
A Distributed Reactive Synchronous Programming Language

GIOVANI RUBERT LIBRELOTTO1

JONAS BULEGON GASSEN2

ROGÉRIO CORRÊA TURCHETTI1

SIMÃO SIRINEO TOSCANI3

UNIFRA - Centro Universitário Franciscano
Rua dos Andradas, 1614,

Santa Maria, RS, 97010-032, Brasil
1(giovani,turchetti)@unifra.br

2jbgassen@gmail.com 2sstoscani@gmail.com

Resumo. RS is a reactive synchronous programming language suited to the implementation of the control
part of reactive systems. The RS source programs are compiled to finite automata, which are very
fast at execution time. This paper describes: (1) the distribution of the RS language, (2) the design of
an MDX kernel that implements the communication facilities for the distributed automata, and (3) the
implementation of the resulting distributed model using the C language.

Palavras-Chave: Reactive systems, finite automata, reactive synchronous programming language,
MDX, distributed automata.

Uma Linguagem de Programação Síncrona Reativa Distribuída
Abstract. RS é uma linguagem de programação síncrona reativa projetada para a implementação da
parte de controle de um sistema reativo. Os códigos-fontes RS são compilados para autômatos finitos,
os quais possuem um rápido tempo de execução. Este artigo descreve: (1) a distribuição da linguagem
RS, (2) o projeto de um núcleo MDX que implementa as facilidades de comunicação entre os autômatos
distribuídos e (3) a implementação do modelo distribuído resultante usando a linguagem C.

Keywords: Sistemas reativos, autômatos finitos, linguagem de programação reativa, MDX, autômatos
distribuídos.

(Received December 29, 2007 / Accepted March 26, 2008)

1 Introduction

The RS language [11] is intended for the programming
of reactive kernels, which are the central and most dif-
ficult part of a reactive system [1]. A reactive kernel
takes care of all logic of a reactive system, handling in-
put signals, performing reactions and generating output
signals [5]. In its original version, the RS language de-
alt only with centralized kernels, since each program
had been compiled to a single automaton [9].

This article describes the changes that allow the RS

language to deal with distributed control. The model
tries to be general enough, without binding definitions
to languages or environments. A communication envi-
ronment based on the MDX protocol [4] is also descri-
bed. The environment offers the communication ser-
vices for the RS distributed automata. The new MDX
environment, called MDX_RS, offers a fast communi-
cation service to the automata.

The paper is organized as follows: section 2 gives
a brief introduction of the RS language; section 3 defi-
nes the RS distribution model; section 4 introduces the

(giovani,turchetti)@unifra.br
jbgassen@gmail.com
sstoscani@gmail.com

MDX system; section 5 describes MDX_RS communi-
cation kernel; section 6 describes the implementation of
the distributed model, using the C language; section 7
presents the conclusions of the work.

2 The RS Language

The RS language adopts the synchrony hypothesis, that
is, it assumes that each reaction is performed in zero
time. Therefore, the output signals are synchronous
with the input ones, and the time only goes by during
the external environment activity. This assumption sim-
plifies the language semantics and allows the programs
to be compiled to finite automata [10].

The RS compiler translates the source programs to
a set of tables that describe a state machine similar to
the Mealy machine [6]. As the object code is not an
executable file, the system needs an interpreter for the
automata execution. In addition to the control kernel,
a reactive application requires the implementation of an
I/O interface, to receive the input signals and to conduct
the output signals, and a set of procedures, to handle the
application data.

As it occurs with Esterel [3, 2], Lustre [5], and other
synchronous languages, RS is not a self-sufficient lan-
guage; the I/O interface and the data handling compo-
nents should be provided by a host language or by the
execution environment. An RS source program is com-
posed by a set of modules, each module is composed by
a set of rule boxes and each rule box is composed by
a set of reaction rules. Despite having these 3 levels,
every source program can be seen as composed by only
a single set of reaction rules. Each rule has the form C
→ action, where C is a set of signals, called the firing
condition, and action is a sequence of statements. A
firing condition C is true when all of its signals are on.

