, as a design exercise for us-
ing design patterns. It consists of 396 classes and 3359
methods.

The set of crosscutting concerns used for the eval-
uation is: Adapter, Command, Composite, Consistent
behavior, Contract enforcement, Decorator, Exception
handling, Observer, Persistence, and Undo. The set of
crosscutting concerns and their implementing methods
was constructed using the results reported by Marin et
al. and publicly available at [15].

We have applied HACO algorithm for JHotDraw case
study and we have obtain the following values: 0.457
for DISP measure and 1 for DIV .

4.3 A real software system

In this section we present a real software system as a
case study for evaluating HACO algorithm. We aim to
observe how our technique performs for a real system.
It is DICOM (Digital Imaging and Communications in
Medicine) [4] and HL7 (Health Level 7) [10] compli-
ant PACS (Picture Archiving and Communications Sys-
tem) system, facilitating the medical images manage-
ment, offering quick access to radiological images, and
making the diagnosing process easier.

The analyzed application is a large distributed sys-
tem, consisting of several subsystems in form of stand-
alone and web-based applications. We have applied
HACO algorithm on one of the subsystems from this
application.

The analyzed subsystem is a stand-alone Java ap-
plication used by physicians in order to interpret radi-
ological images. The application fetches clinical im-
ages from an image server (using DICOM protocol),

Table 1: Java Code example.

public class A {

private int t;

public A(){

mB();

t=new Random().nextInt();

mC(); }

public void mA(L l){

l.m1();

mB();

l.m2(); }

public void mB(){ }

public void mC(){ }

}

public class L {

public L(){}

public void m1(){}

public void m2(){}

}

public class B {

private L l=new L();

private A a=new A();

public B(){

a.mA();

a.mB(); }

public int mC(int nr){

int sum=0;

l.m1();

for(int i=1; i<nr; i++) sum+=i;

l.m2();

return sum; }

public double mD(int nr){

a.mB();

double rez=Math.sqrt(nr);

a.mC();

return rez; }

}

Table 2: The clusters obtained by HACO using distance d.

Cluster Methods
C1 { B.mD, B.mC, B.B }
C2 { L.m1, L.m2 }
C3 { A.mB, A.mC }
C4 { A.A, A.mA, L.L }

displays them, and offers various tools to manage radi-
ological images.

The analyzed application consists of 1015 classes
and 8639 methods.

We mention that the set of crosscutting concerns
was not apriori known for the considered software sys-
tem. That is why, after an analysis of the system, we
have identified the following set of crosscutting con-
cerns and the methods that implement them: Logging,
Exception handling, Command, Persistence, Undo, and
Consistent behavior. Given the size of the analyzed sys-
tem, some crosscutting concerns may have been missed.

After applying HACO algorithm, we have obtained
the following results: 0.41 forDISP measure and 0.92
for DIV .

Analyzing the obtained results, we have concluded
that the obtained results provide a good starting point
for extracting aspects from a software system. We have
also identified possible improvements of our approach:

• Given the large number of methods from the sys-
tem, preprocessing and postprocessing steps cand
be added to our approach in order to facilitate easy
interpretation of the obtained results and to reduce
the computational complexity of the proposed tech-
nique.

• The accuracy of the obtained results are influenced
by technical issues like: the use of anonymous in-
ner classes, introspection, the use of dynamic prox-
ies. These kind of technical aspects frequently ap-
pear in real life projects. In order to correctly deal
with these aspects, we have to improve the way the
data are collected from the software system in or-
der to compute the distances between the methods
(Equation 1).

4.4 Comparison with existing approaches

We have compared HACO algorithm with the approach
from [24]. After applying kAM algorithm [24] for JHot-
Draw case study the value obtained forDISP is 0.4005
and the value obtained for DIV is 0.9. Comparatively,
considering the DISP and DIV measures, HACO al-
gorithm has obtained better results than kAM algorithm
(0.457 for DISP and 1 for DIV). This means that
in the partition obtained by HACO algorithm the meth-
ods from the crosscutting concerns were better grouped
than in the partition obtained by kAM algorithm.

