
CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

1

Applying Information Retrieval Techniques to Detect Duplicates and

to Rank References in the Preliminary Phases of Systematic

Literature Reviews

Ramon Abilio Flávio Morais
IT Department - Federal University of Lavras,

Lavras, MG, Brazil, 37200-000

{ramon.abilio, flavio}@dgti.ufla.br

Gustavo Vale
Department of Computer Science - Federal University of Minas Gerais,

Belo Horizonte, MG, Brazil, 31270-010

 gustavovale@dcc.ufmg.br

Claudiane Oliveira Denilson Pereira Heitor Costa
Department of Computer Science - Federal University of Lavras,

Lavras, MG, Brazil, 37200-000

claudiane@posgrad.ufla.br, {denilsonpereira, heitor}@dcc.ufla.br

Abstract

Systematic Literature Review (SLR) is a means to synthesize relevant and high quality studies

related to a specific topic or research questions. In the Primary Selection stage of an SLR, the

selection of studies is usually performed manually by reading title, abstract, and keywords of

each study. In the last years, the number of published scientific studies has grown increasing the

effort to perform this sort of reviews. In this paper, we proposed strategies to detect non-papers

and duplicated references in results exported by search engines, and strategies to rank the

references in decreasing order of importance for an SLR, regarding the terms in the search string.

These strategies are based on Information Retrieval techniques. We implemented the strategies

and carried out an experimental evaluation of their applicability using two real datasets. As

results, the strategy to detect non-papers presented 100% of precision and 50% of recall; the

strategy to detect duplicates detected more duplicates than the manual inspection; and one of the

strategies to rank relevant references presented 50% of precision and 80% of recall. Therefore,

the results show that the proposed strategies can minimize the effort in the Primary Selection

stage of an SLR.

Keywords: Systematic Literature Review; Information Retrieval; Vector Model; Primary Selection.

1 Introduction

Systematic Literature Review (SLR) is a means to evaluate and interpret relevant work available in the literature

regarding a particular research question, a topic area or a phenomenon of interest [1][2][3][4]. SLR can be performed

basically in three phases [3]: i) Planning; ii) Execution; and iii) Analysis of Results. These phases can be subdivided in

stages, for example, the Planning phase has the stage of Development of the Protocol used in the SLR, and the

Execution phase has the stages of Primary Selection and Secondary Selection of Studies.

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

2

In the Planning phase of an SLR, we define terms (words and/or expressions) and their synonyms related to the

topic or research question that will be used for searching relevant works. One term and its synonyms are connected by

the logical operator OR to create a group of terms of search. Each group is connected by the logical operator AND in

order to create the search string. This string can be used in online repositories of scientific studies that provide search

engines, aiming at retrieving works whose content has at least one term of each group.

In the Primary Selection stage, we use the string in the search engines, export the results and organize them to

allow the exclusion of duplicates and references to materials that are not papers (non-papers), such as table of contents

and abstracts of proceedings. After that, the references are manually selected by reading their attributes, such as title,

abstract, and keywords. In the Secondary Selection stage, the studies selected in the Primary Selection are fully read. In

both selections, we use the inclusion and exclusion criteria, defined in the Planning phase, to select or not a study [3].

The results of the Secondary Selection are the studies considered relevant in the context of the research. One problem

in the Primary Selection is the effort necessary to perform the activity due to the increased amount of studies [4]. In

order to reduce the bias in the selection of the studies, at least two researchers have to read the title, the abstract, the

keywords, and, when necessary, the full text [3].

Aiming to minimize this effort and help the researchers in the Primary Selection, several proposals were presented

to rank references (documents) with regarding their relevance, automate the selection, and validate the selected studies

[4][5][6][7][8]. In this work, we proposed the use of Information Retrieval techniques to detect duplicated references

and to rank references aiming to detect materials that are not papers (non-papers). Information Retrieval techniques

provide easy access to the information of interest of the users. Information Retrieval models are created to provide a

ranking function that assigns points to documents regarding a given query [9]. One of the classic models of Information

Retrieval is the Vector Model, an algebraic model that represents documents and queries as vectors in a t-dimensional

space [9].

In this work, we treated each reference obtained from the results exported by search engines as a document. Our

proposal covers the three activities of the Primary Selection: detection of non-papers, detection of duplicates, and

ranking of references. The detection of non-papers analyzes the title and ranks the references regarding a query that has

terms present in references for non-papers. The detection of duplicates is based on the analysis of similarity of

references considering title and abstract. The ranking of references is based on their relevance. We proposed two

strategies to rank the references considering the search string, title, abstract and keywords. We evaluated the strategies

performing an experimental evaluation using two real datasets obtained from two SLRs published in 2012 [10] and

2014 [11]. Both SLRs are related to Software Engineering. The results show that the proposed strategies can minimize

the effort in the Primary Selection stage.

This work extends a previous work [12] – which presented the strategies to rank references regarding their

relevance considering the search string – by adding strategies to detect duplicated references and non-papers, as well as

an experimental evaluation using one more dataset. The main contributions of this work are:

• A strategy to automate the detection of duplicates using the Jaccard Coefficent Similarity [14];

• A strategy to automate the detection of non-papers using the Vector Model;

• Two strategies using the Vector Model to rank the references used in a Systematic Literature Review

regarding their relevance considering the terms used in the search string;

• The possibility of using the proposed strategies for assessing the quality of the search string;

• The identification of unexpected behavior of search engines related to the Boolean query, since the references

may be returned without considering the union of the search terms with the AND connector;

• An initial collection of terms present in non-papers.

The remainder of this paper is organized as follows. Section 2 briefly discusses some related work. Section 3

presents contextualization of Systematic Literature Review and Information Retrieval. The proposed strategies to detect

duplicates and non-papers, and for the ranking of references are described in Section 4. Section 5 presents the

experimental evaluation setting and results, and Section 6 discusses the results. Section 7 presents the conclusions and

the suggestions of future work.

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

3

2 Related Work

In a study that aims to reduce the effort in conducting an SLR in the context of Evidence-based Software Engineering

[1], a tool was proposed to act as an interface to perform searches in databases, such as IEEExplore
1
, ACM Digital

Library
2
, Scopus

3
 and Science Direct

4
. To obtain relevant studies, the authors proposed to use techniques of

information retrieval, such as, text-based techniques for natural language processing and clustering of similar studies by

using the clustering techniques K-means or k-NN. To evaluate the proposed techniques, the authors suggested the use

of the Recall and Precision measures. The authors did not implement the proposed strategies, but mentioned the

implementation as future work [4].

In another study [5], Linked Data, Text Mining and Naïve Bayes techniques were used in an iterative and

supervised process used in the Secondary Selection to reduce manual work and the bias of subjectivity. The proposal

was to extend and enrich the basic process of the Primary Selection using existing technologies in the area of Semantic

Web and Text Mining in the context of Linked Data technique. To evaluate the proposal, an experiment was conducted

by using information from an SLR published in 2007. In this case study, manual work in the search and in the Primary

Selection of the review was simulated. The relevant studies from the Primary Selection were used to create the

prototype and run the proposed technique. The results indicate that the used technique can reduce the effort by 20%

with a recall of 100%.

To provide support in verifying the results of the Secondary Selection, the technique Visual Text Mining (VTM)

was used [6]. This technique supports tasks that involve interpretation of large amount of textual data and the

integration between Text Mining and Information Visualization techniques. The purpose of the study was to modify the

execution phase, adding two VTM techniques to support the review of the selected studies (content map and citation

map). Case studies were performed to verify the applicability of the technique, and the results indicated that VTM can

help in the Primary Selection accelerating the process and increasing the reliability of the results.

