
Efficient Generation of Evolutionary Trees

MUHAMMAD ABDULLAH ADNAN1

MD. SAIDUR RAHMAN2

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)

Dhaka-1000, Bangladesh
1adnan@cse.buet.ac.bd

2saidurrahman@cse.buet.ac.bd

Abstract. For the purposes of phylogenetic analysis, it is assumed that the phylogenetic pattern of
evolutionary history can be represented as a branching diagram like a tree, with the terminal branches
(or leaves) linking the species being analyzed and the internal branches linking hypothesized ancestral
species. To a mathematician, such a tree is simply a cycle-free connected graph, but to a biologist
it represents a series of hypotheses about evolutionary events. In this paper we are concerned with
generating all such probable evolutionary trees that will guide biologists to research in all biological
subdisciplines. We give an algorithm to generate all evolutionary trees having n ordered species without
repetition. We also find out an efficient representation of such evolutionary trees such that each tree is
generated in constant time on average.

Keywords: Bioinformatics, Evolutionary Trees, Graphs, Algorithm, Generating Problems.

(Received June 26, 2006 / Accepted January 03, 2007)

1 Introduction

In bioinformatics, we frequently need to establish evo-
lutionary relationship between different types of species
[4, 6]. Biologists often represent this relationship in the
form of binary trees. Such complete binary trees having
different types of species in its leaves are known as evo-
lutionary trees (see Figure 1). In a rooted evolutionary
tree, the root corresponds to the most ancient ancestor
in the tree. Leaves of evolutionary trees correspond to
the existing species while internal vertices correspond
to hypothetical ancestral species.

Evolutionary trees are used to predict predecessors
of existing species, to comment about future genera-
tions, DNA sequence matching, etc. Prediction of an-
cestors can be easy if all possible trees are generated.
Moreover, it is useful to have the complete list of evo-

lutionary trees having different types of species. One
can use such a list to search for a counter-example to
some conjecture, to find best solution among all so-
lutions or to experimentally measure an average per-
formance of an algorithm over all possible input evo-
lutionary trees. Many algorithms to generate a given
class of graphs without repetition are already known
[1, 2, 3, 5, 7, 8, 9, 10, 11, 12].

PandaBear

20 millions of years ago

Raccoon Monkey

5 millions of years ago

10 millions of years ago

Figure 1: The evolutionary tree having four species.

adnan@cse.buet.ac.bd�
saidurrahman@cse.buet.ac.bd�

In this paper we first consider the problem of gen-
erating all possible evolutionary trees. The main chal-
lenges in finding algorithms for enumerating all evo-
lutionary trees are as follows. Firstly, the number of
such trees is exponential in general and hence listing all
of them requires huge time and computational power.
Secondly, generating algorithms produce huge outputs
and the outputs dominate the running time. For this rea-
son, reducing the amount of output is essential. Thirdly,
checking for any repetitions must be very efficient. Stor-
ing the entire list of solutions generated so far will not
be efficient, since checking each new solution with the
entire list to prevent repetition would require huge amount
of memory and overall time complexity would be very
high. So, if we can compress the outputs, then it consid-
erably improves the efficiency of the algorithm. There-
fore, many generating algorithms output objects in an
order such that each object differs from the preceding
one by a very small amount, and output each object as
the “difference” from the preceding one.

Generating evolutionary trees is more like generat-
ing complete binary rooted trees with ’fixed’ and ’la-
beled’ leaves. That means there is a fixed number of
leaves and the leaves are labeled. There are some ex-
isting algorithms for generating rooted trees with n ver-
tices [2, 5, 7, 8, 9]. But these algorithms do not guar-
antee that there will be fixed and labeled leaves. If we
generate all binary trees with n leaves with existing al-
gorithms then we have to label each tree and permutate
labels to generate all trees. Since the siblings are not
ordered, permutating the labels lead to repetition. Thus
modifying existing algorithms we cannot generate all
evolutionary trees.