The execution of an RS program is accomplished in
a sequence of steps, where each step consists of the pa-
rallel execution of all rules with firing condition true [8].
The first action of a step is an implicit action that turns
off all the signals contained in the true conditions. As
the execution of a rule can turn on signals, this origina-
tes a sequence of steps that only finishes when the set of
on signals is not enough to fire any reaction rule. In this
situation, the program waits until some external signal
arrives to start a new reaction.

3 The distribution of the RS language

The distribution of control is currently used in many en-
vironments, such as plant floors, domestic automation,
and robotics. In these environments, a component reac-
tion can depend on another component behavior. This

section defines a model that allows the translation of an
RS program into a set of automata and, afterwards, the
execution of these automata on different machines.

3.1 Syntactic modifications

The RS distribution requires new declarations to allow:
(a) to compile a program for a set of automata; (b) to
place these automata in different processors. The adop-
ted approach allows to specify, in the same source code,
the processes to be distributed as well the machines in
which they will run.

3.1.1 The machine declaration

The machine declaration introduces a new level in the
syntactic hierarchy of the language. Beyond the three
levels of the original structure, i.e., modules, rule boxes,
and reaction rules, the machine declaration adds a new
level. By the way, this level is the same as that of a
program, i.e., the machine declaration may contain all
the old structuring levels.

A distributed program begins with the declaration
rsd_prog and is composed by several machine declara-
tions. Another small syntactic change was the inclu-
sion of the external interface definition, after the hea-
der rsd_prog. The external interface declaration allows
the identification of the input and output external sig-
nals. This declaration is intended only to make the pro-
gram more clear, because the information it contains is
redundant and could have been gotten directly by the
compiler. Now, each machine declaration originates a
single independent automaton for a specific machine.
This new syntactic hierarchy of the RS language can be
seen in next subsection.

3.1.2 An example of a distributed program

To illustrate the new syntax, a distributed RS program
is presented in figure 1. Although there is no interest
at the moment, neither the program has any practical
importance, what the program verifies if a mouse but-
ton was pressed with a double or a single click. The
program has two input signals: tick, that means a clock
impulse, and click, that means the pressing of the mouse
button, and two output signals: single and double. The
program is executed in two machines, called sinope and
pan.

Figura 1: A distributed RS program for a mouse button

3.2 Distributed automata generation

In the following, a machine 1 declaration is called an
UD (Unit of Distribution). The steps to compile each
UD and later to transfer the generated automaton to the
corresponding machine is now summarized:

1. Put each UD in a proper file, keeping the identi-
fication of the machine and substituting "rs_prog
name#n"for "machine machineID", where name is
the name of the distributed program and #n is a
counter value (the initial value of the counter is
zero and it is increased by 1 for each occurrence of
machine).

2. Compile each UD (using the original RS compi-
ler) and send the automaton to the corresponding
machine.

In the previous example, the name of the distributed
program is mouseD and it has two UDs. The corres-
ponding automata to these UDs are called mouseD1 and
mouseD2. The generated code for each UD is placed in
two files, one with extension .aut and another with ex-
tension .rul. The first one describes the automaton and
the second one contains the reaction rules for this au-
tomaton (from which the actions are obtained at execu-
tion time). For the distributed mouse control program,
the files in figure 2 will be generated.

The compiler also generates another file, with ex-
tension .iod, called Archive of Distributed Information
(AID), which specifies in which machine each automa-
ton will run, which are the signals coming from the ex-
ternal environment, and which are the signals that must

1Each machine declaration specifies a complete original RS pro-
gram.

be sent to other automata. Coming back to the distribu-
ted mouse example, the AID file is:

3.3 Execution environment for the distributed au-
tomata

The system has a master–slave organization, where the
master is the RS_Main process and the slaves are the
automata. The master communicates with the user and
sends signals and commands to the slaves. The slaves
carry out the reactions and send the results to the mas-
ter, which shows them on the screen. To free the master
from the blocking data entry activity, a special process
named RS_IO is used. This process reads the input data
from the keyboard. The current prototype is useful du-
ring the debugging phase of a distributed system. In the
final version of this system, the RS_IO will be replaced
by the external I/O interface, which will implement the
real communication with the external environment.

The processes that compose the RS distributed en-
vironment are:

• RS_IO: receives input signals and commands en-
tered by the user and sends them to the RS_Main
process.