In another study [7], a semi automated triage was performed on the process of selecting papers. In this triage,

Support Vector Machines (SVM) were used. SVM can be constructed in different spaces, for example, using abstract

and title or full-text. To semi automate the triage process is difficult due to the imbalance of irrelevant papers on

relevant papers. Therefore, an active learning strategy was developed for imbalanced data sets. The triage was

performed in three Systematic Literature Reviews. In two of them, the algorithm was able to reduce the number of

manually selected references by 50%, and, in the third study, around 40%. In these studies, there was no compromise in

the quality and scope.

In order to reduce the effort in reading the references in an SLR in the healthcare area, a ranking of relevant

references was performed in two phases [8]: i) text retrieval; and ii) re-ranking via text classification. In the first step,

constraints are added using various controls, for example, .mp control, that look for a particular term in the title,

abstract and MeSH heading. In the second step, the information is obtained from the previous step and the references

are ordered hierarchically using Support Vector Regression (SVR). In this work, the authors used the machine learning

tool Weka
5
 to apply the proposed technique in 17 SLRs, and the references considered relevant were ranked among the

first 30% of the ranked references.

The aim of this study is to apply Information Retrieval techniques in the Primary Selection stage, as well as, in the

three studies [4][7][8], and differently from the two studies [5][6], in which the focus was to provide support on the

Secondary Selection stage. Regarding studies focusing on Primary Selection, one of them [4] proposed a tool, in which

Information Retrieval techniques would be implemented, but the tool was not developed and evaluated. In this work,

we implemented the strategies and evaluated their applicability. In two studies, the SVM [7] and the SVR [8]

techniques were used, while in this work, we used the Vector Model.

 In this paper, we proposed three strategies based on the cosine similarity of the Vector Model and one strategy

using Jaccard [14] to help researchers in the Primary Selection stage, reducing their effort in the detection of duplicates

1 http://ieeexplore.ieee.org/
2 http://dl.acm.org/
3 http://www.scopus.com/
4 http://www.sciencedirect.com/
5 http://www.cs.waikato.ac.nz/ml/weka

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

4

and non-papers, and ranking references regarding the search string terms. As input, these strategies use the data of the

SLR protocol and the collection of references generated by the execution of the search string, in other words, the

overhead for researchers regarding the application of the techniques is minimal.

3 Background

This section briefly presents the Systematic Literature Review process and Information Retrieval concepts.

 3.1 Systematic Literature Review

Systematic Literature Review (SLR) is a component of evidence-based practice [1][3], and it is part of what is called

Secondary Studies in systematic research. Performing an SLR, the research, selection, analysis and organization of

studies are facilitated due to the pre-defined steps and criteria [4]. With this, the researchers can organize the

performing of the technique and, in addition, it is possible to find relevant content on a research topic in an electronic

database with lots of information. The execution of an SLR is based on three phases (Figure 1) [2][3][13]:

• Planning. The reason to perform the SLR is established in this phase. The stages of this phase are: i)

describing the research motivations and objectives; ii) defining research questions related to the motivations

and objectives; iii) developing the research protocol that will be applied to the search; and iv) assessing the

protocol to verify the SLR applicability;

• Execution. A search in the databases defined in the previous phase is performed. The researchers classify the

obtained references guided by the inclusion and exclusion criteria. The stages of this phase are: i) searching

references in the defined databases and organizing the results; ii) Primary Selection: the researchers perform a

first selection of studies reading title, keywords, and abstracts of the references verifying their compliance

with the criteria; iii) Secondary Selection: a second selection is performed aiming to eliminate unsuitable

studies; and iv) organizing the selected references to be analyzed;

• Analysis of Results. The studies referenced by the selected references are read, the data collected, and

analyzed. The stages of this phase are: i) collecting and organizing data: the researchers read the studies

selected in the Secondary Selection stage to collect and analyze the data that answer the research questions;

and ii) assessing the results: the data are reviewed and the report is published.

Figure 1: Process of Systematic Literature Review (Adapted from [13])

 3.2 Information Retrieval

Information Retrieval deals with the representation, storage, organization, and access to information items, such as

documents, web pages, online catalogs, structured and semi-structured records, and multimedia objects [9]. Information

Retrieval Modeling is a complex process that produces a ranking function that assigns weights to documents regarding

to a given query [9]. The Vector Model is a classic model of Information Retrieval. It is an algebraic model that

represents documents and queries as vectors in t-dimensional space, in which t is the number of distinct terms (words or

expressions) in a collection [9].

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

5

Let D be a collection of N documents (1) and let K be the set of t distinct terms that appear in documents of D (2).

For each pair (ki, dj), ki ∈ K e dj ∈ D, it is associated a weight wi,j ≥ 0. A document dj is represented as a vector of

weights (3). Each wi,j represents the importance of the term ki to describe the semantic content of the document dj.

 D = {d1, d2, ..., dn) (1)

 K = {k1, k2, ..., kt} (2)

������= {w1,j, w2,j, ..., wt,j) (3)

A scheme used to calculate the weights, known as TF-IDF (Term-Frequency x Inverse Document Frequency),

consider the frequency of the term in the document (TF) and the rarity of the term in the collection (IDF). The degree

of similarity between a query q and one document d is evaluated as the correlation between the vectors ������	and	q��. This

correlation can be quantified by the cosine of the angle between those two vectors (4). This similarity measure is

known as Cosine Similarity [9].

��	
�, �
 = 	 ∑ ��,�	.��,�����
�∑ ��,������ 	.�∑ ��,����	�	�

 (4)

After obtaining the results of the ranking function, it is important to evaluate their quality. Typically, this

evaluation is the comparison of the results of the Information Retrieval system with the results proposed by experts that

reviewed the collection of documents [9]. Two classical measures to evaluate Information Retrieval systems are

Precision and Recall [9]. Formally, these measures are: q a query from a reference collection, R the set of documents

judged as relevant to q and, |R| the number of documents in R. By submitting q, we obtain a set of results A (|A|

documents). Considering |R ∩ A| the number of documents in the intersection between R and A, the precision (5) can

be defined as the fraction of retrieved documents that are relevant, and the recall (6) as the fraction of relevant

documents retrieved.

 ���������	 = 	 |!	∩#|
|#| (5)

 $��%&&	 = 	 |!	∩#|
|!| (6)

The Jaccard Coefficient Similarity (7) is a function based on words (tokens) used to quantify the similarity and

diversity between sets of strings [14]. It is the result of the intersection divided by the result of the union of the sets of

evaluated strings.

 '%��%��
#,(
 =	 |#	∩		(|
|#	∪	(| (7)

4 Strategies to Rank References and to Detect Non-Papers and Duplicates

Figure 2 depicts a Primary Selection stage process. In this process, researchers have to deal with hundreds or thousands

of references exported by different search engines. This collection of references has papers and non-papers, such as,

Table of Contents and Copyright Notice, and can be added in a database (Sum database). Due to the search in more

than one source (or machine), the number of duplicates increases and they have to be removed (Union database). After

that, the researchers have to remove references for non-papers obtaining a database composed only by references for

papers (Papers database). In this last database, the ranking by relevance performed by the search engines is lost when

the results are aggregated due to the joint of the exported references, and the database manipulation for removal of

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

6

duplicates and non-papers. This section presents the strategies that we propose to filter only papers for full-text read

and to rank the references regarding to the search string.

Figure 2: Process of Primary Selection Stage

 4.1 Strategy to Detect Duplicates

After exporting and aggregating the results of the searches conducted during the Primary Selection, the removal of

duplicated references is necessary. The first strategy to remove duplicates is to sort the references by their titles.

However, we had exported references with definite and indefinite articles omitted at the beginning of the titles, some

symbols removed, such as colons and dashes, or even extensions of papers that had the original title changed.

Therefore, this simple strategy is not efficient.