In this paper we first give an efficient algorithm to
generate all evolutionary trees with fixed and ordered
number of leaves. The order of the species is based
on evolutionary relationship and phylogenetic structure.
For instance, Bear is more related to Panda than Mon-
key and Raccoon is more related to Panda than Bear.
Thus a species is more related to its preceding and fol-
lowing species in the sequence of species than other
species in the sequence. The order of labels maintains
this property. This property implies that each species in
the sequence shares a common ancestor either with the

preceding species or with the following species. We ap-
ply the above restriction on the order of leaves with two
goals in mind. First, the solution space is reduced so
that more probable solutions are available for the biol-
ogists to predict quickly and easily. Second, each such
probable evolutionary tree must be generated in con-
stant time. We also find out a suitable representation
of such trees. We represent a labeled and ordered com-
plete binary tree with n leaves by a sequence of (n− 2)
numbers. Our algorithm generates all such trees with-
out repetition.

Furthermore the algorithm for generating labeled and
ordered trees is simple and generates each tree in con-
stant time on average without repetition. Our algorithm
generates a new tree from an existing one by making a
constant number of changes and outputs each tree as the
difference from the preceding one. The main feature of
our algorithm is that we define a tree structure, that is
parent-child relationships, among those trees (see Fig-
ure 2). In such a “tree of evolutionary trees”, each node
corresponds to an evolutionary tree and each node is
generated from its parent in constant time. In our algo-
rithm, we construct the tree structure among the evolu-
tionary trees in such a way that the parent-child relation
is unique, and hence there is no chance of producing
duplicate evolutionary trees. Our algorithm also gener-
ates the trees in place, that means, the space complexity
is only O(n).

B

D

C

A

B

A

C

D

BA C D B

A

C D

A B

C

D

Figure 2: The Family Tree F4.

The rest of the paper is organized as follows. Sec-
tion 2 gives some definitions. Section 3 depicts the
representation of evolutionary trees. Section 4 shows
a tree structure among evolutionary trees. In Section 5

we present our algorithm which generates each solution
in O(1) time on average. Finally, section 6 is a conclu-
sion.

2 Preliminaries

In this section we define some terms used in this paper.

In mathematics and computer science, a tree is a
connected graph without cycles. A rooted tree is a tree
with one vertex r chosen as root. A leaf in a tree is a
vertex of degree 1. Each vertex in a tree is either an
internal vertex or a leaf. A complete binary tree is a
rooted tree with each internal node having exactly two
descendants.

A family tree is a rooted tree with parent-child rela-
tionship. The vertices of a rooted tree have levels asso-
ciated with them. The root has the lowest level i.e. 0.
The level for any other node is one more than its parent
except root. Vertices with the same parent v are called
siblings. The siblings may be ordered as c1, c2, . . . , cl

where l is the number of children of v. If the siblings are
ordered then ci−1 is the left sibling of ci for 1 < i ≤ l

and ci+1 is the right sibling of ci for 1 ≤ i < l. The
ancestors of a vertex other than the root are the vertices
in the path from the root to this vertex, excluding the
vertex and including the root itself. The descendants of
a vertex v are those vertices that have v as an ancestor.
A leaf in a family tree has no children.

An evolutionary tree is a graphical representation
of the evolutionary relationship among three or more
species. In a rooted evolutionary tree, the root corre-
sponds to the most ancient ancestor in the tree and the
path from the root to a leaf in the rooted tree is called
an evolutionary path. Leaves of evolutionary trees cor-
respond to the existing species while internal vertices
correspond to hypothetical ancestral species.

In this paper, we represent evolutionary tree in terms
of complete binary trees. Each existing species of evo-
lutionary tree is a leaf in the complete binary tree (see
Figure 3). We give labels to each leaf. The label iden-
tifies the existing species. For example, labels A, B,
C and D represent Bear, Panda, Raccoon and Mon-
key. The labels are fixed and ordered. The order of the
species is based on evolutionary relationship and phy-

logenetic structure. For instance, Bear is more related
to Panda than Monkey and Raccoon is more related to
Panda than Bear. So, a species is more related to its pre-
ceding and following species in the sequence of species
than other species in the sequence. The order of labels
maintains this property. This property implies that each
species in the sequence shares a common ancestor ei-
ther with the preceding species or with the following
species. Our complete binary tree will maintain this
property and we will generate all such trees with ex-
actly n leaves.