Figura 2: Generated automata for distributed mouse

• RS_Main: initialize and finish the automata, trans-
fer each signal received from RS_IO to the ARSD
that treat this signal, and shows results and error
messages in the screen.

• ARSDs: the distributed RS automata. They carry
out the commands received from the RS_Main pro-
cess, and react to the received signals.

4 The MDX parallel programming environment

The MDX environment2 [4] executes over an hetero-
geneous workstation network, and implements a paral-
lel virtual machine with shared memory. The idea is
to allow the programmer to write multithreaded pro-
grams where the threads are dynamically created in the
network, and in which sharing of data is done through
the distributed virtual memory. Each network node is a
computer with one or more processing units and a local
memory, interconnected by a physical network, under
some operating system such as Windows, OS/2, Linux,
and Solaris, among others.

In an application, the same program is replicated in
all the nodes of the network, however in each node only
a subset of threads is executed. Thread synchronization
is carried through semaphores and barriers. The MDX
system is based on the client/server model, and it uses
RPC as the communication mechanism. The system is
composed by a name server, a distributed virtual me-
mory manager, a compiler manager, an execution ma-

2The MDX system is being investigated as part of a project invol-
ving the following Brazilian universities: UNICRUZ, PUCRS, and
UFRGS.

nager, and a synchronization manager. These compo-
nents use the services of a communication kernel. The
basic architecture of the MDX system over a network
of workstations is shown in figure 3.

Figura 3: The basic architecture of the MDX system over a network

The communication kernel is intended to allow the
communication between the client and server proces-
ses, regardless of their location, in a fast, trustworthy,
and transparent way [4]. To accomplish this duty the
kernel executes the following three tasks: (a) message
examination to identify if it is a request or a reply and to
whom it must be delivered; (b) location of the involved
client or server process; (c) sending of the messages to
the right place.

5 MDX_RS — A communication kernel for RS
automata

Communication requirements of the RS environment
are small and may be provided by a simple kernel, which
will be called MDX_RS. This kernel is presented in the
coming sections.

5.1 Functions required by the RS environment

There is no need of shared memory, for the RS au-
tomata; instead, some message interchanging mecha-
nism. In the reaction rules source code (file .rul), the
occurrence of the statement emit(s) means that the auto-
maton will emit the signal s to either another automaton
or to the external environment. The destination is defi-
ned in the file AID (extension .iod). For example, in the
mouseD distributed program, the statement emit(start)
sends the start signal from the machine sinope to the
machine pan, because in the AID file it is indicated that
start is an output signal ofmouseD1 (machine sinope)
and is an input signal for mouseD2 (machine pan).

In the translation of an ARSD to a C program, the
emit command is substituted by the communication pri-
mitive MDX_send(), which sends a given signal to a
specific automaton. For this to happen, a previous con-
nection between the two automata must have already
been established. The establishment of the connection
creates one socket and, through this socket, the two au-
tomata will communicate until the end of the distribu-
ted program execution. The MDX_send() command for
the above described example would be the following:
MDX_send (mouseD2, "start"); where mouseD2 is the
automaton that will receive the message and start is the
signal to be sent.

For signal reception, every automata has a thread
that uses the MDX_recv() command, which has the fol-
lowing format: MDX_recv (int Socket, char *message);
where the parameters specify the connection socket and
the message, which will be later treated according to the
RS protocol. It must be remarked that an ARSD is very
different from an MDX server. When an automaton re-
ceives a signal, it can perform only a local computation,
or even it can execute nothing, if the signal is not expec-
ted in the current automaton state.

5.2 Structure of the MDX_RS communication ker-
nel

The original MDX system is based on the client/server
model, where several clients ask for services to one or
more servers. As an automaton is neither a client nor a
server, it was necessary to define a new structure for the
communication kernel.

The MDX_RS kernel uses a NLT table (Name Local
Table) that registers the network nodes that are used by
the distributed system.

5.2.1 The establishment of connections

The procedure that establishes the ARSD’s connecti-
ons has a parameter that receives a communication port
identification, which will be used to wait for connecti-
ons with other automata. After receiving this port spe-
cification, the automaton waits, in an accept command,
until another automaton establishes a connection with
it. When this happens, the information about the con-
nection is added to the NLT, and a thread for the inter-
communication of these two automata is created.