To help in this process, we proposed an algorithm to detect duplicates based on the Jaccard Similarity Coefficient

(Jaccard) (Figure 3). The algorithm receives as input a set of references R and a threshold value, and returns a list of

duplicated references L. The algorithm goes through the references in a nested loop, checking the similarity (Jaccard

Similarity function) of the current reference with the subsequent. The ObtainTitleAbs function receives a document as

parameter and returns its title and abstract concatenated (titleAbsDoc). If the similarity between the references is

greater than or equal to the threshold, then the reference and its similarity are inserted in the list L. At the end, the list L

with the duplicated references is returned.

Figure 3: Algorithm to Detect Duplicates

}

.

.

.

Database n

Database 1

Sum Union

Remove duplicates

Papers

Remove non-papers

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

7

Although Jaccard indicates the degree of similarity returning a number between 0 and 1, we have to define a

threshold value to indicate that a reference is duplicated. That is, if a Jaccard value between two references is greater

than or equal to the threshold value, one of the references is considered duplicated. From our experiments using one of

the SLRs, we obtained a threshold value equals to 0.7 (70%).

The implemented algorithm receives, as input, a Bibtex file (a set of references R) and returns a CSV (Comma

Separated Values) file with each reference and its duplicates along with their degree of similarity (list of duplicates L).

Figure 4 shows an example of the output of the Strategy to Detect Duplicates. This example depicts a group of

references indicated as duplicates, i.e., the algorithm read the reference “Dynamic coupling measures for object-

oriented software” from the input and indicated the reference “Dynamic coupling measurement for object-oriented

software” as a duplication with 0.89 of similarity between them.

Title Similarity

Dynamic coupling measures for object-oriented software -

Dynamic coupling measurement for object-oriented software 0.89

Figure 4: Example of Output of the Strategy to Detect Duplicates

 4.2 Strategies to Rank References for Full-Text Read

Aiming to reorder the references according to their relevance regarding the search string, we proposed two ranking

strategies. In both strategies, we used the Vector Model and the weights of the terms in documents were calculated

using only the information present in the input document, i.e., global information was not considered, such as, the IDF

that requires data from a collection of documents to be calculated. The weight of a term in a document is defined by its

frequency in the document. Therefore, the more times the terms of the query appear in a document, more relevant that

document is to the query. To obtain this relevance, the weight wi,j of the term i in document j (8) is calculated, being fi,j

the frequency of the term i in document j, and max fl,j the frequency of the term l, where l is the most frequent term in

document j. In both strategies, we considered title, abstract, and keywords of the references.

*+,, 	= 	 -�,.
/01	-2,.

 (8)

 4.2.1 Strategy 1

In Strategy 1, we used the traditional form of the Vector Model that considers the partial contribution of each query

term. The query terms contained in the search string are treated in the same way, regardless whether they are synonyms

or not, ignoring duplicated terms and the connectors AND and OR. To check how similar a document is to the query,

the strategy calculates the degree of similarity using Cosine (4). Figure 5 depicts the algorithm to rank references. It

receives, as input, a set of references R and a query Q, and returns a list of ranked references L. The algorithm can be

divided in two steps: the construction of an inverted index structure [9] and the calculus of the ranking function.

The first step starts inserting distinct tokens from the references into an inverted index structure (Lines 1-6). That

structure is composed of key-value pairs. In each pair, the key is a distinct token and the value is a list of occurrences

containing, for each document in which the token occurs, its frequency of occurrence and the identification of the

document. The construction of this structure is performed by the InsertInvertedIndex function. The Tokenize function

splits a text into tokens. Before being tokenized, each string is preprocessed, removing punctuation marks, symbols

(such as (), [], {}), and stopwords (articles, prepositions, and conjunctions), and converting letters to lowercase.

In the second step (Lines 7-17), the TokenOcurrIndex function verifies the occurrence of each token of the query

in the inverted index, and the CalcWeight function calculates the weight of each token of the query in the document.

Next, the similarity of the query with the document is calculated (Line 15). The similarity is obtained by the sum of the

weights divided by normDoc. NormDoc is a method for document length normalization, in which the document is

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

8

represented by a weight vector of terms, the denominator of (4). After that, the document and the similarity are inserted

into a list that is sorted in descending order and returned.

Figure 5: Algorithm of the Strategy 1 to Rank References

 4.2.2 Strategy 2

The idea in the Strategy 2 is to define a ranking function that simulates the Boolean expression of the search string. The

search terms were organized in groups that aggregates a term and its synonyms using the OR connector. The groups are

then connected by the AND connector. To verify the similarity of a document with regard to the query, we calculate the

similarity (9), considering gi as the i
th

 group of terms, sim(gi) the maximum similarity obtained in the group (10), kp as

the term in the position p between n terms of the group i, and sim(d, kp) the similarity obtained by the cosine similarity

(4).

��	
�, �
 	= 	∑ ��	
3+
/+	4	5 (9)

��	
3+
 = 		%6	 7��	8�, 9:;< , 1 ≤ ? ≤ � (10)

The algorithm, depicted by Figure 6, shows the steps of the Strategy 2 to rank the references. It receives as input a

set of references R and a query Q, and returns a list of ranked references L. This algorithm is similar to the algorithm of

the Strategy 1 regarding to its division in 2 steps, the use of the inverted index structure, and the tokenization process.

The first step is the same of the Strategy 1: tokenizing each reference and inserting it into the inverted index.

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

9

Their differences are in the second step because Strategy 1 considers the partial contribution of each query term

(Lines 7-17) whilst the Strategy 2 verifies the tokens of each group of terms present in the query (Lines 7-23). That is,

the ObtainGroupQuery function returns the groups of the tokens presented in query file. The TokenOcurrIndex function

verifies the occurrence for each token of the group in the inverted index, created in the step 1. CalcWeight function

calculates the weight of each token of the query in the document. In sequence, the InsertWeightTk function inserts the

weight and the token in W's structure. Then, the maximum weight of the group (the group's similarity) is calculated by

the ObtainWeightMax function. Next, the similarity of the query with the document is calculated (Line 21). The

similarity is obtained by the sum of the weights divided by normDoc. NormDoc is a method for document length

normalization, in which the document is represented by a weight vector of terms, the denominator of (4). After that, the

document and the similarity are inserted into a list that is sorted in descending order and returned.

Figure 6: Algorithm of the Strategy 2 to Rank References

 4.3 Strategy to Detect Non-Papers

The strategy to detect non-papers is based on the Strategy 1. That is, this strategy uses Vector Model to rank the

references according to their relevance considering a search string. However, in this strategy, the search string is

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

10

composed by terms related to non-papers, such as: Table of Contents and Title Page. The difference is in the return.

Using the Strategy 1 to detect non-papers, the return is a collection of references with non-papers closer to the top of

the rank instead of relevant references for full-text read.

5 Evaluation

This section presents the experiments performed to evaluate the proposed strategies. It is divided in two subsections: i)

Study Settings: it describes the implemented prototype, the datasets, and the methodological procedures; and ii) Results

and Discussion: it shows and discusses the results of each strategy.

 5.1 Experimental Evaluation Settings

This subsection presents the implemented prototype, the datasets, and the methodological procedures used to perform

the experiments.

 5.1.1 Prototype

We implemented the strategies as a prototype, in Java, to evaluate their applicability. We used a computer with a CPU

Intel Core i5-3570 3.40GHz Quad-Core and 8GB of RAM memory, Java Development Kit 1.7, and NetBeans 8.0.1.

The implemented prototype does not have a graphical interface and we defined its inputs in the source code.

The prototype receives as input: one text file with a collection of references in Bibtex format (Figure 7); one text

file containing terms present in non-papers (Figure 8a); and one text file containing terms present in the search string

(Figure 8b). As output, it returns the ranked references with non-papers closer to the top, references detected as

duplicates with the degree of similarity (value between 0 and 1), ranked references, and recall and precision of the non-

papers and of the ranking strategies.

Figure 7 depicts an example of a reference for a paper (@ARTICLE) in Bibtex format. Among the attributes of

this reference, we have author, title, abstract, and keywords. The strategies use the last three attributes: title, abstract,

and keywords. The files with the terms of non-papers (Figure 8a) and of the search string (Figure 8b) are very similar.

