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Abstract 

Systematic Literature Review (SLR) is a means to synthesize relevant and high quality studies 

related to a specific topic or research questions. In the Primary Selection stage of an SLR, the 

selection of studies is usually performed manually by reading title, abstract, and keywords of 

each study. In the last years, the number of published scientific studies has grown increasing the 

effort to perform this sort of reviews. In this paper, we proposed strategies to detect non-papers 

and duplicated references in results exported by search engines, and strategies to rank the 

references in decreasing order of importance for an SLR, regarding the terms in the search string. 

These strategies are based on Information Retrieval techniques. We implemented the strategies 

and carried out an experimental evaluation of their applicability using two real datasets. As 

results, the strategy to detect non-papers presented 100% of precision and 50% of recall; the 

strategy to detect duplicates detected more duplicates than the manual inspection; and one of the 

strategies to rank relevant references presented 50% of precision and 80% of recall. Therefore, 

the results show that the proposed strategies can minimize the effort in the Primary Selection 

stage of an SLR.  

 

Keywords: Systematic Literature Review; Information Retrieval; Vector Model; Primary Selection. 

 

1 Introduction 

Systematic Literature Review (SLR) is a means to evaluate and interpret relevant work available in the literature 

regarding a particular research question, a topic area or a phenomenon of interest [1][2][3][4]. SLR can be performed 

basically in three phases [3]: i) Planning; ii) Execution; and iii) Analysis of Results. These phases can be subdivided in 

stages, for example, the Planning phase has the stage of Development of the Protocol used in the SLR, and the 

Execution phase has the stages of Primary Selection and Secondary Selection of Studies. 
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In the Planning phase of an SLR, we define terms (words and/or expressions) and their synonyms related to the 

topic or research question that will be used for searching relevant works. One term and its synonyms are connected by 

the logical operator OR to create a group of terms of search. Each group is connected by the logical operator AND in 

order to create the search string. This string can be used in online repositories of scientific studies that provide search 

engines, aiming at retrieving works whose content has at least one term of each group. 

In the Primary Selection stage, we use the string in the search engines, export the results and organize them to 

allow the exclusion of duplicates and references to materials that are not papers (non-papers), such as table of contents 

and abstracts of proceedings. After that, the references are manually selected by reading their attributes, such as title, 

abstract, and keywords. In the Secondary Selection stage, the studies selected in the Primary Selection are fully read. In 

both selections, we use the inclusion and exclusion criteria, defined in the Planning phase, to select or not a study [3]. 

The results of the Secondary Selection are the studies considered relevant in the context of the research. One problem 

in the Primary Selection is the effort necessary to perform the activity due to the increased amount of studies [4]. In 

order to reduce the bias in the selection of the studies, at least two researchers have to read the title, the abstract, the 

keywords, and, when necessary, the full text [3]. 

Aiming to minimize this effort and help the researchers in the Primary Selection, several proposals were presented 

to rank references (documents) with regarding their relevance, automate the selection, and validate the selected studies 

[4][5][6][7][8]. In this work, we proposed the use of Information Retrieval techniques to detect duplicated references 

and to rank references aiming to detect materials that are not papers (non-papers). Information Retrieval techniques 

provide easy access to the information of interest of the users. Information Retrieval models are created to provide a 

ranking function that assigns points to documents regarding a given query [9]. One of the classic models of Information 

Retrieval is the Vector Model, an algebraic model that represents documents and queries as vectors in a t-dimensional 

space [9].  

In this work, we treated each reference obtained from the results exported by search engines as a document. Our 

proposal covers the three activities of the Primary Selection: detection of non-papers, detection of duplicates, and 

ranking of references. The detection of non-papers analyzes the title and ranks the references regarding a query that has 

terms present in references for non-papers. The detection of duplicates is based on the analysis of similarity of 

references considering title and abstract. The ranking of references is based on their relevance. We proposed two 

strategies to rank the references considering the search string, title, abstract and keywords. We evaluated the strategies 

performing an experimental evaluation using two real datasets obtained from two SLRs published in 2012 [10] and 

2014 [11]. Both SLRs are related to Software Engineering. The results show that the proposed strategies can minimize 

the effort in the Primary Selection stage. 