This thread repeats a loop until the automaton re-
ceives a message asking for its termination. Inside the
loop, the automaton waits for a message using the soc-
ket created in the previous procedure. When a message
is received, the message is treated in according to the
RS protocol. If, after the handling of the message, it
is necessary to send a signal to an automaton A, then
a seek operation is made in the NLT to find the socket
belonging to A and the message is sent to this socket,
through an MDX_send() operation.

5.2.2 Structure of the new kernel

In the RSD (distributed RS) system, an Init() process
that waits for new connections between ARSDs will
always be active. From this Init(), for each established
connection, a thread is created (procedure Recv()) which
makes the communication between the local ARSD and
the remote one. This structure is shown in figure 4.

Figura 4: Structure of the MDX_RS communication kernel

5.3 Structure of the MDX_RS system

The structure of the MDX_RS system has just three
layers:

• Automaton: It is a C program that implements an
ARSD and uses the MDX_RS communication and
synchronization primitives.

• MDX_RS Kernel: It is the main part of the sys-
tem. It supplies the communication support to the
ARSD and manages the NLT.

• Operating System: Until now it has only been tes-
ted on Linux.

As it can be seen, the user API and the specialized
servers have been eliminated. The API could be remo-
ved because the kernel, together with the RSD model
functionality, already guarantee the required transpa-
rency, giving the illusion that the automata executed in
a single machine.

As to the specialized servers, it can be stated that
the execution server is not necessary because the actual
prototype requires the manual loading and execution of
each automaton (later the system will be improved in
this aspect). The shared memory server plays no role,
because the RS automata do not share memory. The
synchronization server is not needed because the synch-
ronization is made by the RSD system itself. Similarly,
the compilation is done directly by the user. Finally, the
name server is not necessary because each automaton
has a copy of the NLT in its local kernel.

6 CRSD — The RSD compiler

The objective of the CRSD is not to substitute the ori-
ginal RS compiler, but to complement it. The idea is
to use the original compiler generated code (an auto-
maton) to generate the C code that implements the au-
tomaton. The CRSD uses only the information of the
files that describe the automata.

Code generation. The code generation is ac-
complished in two phases: action generation and auto-
maton generation. In the first phase, the program vari-
ables are identified and the RSD commands and attri-
butions are translated. In the second phase, the action
execution order is defined. From the RS automaton de-
finition, the automaton routine is constructed; basically,
this routine contains calls to the previously generated
procedures and functions.

Handling of parallel actions. In the
representation of an ARSD, the asterisks are used to se-
parate actions that can be executed in parallel. During
the execution of these actions, the signal values must

remain frozen (that is demanded by the semantics of
RS language). That is, the new value of a signal can
be attributed only after the execution of all the parallel
actions. To solve this problem the same solution of the
old RS system is used: every signal possesses an origi-
nal value and a copy, the value is always read from the
original signal and written in the copy. When the paral-
lel action finishes, the copy value is used to bring up to
date the original signal.

Internal exception handling. An inter-
nal exception means a communication error or even an
execution error. In such situation the ARSD emits a ex-
ception message to the RS_Main process and waits for
a reply, which can be either an order to finish or an or-
der to continue the processing. The waiting for reply is
synchronous; in such a way the ARSD does not execute
any command until the reply arrives.

RS protocol. The RS protocol [7] standardi-
zes the information exchanged between the following
pair of processes: RS_Main-ARSD, ARSD-ARSD and
RS_IO-RS_Main. For the total ordering of messages
the system uses logical clocks and time stamps, accor-
ding to Lamport’s algorithm [9]. The messages for which
the ordering is not important do not receive time-stamps.
The main reason for the option of centralized control
was maintenance easiness.

7 Conclusions

In the RSD language, all the components to be distri-
buted are specified in a single source program, which
improves the programmer view of the structure of the
system as a whole. Each component is compiled for an
independent automaton and, for each component, the
programmer specifies the machine where it will run.