Each line has a group of terms. A term is a single word or an expression, which is a set of words indicated between

quotation marks. Regarding the search string file, each line has a term that will be connected by a logical operator OR.

The groups will be connected by a logical operator AND.

Figure 7: Example of Reference in Bibtex Format

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

11

(a)

(b)

Figure 8: Example of Text File with (a) Terms of Non-Papers and (b) Terms of Search String

 5.1.2 Datasets

We used two datasets from two SLRs published in 2012 (SLR-1) [10] and 2014 (SLR-2) [11]. Each dataset is

composed by a Bibtex file with the results exported by the search engines, a Bibtex file without references for non-

papers, a Bibtex file without duplicated references, a text file with the terms of the search string used in the SLR, and a

text file with the titles of the selected studies for full-text read.

Table 1 and Table 2 present the terms used in the search strings in the SLR-1 and SLR-2, respectively. Each line of

these tables represents a group of terms (term and synonyms) from the text file that has the search string. We can notice

that SLR-1 search string has 11 groups with 33 terms (Table 1), and SLR-2 has 2 groups with 21 terms (Table 2).

Table 1: Terms used in SLR-1 Search String

Groups of terms

1 software, application, system, program, product, “software product”, “software system”

2 metric, metrics, measure, measurement

3 reference value, “reference values”

4 quality, “internal quality”

5 feature Oriented, “feature-oriented”

6 aspect Oriented, “aspect-oriented”

7 product line, “product family”, “product-family”, “family based”, “family-based”

8 modularization, modularity, modularisation

9 maintenance, maintainability

10 concern, aspect

11 crosscutting, “cross-cutting”

Table 2: Terms used in SLR-2 Search String

Groups of terms

1 "Bad Smell", "Code Smell", "code anomaly", "variability anomaly", "variability smell"

2

"Software Product Line", "software product lines", "software product-line", "software product-lines", "software product family",

"software product families", "software product-family", "software product-families", "software family based", "software family-based",

"software variability", "software mass customization", "software mass customization production line", "software mass customization

production lines", "software-intensive system", "software-intensive systems"

Using those terms (Table 1), the authors of the SLR-1 elaborated the following search string. They used it in the

IEEEXplore, Scopus, and Science Direct search engines and obtained 672 references (Table 3).

(software OR application OR system OR program OR product OR software product” OR

“software system”) AND (metric OR metrics OR measure OR measurement) AND (quality OR

“internal quality”) AND (modularization OR modularisation OR modularity) AND

(maintenance OR maintainability) AND ((“feature oriented” OR “feature-oriented” OR

“product line” OR “product family” OR “family based” OR “product-family” OR “family-

based”) OR ((“reference value” OR “reference values”) AND (“aspect oriented” OR “aspect-

oriented”) AND (concern OR aspect) AND (crosscutting OR “cross-cutting”)))

Software, application, system, product, "software product"

Metric, metrics, measure, measurement

Reference value, "reference values"

Quality, "internal quality"

Feature Oriented, "feature-oriented"

"copyright notice", "copyright page"

"title pages", "title page", title, pages, page

"guest editorial"

"table of contents", table, contents

"career opportunities", career, opportunities

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

12

The authors of the SLR-2 elaborated the following search string using the terms presented in Table 2 and used it in

the IEEEXplore, Scopus, Elsevier Science Direct, El Compendex, Web of Science, ACM Digital Library, DBLP

Computer Science Bibliography, and Computer Science Bibliographies. They obtained 165 references (Table 3).

(“bad smell” OR “code smell” OR “code anomaly” OR “variability anomaly” OR “variability

smell”) AND (“software product line” OR “software product-line” OR “software product

family” OR “software product-family” OR “software family based” OR “software family-

based” OR “software variability” OR “software mass customization” OR “software mass

customization production lines” OR “software-intensive system”)

Table 3 summarizes the number of references in SLR-1 and SLR-2. For example, in SLR-1, 672 references were

exported by the search engines. In this collection of references, 20 non-papers and 16 duplicates were detected. At the

end, only 13 references were selected for full-text read (Table 4).

Table 3: Datasets used

SLR # of references # of non-papers # of duplicates # of selected studies

SLR-1 672 20 16 13

SLR-2 165 7 29 44

Table 4: References selected as relevant in SLR-1

References

1
M. S. Ali, M. Ali Babar, L. Chen, and K-J Stol. “A Systematic Review of Comparative Evidence of Aspect-Oriented Programming”.

Journal of Information and Software Technology, v. 52, n. 9, pp. 871-887, 2010.

2
P. Arpaia, M. L. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia. “An Aspect-Oriented Programming-Based Approach to Software

Development for Fault Detection in Measurement Systems”. Journal of Computer Standards & Interfaces, vol. 32, n. 3, pp. 141-152, 2010.

3
E. K. Piveta, A. Moreira, M. S. Pimenta, J. Araújo, P. Guerreiro, R. T. Price. “An Empirical Study of Aspect-Oriented Metrics”. Science of

Computer Programming, 2012.

4
E. Figueiredo, C. Sant'Anna, A. Garcia, and C. Lucena. “Applying and Evaluating Concern - Sensitive Design Heuristics”. Journal of

Systems and Software, vol. 85, n. 2, pp. 227-243, 2012.

5
R. Brcina, M. Riebisch. “Architecting for evolvability by means of traceability and features”. In: 23rd IEEE/ACM International Conference

on Automated Software Engineering, pp. 72-81, 2008.

6
A. L. Medeiros, E. Figueiredo, I. Galvão, A. Garcia, T. Batista, and C. Sant'Anna. “Concern-Based Assessment of Architectural Stability:

A Comparative Study”. In: 4th Brazilian Symposium on Software Components, Architectures and Reuse, pp. 27-29, 2010.

7
R. Burrows, A. Garcia, F. Taiani. “Coupling Metrics for Aspect-Oriented Programming: A Systematic Review of Maintainability

Studies”. In: 4th International Conference on Evaluation of Novel Approaches to Software Engineering, 2009.

8
M. Couto, M. Valente, and E. Figueiredo. “Extracting Software Product Lines: A Case Study Using Conditional Compilation”. In:

European Conference on Software Maintenance and Reengineering, pp. 1-4, 2011.

9
J. M. Conejero, J. Hernández, E. Jurado, K. van den Berg. “Mining early aspects based on syntactical and dependency analyses”. Science

of Computer Programming, vol.75, n.11, pp. 1113-1141, 2010.

10
F. d'Amorim and P. Borba. “Modularity Analysis of Use Case Implementations”. Journal of System and Software, vol. 85, n. 4. pp. 1012-

1027, 2012.

11

E. Figueiredo, C. Sant'Anna, A. Garcia, T. T. Bartolomei, W. Cazzola, and A. Marchetto. “On the Maintainability of Aspect-Oriented

Software: A Concern-Oriented Measurement Framework”. In: 12th European Conference on Software Maintenance and Reengineering,

pp. 183-192, 2008.

12
J. M. Conejero, E. Figueiredo, A. Garcia, J. Hernández, E. Jurado. “On the relationship of concern metrics and requirements

maintainability”. Information and Software Technology, vol. 54, n. 2, pp. 212-238, 2012.

13
M. Revelle, M. Gethers, and D. Poshyvanyk. “Using Structural and Textual Information to Capture Feature Coupling in Object-Oriented

Software”. Journal of Empirical Software Engineering, vol. 16, n. 6, pp. 773-811, 2011.

 5.1.3 Methodological Procedures

The methodological procedures were: i) we received three Bibtex files from the authors of the SLRs containing all

references exported by the search engines, references without duplicates, one file without references for non-papers; ii)

we edited a text file with terms of the search string used in each SLR and a text file with the titles of the selected

studies for full-text read; and iii) tested and analyzed the strategies.