This work extends a previous work [12] – which presented the strategies to rank references regarding their 

relevance considering the search string – by adding strategies to detect duplicated references and non-papers, as well as 

an experimental evaluation using one more dataset. The main contributions of this work are: 

• A strategy to automate the detection of duplicates using the Jaccard Coefficent Similarity [14]; 

• A strategy to automate the detection of non-papers using the Vector Model; 

• Two strategies using the Vector Model to rank the references used in a Systematic Literature Review 

regarding their relevance considering the terms used in the search string; 

• The possibility of using the proposed strategies for assessing the quality of the search string; 

• The identification of unexpected behavior of search engines related to the Boolean query, since the references 

may be returned without considering the union of the search terms with the AND connector; 

• An initial collection of terms present in non-papers. 

The remainder of this paper is organized as follows. Section 2 briefly discusses some related work. Section 3 

presents contextualization of Systematic Literature Review and Information Retrieval. The proposed strategies to detect 

duplicates and non-papers, and for the ranking of references are described in Section 4. Section 5 presents the 

experimental evaluation setting and results, and Section 6 discusses the results. Section 7 presents the conclusions and 

the suggestions of future work.  
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2 Related Work 

In a study that aims to reduce the effort in conducting an SLR in the context of Evidence-based Software Engineering 

[1], a tool was proposed to act as an interface to perform searches in databases, such as IEEExplore
1
, ACM Digital 

Library
2
, Scopus

3
 and Science Direct

4
. To obtain relevant studies, the authors proposed to use techniques of 

information retrieval, such as, text-based techniques for natural language processing and clustering of similar studies by 

using the clustering techniques K-means or k-NN. To evaluate the proposed techniques, the authors suggested the use 

of the Recall and Precision measures. The authors did not implement the proposed strategies, but mentioned the 

implementation as future work [4]. 

In another study [5], Linked Data, Text Mining and Naïve Bayes techniques were used in an iterative and 

supervised process used in the Secondary Selection to reduce manual work and the bias of subjectivity. The proposal 

was to extend and enrich the basic process of the Primary Selection using existing technologies in the area of Semantic 

Web and Text Mining in the context of Linked Data technique. To evaluate the proposal, an experiment was conducted 

by using information from an SLR published in 2007. In this case study, manual work in the search and in the Primary 

Selection of the review was simulated. The relevant studies from the Primary Selection were used to create the 

prototype and run the proposed technique. The results indicate that the used technique can reduce the effort by 20% 

with a recall of 100%. 

To provide support in verifying the results of the Secondary Selection, the technique Visual Text Mining (VTM) 

was used [6]. This technique supports tasks that involve interpretation of large amount of textual data and the 

integration between Text Mining and Information Visualization techniques. The purpose of the study was to modify the 

execution phase, adding two VTM techniques to support the review of the selected studies (content map and citation 

map). Case studies were performed to verify the applicability of the technique, and the results indicated that VTM can 

help in the Primary Selection accelerating the process and increasing the reliability of the results. 

In another study [7], a semi automated triage was performed on the process of selecting papers. In this triage, 

Support Vector Machines (SVM) were used. SVM can be constructed in different spaces, for example, using abstract 

and title or full-text. To semi automate the triage process is difficult due to the imbalance of irrelevant papers on 

relevant papers. Therefore, an active learning strategy was developed for imbalanced data sets. The triage was 

performed in three Systematic Literature Reviews. In two of them, the algorithm was able to reduce the number of 

manually selected references by 50%, and, in the third study, around 40%. In these studies, there was no compromise in 

the quality and scope. 