A B DCPanda MonkeyRaccoonBear

Figure 3: Representation of evolutionary tree in terms of complete
binary tree.

3 Representation of Evolutionary Trees

In this section we give an efficient representation of a la-
beled and ordered evolutionary tree in T (n). We repre-
sent such trees with n species with a sequence of (n−2)
numbers.

Let T (n) be the set of all evolutionary trees with n

labeled and ordered leaves. Now, we find out a repre-
sentation of each evolutionary tree t ∈ T (n). Our idea
here is to represent a tree with a sequence of numbers.
For this, we find out an intermediate representation of
each tree t ∈ T (n). A complete binary tree with n la-
beled leaves can be represented with a string of valid
parenthesization of n labels l1, l2, . . . , ln. Figure 4
shows the representation of complete binary tree having
5 leaves. Thus the number of such trees corresponds
directly to Catalan number. Thus the total number of
complete binary trees with n fixed and labeled leaves is

given by
2(n−1)C(n−1)

n .

����

A B

C D

E

2

((A B) ((C D) E))

2244442

Figure 4: Representation of an evolutionary tree having five species.

We now count the number of opening parenthesis
’(’ before each label li, 1 ≤ i ≤ (n − 2) in the string
of valid parenthesis of each intermediate representation.
This gives us a sequence of (n − 2) numbers a1, a2,
. . ., an−2 where ai represents the number of ’(’ before
label li, for 1 ≤ i ≤ (n − 2). Since the labels are
fixed and ordered, we do not need to count for ln−1 and
ln and so we omit these two numbers in the sequence.
For example, the sequence 244 represents a evolution-
ary tree with 5 leaves which corresponds to the string
of valid parenthesis ((l1((l2l3)l4))l5). One can observe
that for each sequence a1 ≤ a2 ≤ · · · ≤ an−2 and
1 ≤ ai ≤ (n − 1) for 1 ≤ i ≤ (n − 2). Thus, we say
that a sequence of (n− 2) numbers uniquely represents
a evolutionary tree with labeled and ordered leaves as
shown in Figure 4.

Let S(n) denote the set of all such sequence. Each
sequence s ∈ S(n) uniquely identifies a tree t ∈ T (n).
We have the following lemma.

Lemma 3.1 A sequence s ∈ S(n) of (n − 2) numbers
uniquely represents an evolutionary tree t ∈ T (n).

Proof. In an evolutionary tree t ∈ T (n) the labeled
leaves l1, l2, . . . , ln are ordered. A leaf li, 1 < i < n

can only be paired with either with li−1 or li+1 in the
sequence of labels. We take any two labels, li and lj ,
1 < i ≤ n − 2 and j ∈ {i − 1, i + 1}. If li and lj

are paired, the count of the ’(’ is same for both of them.
This implies that si = sj . If li and lj are not paired,
their count of the ’(’ is different which implies si 6= sj .

For any two trees t1 ∈ T (n) and t2 ∈ T (n), t1 6=
t2, we will find at least two labels li and lj which are
paired in one and not paired in another. Thus, their
count is different i.e. si 6= sj . Hence the sequence
s ∈ S(n) of (n − 2) numbers represents exactly one
evolutionary tree t ∈ T (n). Q.E .D.

4 The Family Tree

In this section we define a tree structure Fn among evo-
lutionary trees in T (n).

For positive integer n, let t ∈ T (n) be an evolution-
ary tree with n leaves having l1, l2, . . . , ln labels. For
each t ∈ T (n), we get unique sequence s ∈ S(n) of

(n − 2) numbers a1, a2, . . . , an−2 where ai represents
the number of ’(’ before label li, for 1 ≤ i ≤ (n − 2).
Also, for each sequence a1 ≤ a2 ≤ · · · ≤ an−2 and
1 ≤ ai ≤ (n− 1) for 1 ≤ i ≤ (n− 1).