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

13

We used all references of SLR-1 to test the algorithm to detect duplicates and define the threshold value. After

that, we used the algorithm to detect duplicates in the SLR-2 references. In both detections, we manually analyzed the

indications of duplicates and the Jaccard values. In addition, we compared the references indicated by the strategy as

duplicates with the duplicated references removed manually by the authors of the SLRs.

To identify common terms in titles of references for non-papers, we performed a search on IEEEXplore, Science

Direct and Scopus, and, from the results, built a search string. After that, we used the algorithm with the search string to

rank the references of SLR-1 and SLR-2. We (i) analyzed the results by checking recall and precision, and (ii) verified

the positions of the references for non-papers in the ranking.

We used each file with only references for papers to perform the ranking by using each strategy. After that, we (i)

analyzed the results by checking recall and precision, and (ii) verified the positions of the references in the ranking and

the amount of terms of the string found in each reference. In the ranking of the references of SLR-1, we identified 4

references without abstract and 81 references without keywords, while in SLR-2, we identified 1 reference without

abstract and 23 references without keywords. This occurred when the results were exported by search engines. We did

not index the references without abstracts because they would also be excluded in manual analysis.

 5.2 Results

 5.2.1 Strategy to Detect Duplicates

The complete base of SLR-1 has 672 references, from which 636 were chosen manually in the Primary Selection stage.

Thereby, 36 references were removed because they were considered duplicates or non-papers. Comparing the files, we

concluded that, from the 36 removed references, 16 were considered duplicates and 20 were considered non-papers.

We executed the duplicates detection algorithm on the Complete Base, and, as result, the algorithm indicated 16

groups of duplicates with a total of 35 references. From the 16 groups, 13 had 2 references each, and the other 3 had 3

references each. Summarizing, the algorithm indicated 19 duplicates, 3 duplicates more than the manual process, and

all 16 duplicates manually detected were also indicated by the algorithm.

The algorithm detected 3 references with the title “Modularity analysis of use case implementations” (Table 5).

Taking the first reference and comparing the second and the third to it, the second reference has 100% of similarity and

the third has 76% of similarity to the first. Analyzing the title and the abstracts of the first and of the third references,

we noticed that the abstract of the third reference has the differences highlighted in Figure 9. For example, the abstract

of the first reference begins with “A” and the abstract of the second begins with “Component”.

Table 5: Duplicated References that have the same Title

Title Similarity (%)

1 Modularity analysis of use case implementations -

2 Modularity analysis of use case implementations 100

3 Modularity analysis of use case implementations 76

Reference #1 Reference #3

A component-based decomposition can result in

implementations having use cases code tangled with other

concerns and scattered across components.

Component-based decomposition can result in

implementations with use cases code tangled and scattered

across components.

Figure 9: Differences between Abstracts of References that have the same Titles

All references manually removed were indicated by the algorithm with 100% similarity between the duplicates.

Table 6 presents the similarity among the references for non-papers indicated by the algorithm. However, these

references were manually removed because they were considered non-papers, not duplicates.

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

14

Table 6: Duplicated References for Non-papers

Title Similarity (%)
1 IEEE Recommended Practice for Powering and Grounding Electronic Equipment -

2 IEEE Recommended Practice for Powering and Grounding Electronic Equipment - Redline 75

3 IEEE Recommended Practice for Powering and Grounding Electronic Equipment - Redline 78

Table 7 shows references that have different titles indicated as duplicates. The title of the third reference is

different from the title of the first and second references: “Towards A Process-Oriented Software Architecture

Reconstruction Taxonomy” and “Software Architecture Reconstruction: A Process-Oriented Taxonomy”. The manual

process detected the similarity between the first and the second references, but the third reference was not detected.

Analyzing why the algorithm indicated that similarity, we notice that first and second references may be an extension

of the third because they have 19 pages and were published in a journal, in 2009, by two of the authors of the third

reference, while, the third reference has 12 pages and was published in a conference in 2007. The manual process

missed this similarity due to differences in the titles.

Table 7: Duplicated References that have Different Titles

Title Similarity (%)
1 Software Architecture Reconstruction: A Process-Oriented Taxonomy -

2 Software Architecture Reconstruction: A Process-Oriented Taxonomy 100

3 Towards A Process-Oriented Software Architecture Reconstruction Taxonomy 79

 5.2.2 Strategy to Detect Non-Papers

To perform the detection of non-papers, we had to perform a search to find common terms that appears in the title of

the references for non-papers. We built the following search string with the terms that we found. For example, the

terms “IEEE Standard” and “IEEE Std” commonly appeared in the title of the IEEE Standards, and the terms

“International” and “Proceedings” commonly appeared in the titles of conference, symposium, and workshop

proceedings.

(“ieee standard”, “ieee std”, “title pages”, “title page”, “title”, “pages”, “page”,

“guest editorial”, “booklet”, “career opportunities”, “career”, “opportunities”,

“draft”, “international”, “chapter”, “annotated”, “bibliography”, “table of contents”,

“table”, “contents”, “index”, “conclusion”, “schedule”, “tutorial”, “papers”,

“presented”, “journal”, “abstracts”, “proceedings”, “conference”, “symposium”,

“workshop”, “annual index”, “proceedings of the”, “book of abstracts”, “book”,

“copyright notice”, “copyright page”, “copyright”, “notice”, “front matter”, “front

cover”, “frontmatter”, “frontcover”, “front”, “cover”, “art”, “detailed program”)

As a result in ranking the 632 references of the SLR-1, the algorithm retrieved 40 references because they had, at

least, one term of the search string. From these 40 ranked references, 17 were non-papers and they were positioned as

follows: 1 to 10, 13, 26, 27, 29, 32, 33 and 34. As a result in ranking the 165 references of the SLR-2, the algorithm

retrieved 9 references. From these 9 references, 6 were non-papers and they were positioned on the first 6 positions of

the rank.

The 3 following non-papers were not ranked in the SLR-1: “Systems and software engineering – Vocabulary”, “An

assessment of systems and software engineering scholars and institutions (2003–2007 and 2004–2008)” and “Guide to

the Software Engineering Body of Knowledge 2004 Version”, and, in the SLR-2, only 1 non-paper was not ranked:

“21st century processes for acquiring 21st century software intensive systems of systems”. Those 4 references were not

ranked because they do not have any term of the search string.

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

15

Table 8 shows the precision for the interpolated values in the 11 standard recall levels of the strategy to rank non-

papers. For example, when 50% of the references are retrieved (recall), the precision is 100%. Our strategy (described

in Section 4.3) retrieved 85% of the non-papers of SLR-1 and SLR-2.

Table 8: Non-Papers - Recall versus Precision

Recall (%)
Precision (%)

SLR-1 SLR-2

0 100.0 100.0

10 100.0 100.0

20 100.0 100.0

30 100.0 100.0

40 100.0 100.0

50 100.0 100.0

60 48.4 85.7

70 48.4 0

80 48.4 0

90 0 0

100 0 0

 5.2.3 Strategies to Rank References

Strategy 1 and Strategy 2 retrieved 600 references ranking the 632 references of the SLR-1. Table 10 presents the

position of each selected reference of the SLR-1. For example, in the Strategy 1, the reference 12 is in position 1, and,

in the Strategy 2, this reference is in the position 2. We also notice that Strategy 2 positioned the 13 references closer to

top of the rank.

Table 9: Position of References of SLR-1 - Strategy 1 and Strategy 2

Strategy 1 Strategy 2

Position Reference Position Reference

1 12 1 3

2 3 2 12

6 11 5 2

11 4 8 4

16 10 12 11

22 2 13 10

27 9 15 9

28 7 16 7

51 13 61 6

56 6 64 13

64 8 67 8

106 1 93 5

113 5 97 1

Figure 10 graphically presents the variation of the references positions regarding the applied strategies. Analyzing

Figure 10, we can notice different positions for the same reference in the both strategies. For example, Strategy ranked

the reference 5 in the position 113 whilst the Strategy 2 ranked it in the position 93. That is, reference 5 was better

positioned by Strategy 2 because its position is closer to the top of the rank (position 1).