We did not provide a comparison of our approach
with the two other existing clustering based aspect min-
ing approaches for the following reasons:

• Shepherd and Pollock have proposed in [26] an as-
pect mining tool based on clustering that does not
automatically identify the crosscutting concerns.
The user of the tool has to manually analyze the
obtained clusters in order to discover crosscutting
concerns.

• The technique proposed by He and Bai [8] cannot
be reproduced, as they do not report neither the
clustering algorithm used, nor the distance metric
between the objects to be clustered. Also, the re-
sults obtained for the case study used by the au-
thors for evaluation are not available.

The non-clustering aspect mining techniques cannot
be compared with our approach because of the follow-
ing reasons:

• some techniques are dynamic and they depend on
the data used during executions [1, 27];

• for the static techniques [16] only parts of the re-
sults are publicly available;

• there is no case study used by all these techniques.

5 Conclusions and Future Work

We have approached in this paper the problem of iden-
tifying crosscutting concerns in existing software sys-
tems. We have introduced a hierarchical agglomerative
clustering algorithm (HACO) that can be used for iden-
tifying aspects in object-oriented software systems.

In order to evaluate the obtained results, we have
considered JHotDraw case study and a real software
system. We have provided a comparison of our ap-
proach with similar existing approaches and we have
identified possible improvements of our approach.

Further work can be done in the following direc-
tions:

• To use other machine learning techniques [17] in
order to identify crosscutting concerns in existing
software systems.

• To improve HACO algorithm by identifying the
most appropriate heuristic to be used as stopping
criterion in the hierarchical clustering process.

• To improve the distance semi-metric used for dis-
criminating the methods in the clustering process.

• To apply HACO algorithm on other real software
systems.

• To use other unsupervised learning techniques (self
organizing maps [13], Hebbian learning [20]) for
crosscutting concerns identifcation.

ACKNOWLEDGEMENT

This work was supported by the research project ID_2286,
No. 477/2008, sponsored by the Romanian National
University Research Council (CNCSIS).

References

[1] Breu, S. and Krinke, J. Aspect Mining Using
Event Traces. In Proc. Intern. Conference on Au-
tomated Software Engineering (ASE), pages 310–
315, 2004.

[2] Breu, S. and Zimmermann, T. Mining Aspects
from Version History. In Uchitel, S. and Easter-
brook, S., editors, 21st IEEE/ACM International
Conference on Automated Software Engineering
(ASE 2006). ACM Press, September 2006.

[3] Bruntink, M., van Deursen, A., van Engelen,
R., and Tourwé, T. On the use of clone
detection for identifying crosscutting concern
code. IEEE Transactions on Software Engineer-
ing, 31(10):804–818, 2005.

[4] Digital Imaging and Communications in
Medicine. http://medical.nema.org/.

[5] Gamma, E. JHotDraw Project.
http://sourceforge.net/projects/jhotdraw.

[6] Ganter, B. and Wille, R. Formal Concept
Analysis: Mathematical Foundations. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1997.
Translator-C. Franzke.

[7] Han, J. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2005.

[8] He, L. and Bai, H. Aspect Mining using Cluster-
ing and Association Rule Method. International
Journal of Computer Science and Network Secu-
rity, 6(2A):247–251, February 2006.

[9] Henderson-Sellers, B. Object-oriented metrics:
measures of complexity. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1996.

[10] Health Level 7. www.hl7.org/.

[11] Jain, A. K., Murty, M. N., and Flynn, P. J. Data
clustering: a review. ACM Computing Surveys,
31(3):264–323, 1999.

[12] Kiczales, G., Lamping, J., Menhdhekar, A.,
Maeda, C., Lopes, C., Loingtier, J.-M., and Ir-
win, J. Aspect-Oriented Programming. In
Proceedings European Conference on Object-
Oriented Programming, volume 1241, pages 220–
242. Springer-Verlag, 1997.