Now we define the family tree Fn as follows. Each
node of Fn represents an evolutionary tree. If there are
n species then there are (n− 1) levels in Fn. A node is
in level i in Fn if a1 ≤ a2 ≤ . . . ≤ ai < (n − 1) and
ai+1 = . . . = an−2 = (n − 1) for 1 < i ≤ (n − 1).
For example, the sequence 224 is at level 2. As the level
increases the number of rightmost (n−1) decreases and
vice versa. Thus a node at level n− 2 has no rightmost
(n − 1) number i.e. an−2 < (n − 1). Since Fn is a
rooted tree we need a root and the root is a node at level
0. One can observe that a node is at level 0 in Fn if
a1, a2, . . . , an−2 = (n − 1) and there can be exactly
one such node. We thus take the sequence (n − 1, n −
1, . . . , n− 1) as the root of Fn. Clearly, the number of
rightmost (n−1) in root is greater than that of any other
sequence for any evolutionary tree in T (n).

To construct Fn, we define two types of relations
among the evolutionary trees in T (n):

(a) Parent-child relationship and

(b) Child-parent relationship.

We define the parent-child relationship among the
evolutionary trees in T (n) with two goals in mind. First,
the difference between an evolutionary tree s and its
child C(s) should be minimum, so that C(s) can be
generated from s by minimum effort. Second, every
evolutionary tree in T (n) must have a parent except the
root and only one parent in Fn. We achieve the first
goal by ensuring that the child C(s) of an evolutionary
tree s can be found by simple subtraction. That means
s can also be generated from its child C(s) by simple
addition. The second goal, that is the uniqueness of the
parent-child relationship is illustrated in the following
subsections.

4.1 Parent-Child Relationship

Let t ∈ T (n) be an evolutionary tree with n ordered
leaves having l1, l2, . . . , ln labels and s ∈ S(n) be the
sequence of numbers a1, a2, . . . , an−2 corresponding

to t. s corresponds to a node of level i, 0 ≤ i ≤ (n− 2)
of Fn. Thus we have a1 ≤ a2 ≤ · · · ≤ ai < (n − 1)
and ai+1 = · · · = an−2 = (n−1) for 1 < i ≤ (n−2).
The number of children it has is equal to (ai+1 − ai).
The sequence of the children are defined in such a way
that to generate a child from its parent we have to deal
with only one integer in the sequence and the rest of the
integers remain unchanged. The integer is determined
by the level of parent sequence in Fn. The operation we
apply is only subtraction and assignment. The number
of rightmost (n− 1) decreases in the child sequence by
applying parent-child relationship.

Let Cj(s) ∈ S(n) be the sequence of jth child, 1 ≤
j ≤ (ai+1 − ai) of s. Note that s is in level i of Fn

and Cj(s) will be in level i + 1 of Fn. We define the
sequence for Cj(s) as c1, c2, . . . , cn−2 where ck = ak

for k 6= j and cj = (ai+1 − j). Thus, we observe
that Cj is a node of level i + 1, 0 ≤ i < n − 2 of
Fn and so c1 ≤ c2 ≤ · · · ≤ ci+1 < (n − 1) and
ci+2 = · · · = cn−2 = (n−1) for 0 ≤ i < (n−2). Thus
for each consecutive level we only deal with the integer
ai+1 and the rest of the integers remain unchanged. For
example, 244 for n = 5 is a node of level 1 because
a1 < 4 and a2 = a3 = 4. Here, a2 − a1 = 2 so it has
two children and the two children are shown in Figure
6.

4.2 Child-Parent Relationship

The child-parent relation is just the reverse of parent-
child relation. Let t ∈ T (n) be an evolutionary tree
with n ordered leaves having l1, l2, . . . , ln labels and
s ∈ S(n) be the sequence of numbers a1, a2, . . . , an−2

corresponding to t. s corresponds to a node of level i,
0 ≤ i ≤ (n− 2) of Fn. Thus we have a1 ≤ a2 ≤ . . . ≤
ai < (n − 1) and ai+1 = . . . = an−2 = (n − 1) for
1 < i ≤ (n−1). We define a unique parent sequence of
s at level i − 1. Like the parent-child relationship here
we also deal with only one integer in the sequence. The
operations we apply here is only addition and assign-
ment. The number of rightmost n − 1 increases in the
parent sequence by applying child-parent relationship.