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

16

Figure 10: Variation of Positions of References of SLR-1 – Strategy 1 and Strategy 2

Strategy 1 and Strategy 2 retrieved 126 references from the 165 references of the SLR-2. Table 10 and Figure 11

present the variation of the SLR-2 references position. For example, in the first position of the Strategy 1 and the

Strategy 2, we have the references 57 and 52, respectively.

Table 10: Position of References of SLR-2 - Strategy 1 and Strategy 2

Strategy 1 Strategy 2

Position Reference Position Reference

1 57 1 52

3 63 3 114

5 80 5 125

6 81 6 65

7 68 7 41

9 114 9 91

11 89 14 98

12 44 18 96

13 43 20 103

14 123 21 42

16 87 22 104

17 98 23 81

18 96 26 46

19 104 27 44

22 125 28 7

23 65 30 57

24 42 31 30

25 41 32 45

26 62 34 20

29 103 38 6

31 91 39 85

34 25 42 25

Strategy 1 Strategy 2

Position Reference Position Reference

35 46 43 123

36 52 46 59

39 117 47 89

41 102 50 43

44 45 51 53

45 93 52 93

46 30 54 86

47 85 56 80

49 53 59 68

50 20 60 102

53 86 64 117

57 7 65 111

59 6 69 107

63 111 71 63

64 37 72 87

69 116 74 116

70 59 76 64

79 107 83 62

85 64 87 28

93 70 92 37

97 28 93 70

124 1 124 1

Observing Figure 11, we can notice that the references 1, 70, and 96 were ranked in the same position by both

strategies. Conversely, the reference 52 was moved from the position 52 (Strategy 1) to the position 1 (Strategy 2), and

the reference 63 was moved from the position 3 (Strategy 1) to the position 71 (Strategy 2).

0
10
20
30
40
50
60
70
80
90

100
110
120

1 2 3 4 5 6 7 8 9 10 11 12 13

P
o

s
it

io
n

s

References

Strategy 1 Strategy 2

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

17

Figure 11: Variation of Positions of the References of the SLR-2 – Strategy 1 and Strategy 2

We manually counted the terms of the references positioned in the first and in the last position by both strategies

applied in both SLRs. Table 11 and Table 12 present the counting of terms of the SLR-1, and Table 13 and Table 14

present the counting of terms of the SLR-2. For example, in SLR-1/Strategy 1 (Table 11), the term software appears 18

times in the reference 12 (position 1), and 9 times in the reference 5 (position 113).

In the counting of terms regarding the Strategy 2 (Table 12 and Table 14), the references were grouped and the

higher occurrence in each group is highlighted. For example, in SLR-1/Strategy 2 (Table 12), we have 11 groups, and,

in the group 1, the term software appears 5 times in the reference 52 (position 1) and 3 times in the reference 1

(position 124).

Table 11: Count of Terms of the SLR-1 - Strategy 1

Terms
Reference / Position

12 / 1 5 / 113
1 software 18 9

2 application 0 0

3 system 1 0

4 program 0 0

5 product 5 0

6 software product 2 0

7 software system 0 0

8 metric 0 0

9 metrics 5 2

10 measure 0 0

11 measurement 0 0

12 reference 0 0

13 value 0 0

14 values 0 0

15 reference value 0 0

16 reference values 0 0

17 quality 5 3

18 internal 0 0

19 internal quality 0 0

20 feature 0 2

21 oriented 0 0

22 feature oriented 0 0

23 feature-oriented 0 0

Terms
Reference / Position

12 / 1 5 / 113
24 aspect 0 0

25 aspect oriented 0 0

26 aspect-oriented 0 0

27 line 2 0

28 family 0 0

29 product line 2 0

30 product family 0 0

31 product-family 0 0

32 family based 0 0

33 family-based 0 0

34 based 0 1

35 modularization 0 0

36 modularity 2 0

37 modularisation 0 0

38 maintenance 3 0

39 maintainability 11 0

40 concern 7 0

41 crosscutting 11 0

42 cross-cutting 0 0

43 cross 0 0

44 cutting 0 0

Total 74 17

0
10
20
30
40
50
60
70
80
90

100
110
120
130

1 6 7
2
0

2
5

2
8

3
0

3
7

4
1

4
2

4
3

4
4

4
5

4
6

5
2

5
3

5
7

5
9

6
2

6
3

6
4

6
5

6
8

7
0

8
0

8
1

8
5

8
6

8
7

8
9

9
1

9
3

9
6

9
8

1
0
2

1
0
3

1
0
4

1
0
7

1
1
1

1
1
4

1
1
6

1
1
7

1
2
3

1
2
5

P
o

s
it

io
n

s

References

Strategy 1 Strategy 2

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

18

Table 12: Count of Terms of the SLR-1 - Strategy 2

Group Terms
Reference / Position

3 / 1 Higher Occurrence 1 / 97 Higher Occurrence

1

software 5

5

3

3

application 0 0

system 0 1

program 0 0

product 0 0

software product 0 0

software system 0 0

2

metric 0

7

0

0
metrics 7 0

measure 0 0

measurement 0 0

3

reference 0

1

0

0

value 1 0

values 1 0

reference value 0 0

reference values 0 0

4

quality 0

0

1

1 internal 0 0

internal quality 0 0

5

feature 0

6

0

4
oriented 6 4

feature oriented 0 0

feature-oriented 0 0

6

aspect 7

7

3

4
oriented 6 4

aspect oriented 0 0

aspect-oriented 6 3

7

product 0

0

0

3

line 0 0

family 0 0

product line 0 0

product family 0 0

product-family 0 0

family based 0 0

family-based 0 0

based 0 3

8

modularization 0

1

1

2 modularity 0 2

modularisation 1 0

9
maintenance 0

0
0

0
maintainability 0 0

10
concern 0

7
0

3
aspect 7 3

11

crosscutting 2

2

0

0
cross-cutting 0 0

cross 0 0

cutting 0 0

 Total 49 28

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

19

Table 13: Count of Terms of the SLR-2 - Strategy 1

Terms

Reference / Position

57 / 1 1 / 124

1 Bad Smell 0 0

2 Code Smell 0 0

3 code anomaly 0 0

4 variability anomaly 0 0

5 variability smell 0 0

6 Bad 0 0

7 Smell 0 0

8 Code 5 1

9 anomaly 0 0

10 variability 4 0

11 Software Product Line 0 0

12 software product lines 1 0

13 software product-line 0 0

14 software product-lines 0 0

15 software product family 0 0

16 software product families 0 0

17 software product-family 0 0

18 software product-families 0 0

19 software family based 0 0

20 software family-based 0 0

21 software variability 0 0

22 software mass customization 0 0

23
software mass customization
production line

0 0

Terms

Reference / Position

57 / 1 1 / 124

24
software mass customization

production lines
0 0

25 software-intensive system 0 0

26 software-intensive systems 0 0

27 software 4 0

28 product 6 0

29 line 5 0

30 lines 1 0

31 Product-line 0 0

32 Product-lines 0 0

33 family 0 0

34 families 0 0

35 based 2 0

36 Family-based 0 0

37 mass 0 0

38 customization 0 0

39 production 0 0

40 Software-intensive 0 0

41 intensive 0 0

42 system 0 0

43 systems 2 0

 Total 30 1

Table 14: Count of Terms of the SLR-2 - Strategy 2

Group Terms
Reference / Position

52 / 1 Higher Occurrence 1 / 124 Higher Occurrence

1

Bad Smell 0

12

0

1

Code Smell 0 0

code anomaly 0 0

variability anomaly 0 0

variability smell 0 0

Bad 0 0

Smell 0 0

Code 2 1

anomaly 0 0

variability 12 0

2

Software Product Line 0

12

0

0

software product lines 0 0

software product-line 0 0

software product-lines 0 0

software product family 0 0

software product families 0 0

software product-family 0 0

software product-families 0 0

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

20

Table 14: Count of Terms of the SLR-2 - Strategy 2 (cont.)