The distribution of language RS extends the scope
of its applications, since the language starts to contem-
plate distributed controls. One of the advantages of
organizing a system as a set of communicating auto-
matons, instead of a single automaton, is the reduction
of size (number of states) of the system. The great di-
sadvantage is the overhead introduced by the run-time
communication.

Despite the overhead corresponding to the commu-
nication between automata running on different machi-
nes, it was possible to observe a sensible increase in the
execution speed of the distributed programs when com-
pared to the centralized program. This is justified by
the fact that the code generated by the CRSD compiler
is faster than the interpreted code of the original RS lan-
guage. In fact, the distributed mouse example showed
that the RSD version, executed on the MDX_RS com-
munication kernel, has better performance than the cen-

tralized RS program (this can be detected visually). But
this apparent better performance can be due to the low
complexity of the example and needs to be better stu-
died. However, as a big distributed system will be com-
posed by several automata, having several operations
occurring at the same time in separate machines, hope-
fully the distributed performance will be higher than the
centralized one.

As RSD is still a prototype in a test phase, it is na-
tural that it has improvements to be introduced. With
respect to security, for example, the monitoring of the
master process must be implemented, therefore. In re-
lation to the MDX_RS kernel, an execution manager
must be created to make possible the execution of the
kernel and the automata in remote machines, with only
one command. The experimentation of the RS system
in real distributed applications will probably indicate
other improvements to be introduced in both the model
and in its implementation. These improvements will be
introduced in future versions of the system.

Referências

[1] Benveniste, A., Caspi, P., Edwards, S. A.,
Halbwachs, N., Guernic, P. L., and de Simone,
R. “The Synchronous Languages 12 Years Later”.
Proceedings of the IEEE, 91(1):223–252, January
2003.

[2] Berry, G. “The foundations of Esterel”. Proof
Language and Interaction: Essays in Honor of Ro-
bin Milner, 2000. Cambridge, MA: MIT Press.

[3] Berry, G. and Gonthier, G. The Esterel Synchro-
nous Programming Language: Design, Semantics,
Implementation. Science of Computer Program-
ming, 19(2):87–152, 1992.

[4] Costa, C., Dotti, F., Copetti, A., and Preuss, E.
MDX-A Parallel Programming Environment Sup-
porting Distributed Shared Memory an message
Passing, 2000. Simposio Argentino de Tecnolo-
gía, Tandil, Argentina.

[5] Halbwachs, N. Synchronous Programming of Re-
active Systems, 1993. Dordrecht: Klumer Acade-
mic Publisher.

[6] Hopcroft, J. and Ullman, J. Introduction to Auto-
mata Theory, Languages and Computation, 1979.
Reading, Massachussetts: Addison-Wesley.

[7] Librelotto, G., Toscani, S., and Monteiro, L. Dis-
tribution of the RS language in the MDX environ-
ment, 2000. SBLP 2000, Recife - PE. p. 120-133.

[8] Librelotto, G. R., Cassal, M. L., Turchetti, R.,
Dhein, G., and Toscani, S. S. “The RS Lan-
guage for Distributed Automata”. In Proceedings
of Conferencia Latinoamericana en Informática.
Santiago, Chile, 2006.

[9] Peterson, J. and Silberschartz, A. Operating Sys-
tems Concepts, 1985. New York, Addison-Wesley
Publishing Company.

[10] Raymond, P., Jahier, E., and Roux, Y. Descri-
bing and Executing Random Reactive Systems. In
SEFM ’06: Proceedings of the Fourth IEEE In-
ternational Conference on Software Engineering
and Formal Methods, pages 216–225, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[11] Toscani, S. RS: Uma Linguagem para Programa-
ção de Núcleos Reactivos, 1993. Depto de Infor-
mática, UNL, Lisboa, Portugal.

	Introduction
	The RS Language
	The distribution of the RS language
	Syntactic modifications
	The machine declaration
	An example of a distributed program

	Distributed automata generation
	Execution environment for the distributed automata

	The MDX parallel programming environment
	MDX_RS --- A communication kernel for RS automata
	Functions required by the RS environment
	Structure of the MDX_RS communication kernel
	The establishment of connections
	Structure of the new kernel

	Structure of the MDX_RS system

	CRSD --- The RSD compiler
	Conclusions