[13] Kohonen, T. The self-organizing map. Neurocom-
puting, 21(1-3):1–6, 1998.

[14] Krinke, J. Mining control flow graphs for cross-
cutting concerns. In 13th Working Conference
on Reverse Engineering: IEEE International As-
trenet Aspect Analysis (AAA) Workshop, pages
334–342, 2006.

[15] Marin, M. Fan-in jhotdraw v5.4b1 results.
http://swerl.tudelft.nl/bin/view/AMR/
FanInAnalysisResults#JHotDraw_v_54b1.

[16] Marin, M., van, A., Deursen, and Moonen, L.
Identifying Aspects Using Fan-in Analysis. In
Proceedings of the 11th Working Conference on
Reverse Engineering (WCRE2004)., pages 132–
141. IEEE Computer Society, 2004.

[17] Mitchell, T. M. Machine Learning. McGraw-Hill,
New York, 1997.

[18] Moldovan, G. and Serban, G. Clustering based
aspect mining formalized. WSEAS Transactions
on Computers, 6(2):199–206, 2007.

[19] Moldovan, G. S. and Serban, G. Aspect Min-
ing using a Vector-Space Model Based Cluster-
ing Approach. In Proceedings of Linking As-
pect Technology and Evolution (LATE) Workshop,
pages 36–40, Bonn, Germany, March, 20 2006.
AOSD’06.

[20] O’Reilly, R. C. Generalization in interactive
networks: The benefits of inhibitory competi-
tion and hebbian learning. Neural Computation,
13(6):1199–1241, 2001.

[21] Parnas, D. L. On the criteria to be used in decom-
posing systems into modules. Communications of
ACM, 15(12):1053–1058, 1972.

[22] Sampaio, A., Loughran, N., Rashid, A., and
Rayson, P. Mining Aspects in Requirements. In
Early Aspects 2005: Aspect-Oriented Require-
ments Engineering and Architecture Design Work-
shop (held with AOSD 2005), Chicago, Illinois,
USA, 2005.

[23] Serban, G. and Moldovan, G. S. A Graph Al-
gorithm for Identification of Crosscutting Con-
cerns. Studia Universitatis Babes-Bolyai, Infor-
matica, LI(2):53–60, 2006.

[24] Serban, G. and Moldovan, G. S. A New k-
means Based Clustering Algorithm in Aspect
Mining. In Proceedings of 8th International Sym-
posium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC’06), pages 69–
74, Timisoara, Romania, September, 26-29 2006.
IEEE Computer Society.

[25] Shepherd, D., Gibson, E., and Pollock, L. Design
and Evaluation of an Automated Aspect Mining
Tool. In 2004 International Conference on Soft-
ware Engineering and Practice, pages 601–607.
IEEE, June 2004.

[26] Shepherd, D. and Pollock, L. Interfaces, As-
pects, and Views. In Proceedings of Linking As-
pect Technology and Evolution (LATE) Workshop,
Chicago, USA, March 2005.

[27] Tonella, P. and Ceccato, M. Aspect Mining
through the Formal Concept Analysis of Execu-
tion Traces. In Proc. of the 11th Working Confer-
ence on Reverse Engineering (WCRE’04), pages
112–121, Washington, DC, USA, 2004. IEEE
Computer Society.

[28] Tourwé, T. and Mens, K. Mining Aspectual Views
using Formal Concept Analysis. In Proc. IEEE
International Workshop on Source Code Analysis
and Manipulation, 2004.

	Introduction
	Related Work
	A Hierarchical Clustering Algorithm for Crosscutting Concerns Identification (HACO)
	Experimental Results
	A Simple Java Code Example
	JHotDraw case study
	A real software system
	Comparison with existing approaches

	Conclusions and Future Work