Group Terms
Reference / Position

52 / 1 Higher Occurrence 1 / 124 Higher Occurrence

2

software family based 0

0

software family-based 0 0

software variability 1 0

software mass customization 0 0

software mass customization production line 0 0

software mass customization production lines 0 0

software-intensive system 0 0

software-intensive systems 0 0

software 3 0

product 0 0

line 0 0

lines 0 0

Product-line 0 0

Product-lines 0 0

family 0 0

families 0 0

based 0 0

Family-based 0 0

variability 12 0

mass 0 0

customization 0 0

production 0 0

Software-intensive 0 0

intensive 0 0

system 1 0

systems 1 0

 Total 32

1

Table 15 and Figure 12 show the recall and precision of the strategies to rank references. For example, in SLR-

1/Strategy 2, when 80% of the selected references are retrieved (recall), the precision is 50%. We can note that Strategy

2 was equal to or better than Strategy 1, i.e., it ranked the selected references closer to the top of the rank. When

applied in the SLR-2, Strategy 2 was better than Strategy 1 in the first two recall levels obtaining 100% of precision.

However, Strategy 1 obtained higher precision in the other recall levels.

Table 15: Ranking References - Recall versus Precision

Recall (%)

Precision (%)

SLR-1 SLR-2

Strategy 1 Strategy 2 Strategy 1 Strategy 2

0 100.0 100.0 73.7 100.0

10 100.0 100.0 73.7 100.0

20 50.0 100.0 73.7 66.7

30 36.4 60.0 73.7 66.7

40 28.6 50.0 72.0 66.7

50 28.6 50.0 64.7 53.5

60 28.6 50.0 63.3 53.5

70 17.9 50.0 63.3 53.2

80 17.2 50.0 57.1 53.2

90 11.5 14.8 50.6 52.0

100 11.5 13.4 35.5 35.5

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

21

Figure 12: Recall versus Precision SLR-1 and SLR-2 – Strategy 1 and Strategy 2

6 Discussion

In our experimental evaluations, the results of the strategy to detect duplicated references show that it can minimize the

effort to detect duplicates because it considers similarities in the title or in the abstract of references. To verify the

similarity, we combined the title and the first 100 characters of the abstract. This was sufficient to detect all duplicates

that were also manually removed in SLRs and to detect extensions of papers.

The use of more characters of the abstract increases the algorithm execution time and the results are not better. The

threshold value (70%) and the use of the 100 first characters of the abstract may be not optimal values because they

were defined using only one SLR. Despite this, we used them to detect duplicates in SLR-2 and the algorithm detected

all 29 references manually detected plus 2 duplicated references that have different titles. Hence, the strategy to detect

duplicated references can be used before the detection of non-papers minimizing the effort to detect them.

In the strategy to detect non-papers, we used only the title because some references for non-papers do not have

abstract or keywords. We tested the use of the abstract for ranking and more non-papers were retrieved. However, the

recall and the precision were worse due to the large number of references that were also retrieved. Despite the good

results, the search string has to be improved with more or differently terms aiming to retrieve more non-papers, and, at

the same time, avoiding the retrieve of more references for papers.

Regarding the strategies to rank references, with the ranking generated by Strategy 1, researchers could find the

relevant references in the first 113 (17.7%) ranked references of the SLR-1, and, in the first 97 (75.2%) ranked

references of the SLR-2. Strategy 2 ranked the selected references of SLR-1 in the first 97 (15.3%) positions, while it

ranked the references of SLR-2 in the first 92 (71.3%) positions.

When we analyzed the number of common terms between ranked references and the search strings, we noticed

that, in the SLR-1, for example: i) the reference in the position 1 of Strategy 1 has a relatively small number of terms

(30%), however it stayed in the first position because it has a total of 74 occurrences of the terms; ii) no more than 73%

of the groups have the search string terms; iii) 5% of the references do not have any terms of search string; and iv) 13%

of the references exported by the search engines do not have keyword field.

The relatively low amount of terms between the search string and the references indicates that 70% of them may

have interfered negatively in a search result, because irrelevant references may be present in search results. Therefore,

we can use the proposed strategies to verify if relevant references are closer to the top of the rank in a pilot search. If

not, we can choose better terms and improve the results. For example, the reference in position 31 (Strategy 2/SLR-2)

has the term “software anomalies” in its title and this term is not present in the search string. If it was present, perhaps

that reference would be better ranked.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

P
re

ci
si

o
n

Recall

SLR-1/Strategy 1 SLR-1/Strategy 2

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

P
re

ci
si

o
n

Recall

SLR-2/Strategy 1 SLR-2/Strategy 2

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

22

The existence of references that do not have terms of the string in the title, abstract or keywords can happen due to

how the engines perform the search. The documentation of Scopus and Science Direct engines indicates that, when

informing an expression in quotes, they do similarity search, i.e., the engines return the same result for the terms "heart-

attack" and "heart attack", for example. However, the use of quotation marks in the IEEExplore search engine indicates

an exact search, although return the same result for the terms "solid-state" and "solid state".

These search engines use the technique of stemming, that is, a search for the term “metrics” generates results with

the term “metric”, inclusive. The IEEExplore performs stemming even among British and American English, but its

documentation indicates that some technical terms may not be in stemming dictionary. In IEEExplore, this technique is

only applied if the search is not exact, i.e., if the term is not in quotes.

Another feature available on these search engines is the ability to specify which fields the researchers want to

perform the search. In IEEExplore, there is an option called “metadata” that includes, for example: abstract, index

terms, document title, publication title, and authors. In the SLRs used, the authors performed the searches in

IEEEXplore using this option, which may have generated 5% of references that do not have the string terms in title,

abstract, and keywords.

In the Primary selection stage, after the execution of the search string, the result must be exported to be analyzed

but some search engines do not provide appropriate mechanisms to this aim. For example, in the ACM Digital Library,

we can export the references of the search results, but we have to export each reference individually. In IEEExplore,

Scopus, and Science Direct, we can export sets of references, but in IEEExplore, the results can be exported in blocks

with a maximum of 100 references (if the results have 1000 references, the export must be performed in 10 steps). On

the other hand, in the Science Direct and Scopus engines, we can export all references of the search result in a single

step if the result has no more than 1000 references.

Additionally to those drawbacks, some references are exported with incomplete data, e.g., abstract and keywords.

We executed the SLR-1 search string in the ACM Digital Library and selected a reference. The reference data (e.g.,

title, authors, abstract and keywords) were presented in the screen, but when we exported	 the reference, the abstract

was not exported. The absence of any information can affect the ranking because fewer terms are indexed, which can

result in a lower ranking.

Analyzing the strategies evaluation, we noticed an unexpected result in the Strategy 2 results. We observed, in

SLR-1, that only eight groups have, at least, one term in common with the references. However, we expected, at least,

one term from each group (11 groups) due to the search string organization. To verify if the Strategy 2 was wrong, we

executed the following SLR-1 search string part:

(software OR application OR system OR program OR product OR “software product” OR

“software system”) AND (metric OR metrics OR measure OR measurement) AND (quality OR

“internal quality”) AND (modularization OR modularisation OR modularity)AND(maintenance

OR maintainability) AND...

Observing the search string above, we can note 5 groups (terms connected by the OR operator) connected by the

AND operator, i.e., the result should have at least one term from each group. By analyzing the term count, we noticed

that references 1 and 3 (Strategy 2) do not meet this restriction. Both references were exported from Science Direct.