Let P (s) ∈ S(n) be the parent sequence of s. We
define the sequence for P (s) as p1, p2, . . . , pn−2 where
pj = aj for j 6= (i − 1) and pi−1 = (n − 1). Thus,

we observe that P (s) is a node of level i − 1, 1 ≤ i <

(n− 2) of Fn and so p1 ≤ p2 ≤ · · · ≤ pi−1 < (n− 1)
and pi = · · · = pn−2 = (n − 1) for 1 ≤ i ≤ (n − 2).
For example, 224 for n = 5 is a node of level 2 because
a1 ≤ a2 ≤ 4 and a3 = 4. It has a unique parent 244 as
shown in Figure 6.

4.3 The Family Tree

From the above definitions we can construct Fn. We
take the sequence sr = a1, a2, . . . , an−2 as root where
a1, a2, . . . , an−2 = n − 1 as we mentioned before.
The family tree Fn for the evolutionary trees in T (n)
is shown in Figure 5 and Figure 6 shows the represen-
tation of family tree Fn.

C

E

D

B

A

C D

E

A

B

C

E

A

B

D

C

A

B D E

CA B

D E

D E

B C

A

A B

C D E

C

A B

D

E

C

A

E

B

D

BA C D

E

A

B C

D

E

B

A

C

D

E

B

D

C

A

E

A B

C

D

ELevel 0

Level 1

Level 2

Level 3

Figure 5: Illustration of Family Tree F5.

244

Level 0

Level 1

334 234 134224

144

Level 2

344

Level 3

124

333 233 223 133 123

444

Figure 6: Representation of Family Tree F5.

Based on the above parent-child relationship, the
following lemma proves that every evolutionary tree in
T (n) is present in Fn.

Lemma 4.1 For any evolutionary tree t ∈ T (n), there
is a unique sequence of evolutionary trees that trans-
forms t into the root tr of Fn.

Proof. Let s ∈ S(n) be a sequence, where s is
not the root sequence, representing an evolutionary tree
t ∈ T (n). By applying child-parent relationship, we
find the parent sequence P (s) of the sequence s. Now
if P(s) is the root sequence, then we stop. Otherwise,
we apply the same procedure to P (s) and find its par-
ent P (P (s)). By continuously applying this process of
finding the parent sequence of the derived sequence, we
have the unique sequence s, P (s), P (P (s)), . . . of se-
quences in S(n) which eventually ends with the root
sequence sr of Tn,m. We observe that P (s) has at least
one (n − 1) number more than s in its sequence. Thus
s, P (s), P (P (s)), . . . never lead to a cycle and the level
of the derived sequence decreases which ends up with
the level of root sequence sr. Q.E .D.

Lemma 4.1 ensures that there can be no omission
of evolutionary trees in the family tree Fn. Since there
is a unique sequence of operations that transforms an
evolutionary tree t ∈ T (n) into the root tr of Fn, by
reversing the operations we can generate that particular
evolutionary tree, starting from root. Now we have to
make sure that Fn represents evolutionary trees without
repetition. Based on the parent-child and child-parent
relationships, the following lemma proves this property
of Fn.

Lemma 4.2 The family tree Fn represents evolutionary
trees in T (n) without repetition.

Proof. Given a sequence s ∈ S(n), representing a
t ∈ T (n), the children of s are defined in such a way
that no other sequence in S(n) can generate same child.
For contradiction let two sequences A,B ∈ S(n) are at
level i of Fn and generate same child C. Thus C is
a sequence of level i + 1 of Fn. The sequences for
A, B and C are aj , bj and cj for 1 ≤ j ≤ n − 2.
Clearly, ak = bk = n − 1 for i + 1 ≤ k ≤ n − 2
and we will get at least one j such that aj 6= bj for
1 ≤ j ≤ i. According to parent-child relationship, to
generate C from its parent A or B, only one integer

ai+1 or bi+1 is changed in the sequence. Thus child
of A, C(A) and child of B, C(B) are different since
ai+1 = bi+1 and aj 6= bj for 1 ≤ j < i+1. Thus A and
B does not generate same child C. By contradiction,
every sequence has a single and unique parent.

Q.E .D.

5 Algorithm

In this section, we give an algorithm to construct the
family tree Fn and generate all trees.