Therefore, we simulated a search on Science Direct using only this piece of string and limiting the search by: i) fields:

title, abstract and keywords; ii) area: Computer Science; and iii) period: 1990 to 2012. That search engine sorts the

results by relevance and, in the first position, we had reference 12, as well as in Strategy 1. Performing the count of

terms per group (Strategy 2), we found that the first three references do not follow the restriction of the search string.

This indicates a fault in Boolean searching or the usage of a strategy not mentioned in the search engine documentation,

because if the groups were connected with AND, at least one term from each group should exist in the selected

references returned by the search engine. This fault may generate results that do not meet the search string increasing

the effort to export the search results and to select relevant references.

The selection of relevant references typically involves "random" reading, since the result may not be sorted by

relevance when the results of different search engines are combined in only one repository. A subsequent ranking of the

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

23

references using the same terms as the search string or other terms may reduce the effort in Primary Selection, because

the reading will be guided by the ranking, in which the most relevant search results will be at the top.

One issue that must be considered is the subjectivity present in the texts, because the context may indicate the

relevance of the study to a research question, not only the presence of one or more terms and their synonyms. For

example, in the abstract of a reference from SLR-1, it is mentioned that: i) the aspect-oriented (AOP) promises to

enhance programming software modularization and providing better separation of concerns; ii) an SLR was performed

to find empirical studies that presented comparisons between AOP and non-POA approaches; and iii) the studies

analyzed showed positive or negative effects related to performance, code size, modularity and evolution. Therefore,

the context indicates the use of measures related to AOP and their use to evaluate software quality, because empirical

studies were surveyed.

For example, in SLR-1, reference 1 was selected by subjectivity and was retrieved in Strategy 1 because it has 5

terms of the search string with a total of 17 occurrences. The reference 5 was also selected by subjectivity and occupies

position 97 in Strategy 2 with 28 terms of 7 groups. Regarding the SLR-2, reference 1 was positioned in the last

position by both strategies. Reading its abstract, we noticed the presence of the term “feature-oriented programming”,

which is associated to Software Product Lines. However, it lacks other terms related to the search string indicating the

selection by the subjectivity.

We noticed that the subjectivity affected the Recall and Precision values (Figure 12) because references of this

type, in general, has a low number of terms, and, therefore, they are not closer to the top of the rank. The low presence

of the search string terms in the reference 52 (first position - Table 14) of the SLR-2 indicates that the majority of

references was selected by subjectivity reflecting the low precision.

7 Conclusion

A Systematic Literature Review is one of the main techniques for synthesizing relevant work related to a particular

topic or issue. In the Primary Selection stage, title, abstract, and keywords of each reference returned in the initial

search should be read to identify relevant studies to answer research questions. The Primary Selection stage demands

effort of researchers due to increased amount of published work. Aiming to reduce this effort, in this paper, we

proposed the use of Information Retrieval techniques to detect duplicated references, non-papers, and to rank references

according to their relevance regarding a search string.

The strategy to detect duplicates is based on Jaccard Similarity Coefficient and the strategies to rank the references

are based on Vector Model. We used the Vector Model in a strategy to position non-papers at the top of the rank and in

another two strategies to rank relevant references at the top of the rank. These two strategies are: i) Strategy 1: uses the

traditional Vector Model; and ii) Strategy 2: simulates the Boolean expression of the search string.

The evaluation of these strategies was conducted using two real datasets. The results of the strategy to detect

duplicates indicate that it can be used in the place of manual detection, because it detected all duplicates that were

manually detected and, in addition, it detected references for extensions of studies. The results of the strategy for non-

papers show that the strategy can help detecting non-papers, despite it missed some papers due to the search string

limitation. Both strategies to rank relevant references can be used to reduce the manual effort, because, in the results,

relevant documents were positioned, for example, between 15% to 20% of the references of the top ranking. The

strategies do not indicate a percentage of references to be read in advance, but the ranking of references enables reading

more adherent to the elaborated search string.

Some limitations of this study include the need to (i) evaluate more datasets to further confirm the results, and (ii)

consider the subjectivity of the texts analyzed. Still, the study proved to be promising since the goal is to use the

proposed strategies as an aid in the selection process and not to replace human labor. We implemented the strategies as

a prototype only to evaluate their applicability and it does not have a graphical interface. In spite of that, the proposed

strategies are simple to implement and showed relevant results.

As future work, we intend to implement the strategies in a Web tool and improve the strategies to detect non-

papers and rank relevant references. Finally, it is suggested to evaluate the use of the strategies to analyze the full-text

of papers aiming to improve the ranking.

CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015

24

Acknowledgements

This work was partially supported by Capes, CNPq, and Fapemig.

References

[1] T. Dyba, B. A. Kitchenham, M. Jorgensen. “Evidence-based Software Engineering for Practioners”. IEEE

Software, vol.22, n.1, pp.58-65. 2005

[2] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman. “Systematic Literature Reviews in

Software Engineering - A Systematic Literature Review”. Information and Software Technology, vol.51, n.1, pp.

7-15, 2009.

[3] B. Kitchenham. “Guidelines for Performing Systematic Literature Review in Software Engineering”. EBSE

Technical Report, 2.3, Keele University, 2007.

[4] H. Ramampiaro, D. Cruzes, R. Conradi, M. Mendona. “Supporting Evidence-based Software Engineering with

Collaborative Information Retrieval”. In: International Conference on Collaborative Computing: Networking,

Applications and Worksharing, pp.1-5, 2010.

[5] F. Tomassetti, G. Rizzo, A. Vetro, L. Ardito, M. Torchiano, M. Morisio. “Linked Data Approach for Selection

Process Automation in Systematic Reviews”. In: 15th Annual Conference on Evaluation and Assessment in

Software Engineering, pp. 31-35, 2011.

[6] K. R. Felizardo, G. F. Andery, F. V. Paulovich, R. Minghim, J. C. Maldonado. “A Visual Analysis Approach to

Validate the Selection Review of Primary Studies in Systematic Reviews”. Information and Software Technology,

vol.54, n.10, pp. 1079-1091, 2012.

[7] B. C. Wallace, T. A. Trikalinos, J. Lau, C. E. Brodley and C. H. Schimid. “Semi-automated Screening of

Biomedical Citations for Systematic Reviews”. BMC Bioinformatics, vol.11, n.1, pp. 55-67, 2010.

[8] D. Martinez, S. Karimi, L. Cavedon, T. Baldwin. “Facilitating Biomedical Systematic Reviews Using Ranked

Text Retrieval and Classification”. In: 13th Australasian Document Computing Symposium, pp. 53-60, 2008.

[9] R. Baeza-Yates, B. Ribeiro-Neto. Modern Information Retrieval. 2nd edition, 2011.

[10] R. Abilio, P. Teles, H. Costa, E. Figueiredo. “A Systematic Review of Contemporary Metrics for Software

Maintainability”. In: 6th Brazilian Symposium on Software Components Architectures and Reuse (SBCARS),

pp.130-139, 2012.

[11] G. Vale, E. Figueiredo, R. Abilio, H. Costa. “Bad Smells in Software Product Lines: A Systematic Review”. In:

7th Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS), pp. 84-93, 2014.

[12] R. Abilio; Oliveira, C.; Vale, G.; Morais, F.; Pereira, D.; Costa, H. “Systematic Literature Review Supported by

Information Retrieval Techniques: A case study”. In: XL Latin American Computing Conference (CLEI), pp. 1-

11, 2014.

[13] G. Travassos, J. Biolchini. “Revisões Sistemáticas Aplicadas a Engenharia de Software”. In: 21th Brazilian

Symposium on Software Engineering (SBES), 2007.

[14] P. Jaccard. “Etude comparative de la distribution florale dans une portion des Alpes et des Jura”. Bulletin del la

Societe Vaudoise des Sciences Naturelles, v. 37, pp. 547-579, 1901.