If we can generate all child sequences of a given
sequence in S(n), then in a recursive manner we can
construct Fn and generate all sequence in S(n). We
have the root sequence sr = (n − 1) . . . (n − 1). We
get the child sequence sc by using the parent to child
relation discussed above.

Procedure Find-All-Child-Trees(s = a1a2 . . .

an−1, i)
{ s is the current sequence, i indicates the current
level and sc is the child sequence }
begin

Output s {Output the difference from the previ-
ous evolutionary tree};

for j = 1 to (ai+1 − ai)
Find-All-Child-Trees(sc = a1a2 . . . (ai+1 −

j) . . . an−2), i + 1);
end;
Algorithm Find-All-Evolutionary-Trees(n)
begin

Find-All-Child-Trees(sr = (n − 1) . . . (n −
1), 0);
end.

The following theorem describes the performance
of the algorithm Find-All- Evolutionary-Trees.

Theorem 5.1 The algorithm Find-All-Evolutionary-
Trees uses O(n) space and runs in O(|T (n)|) time.

Proof. In our algorithm we only use the simple ad-
dition or subtraction operation to generate a new evo-
lutionary tree from an old one. Thus each evolution-
ary tree is generated in constant time without computa-
tional overhead. Since we traverse the family tree Fn

and output each sequence at each corresponding vertex
of Fn we can generate all the evolutionary trees in T (n)
without repetition. By applying parent to child relation
we can generate every child in O(1) time. Then by us-
ing child to parent relation we go back to the parent
sequence. Hence, the algorithm takes O(|T (n)|) time
i.e. constant time on average for each output.

Our algorithm outputs each evolutionary tree as the
difference from the previous one. The data structure
that we use to represent the evolutionary trees is a se-
quence of n − 2 integers. Therefore, the memory re-
quirement is O(n), where n is the number of species.

Q.E .D.

6 Conclusion

In this paper, we find out an efficient representation of
an evolutionary tree having ordered species. We also
give an algorithm to generate all evolutionary trees hav-
ing n ordered species. The algorithm is simple, gener-
ates each tree in constant time on average, and clarifies
a simple relation among the trees that is a family tree of
the trees.

References

[1] M. A. Adnan and M. S. Rahman, Distribution of
objects to bins: generating all distributions, Proc.
of International Conference on Computer and In-
formation Technology (ICCIT’06), 2006 (to ap-
pear).

[2] M. Belbaraka and I. Stojmenovic, On generating
B-trees with constant average delay and in lexi-
cographic order, Information Processing Letters,
49, pp. 27-32, 1994.

[3] T. I. Fenner and G. Loizou, A binary tree repre-
sentation and related algorithms for generating
integer partitions, The Computer Journal, 23, pp.
332-337, 1979.

[4] N. C. Jones and P. A. Pevzner, An Introduction to
Bioinformatics Algorithms, The MIT Press, Cam-
bridge, Massachusetts, London, England, 2004.

[5] S. Kawano and S. Nakano, Constant time genera-
tion of set partition, IEICE Trans. Fundamentals,
E88-A, 4, pp. 930-934, 2005.

[6] D. E. Krane and Michael L. Raymer, Fundamental
Concepts of BioInformatics, Pearson Education,
San Francisco, 2003.

[7] S. Nakano and T.Uno, Efficient generation of
rooted trees, NII Tech. Report, NII-2003-005E,
July 2003.

[8] S. Nakano and T. Uno, Constant time genera-
tion of trees with specified diameter, Proc. of WG
2004, LNCS 3353, pp. 33-45, 2004.

[9] S. Nakano and T. Uno, Generating colored trees,
Proc. of WG 2005, LNCS 3787, pp. 249-260,
2005.

[10] C. Savage, A survey of combinatorial gray codes,
SIAM Review, 39, pp. 605-629, 1997.

[11] K. Yamanaka and S. Nakano, Generating all real-
izers, IEICE Trans. Inf. and Syst., J87-DI, 12, pp.
1043-1050, 2004.

[12] A. Zoghbi and I. Stojmenovic, Fast algorithm for
generating integer partitions, Intern. J. Computer
Math, 70, pp. 319-332, 1998.