In order to reduce the effort in reading the references in an SLR in the healthcare area, a ranking of relevant 

references was performed in two phases [8]: i) text retrieval; and ii) re-ranking via text classification. In the first step, 

constraints are added using various controls, for example, .mp control, that look for a particular term in the title, 

abstract and MeSH heading. In the second step, the information is obtained from the previous step and the references 

are ordered hierarchically using Support Vector Regression (SVR). In this work, the authors used the machine learning 

tool Weka
5
 to apply the proposed technique in 17 SLRs, and the references considered relevant were ranked among the 

first 30% of the ranked references. 

The aim of this study is to apply Information Retrieval techniques in the Primary Selection stage, as well as, in the 

three studies [4][7][8], and differently from the two studies [5][6], in which the focus was to provide support on the 

Secondary Selection stage. Regarding studies focusing on Primary Selection, one of them [4] proposed a tool, in which 

Information Retrieval techniques would be implemented, but the tool was not developed and evaluated. In this work, 

we implemented the strategies and evaluated their applicability. In two studies, the SVM [7] and the SVR [8] 

techniques were used, while in this work, we used the Vector Model. 

 In this paper, we proposed three strategies based on the cosine similarity of the Vector Model and one strategy 

using Jaccard [14] to help researchers in the Primary Selection stage, reducing their effort in the detection of duplicates 

                                                 
1 http://ieeexplore.ieee.org/ 
2 http://dl.acm.org/ 
3 http://www.scopus.com/ 
4 http://www.sciencedirect.com/ 
5 http://www.cs.waikato.ac.nz/ml/weka 
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and non-papers, and ranking references regarding the search string terms. As input, these strategies use the data of the 

SLR protocol and the collection of references generated by the execution of the search string, in other words, the 

overhead for researchers regarding the application of the techniques is minimal. 

3 Background 

This section briefly presents the Systematic Literature Review process and Information Retrieval concepts. 

 3.1 Systematic Literature Review 

Systematic Literature Review (SLR) is a component of evidence-based practice [1][3], and it is part of what is called 

Secondary Studies in systematic research. Performing an SLR, the research, selection, analysis and organization of 

studies are facilitated due to the pre-defined steps and criteria [4]. With this, the researchers can organize the 

performing of the technique and, in addition, it is possible to find relevant content on a research topic in an electronic 

database with lots of information. The execution of an SLR is based on three phases (Figure 1) [2][3][13]: 

 

• Planning. The reason to perform the SLR is established in this phase. The stages of this phase are: i) 

describing the research motivations and objectives; ii) defining research questions related to the motivations 

and objectives; iii) developing the research protocol that will be applied to the search; and iv) assessing the 

protocol to verify the SLR applicability; 

• Execution. A search in the databases defined in the previous phase is performed. The researchers classify the 

obtained references guided by the inclusion and exclusion criteria. The stages of this phase are: i) searching 

references in the defined databases and organizing the results; ii) Primary Selection: the researchers perform a 

first selection of studies reading title, keywords, and abstracts of the references verifying their compliance 

with the criteria; iii) Secondary Selection: a second selection is performed aiming to eliminate unsuitable 

studies; and iv) organizing the selected references to be analyzed; 

• Analysis of Results. The studies referenced by the selected references are read, the data collected, and 

analyzed. The stages of this phase are: i) collecting and organizing data: the researchers read the studies 

selected in the Secondary Selection stage to collect and analyze the data that answer the research questions; 

and ii) assessing the results: the data are reviewed and the report is published. 

 

 

Figure 1: Process of Systematic Literature Review (Adapted from [13]) 

 
 3.2 Information Retrieval 

Information Retrieval deals with the representation, storage, organization, and access to information items, such as 

documents, web pages, online catalogs, structured and semi-structured records, and multimedia objects [9]. Information 

Retrieval Modeling is a complex process that produces a ranking function that assigns weights to documents regarding 

to a given query [9]. The Vector Model is a classic model of Information Retrieval. It is an algebraic model that 

represents documents and queries as vectors in t-dimensional space, in which t is the number of distinct terms (words or 

expressions) in a collection [9]. 
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Let D be a collection of N documents (1) and let K be the set of t distinct terms that appear in documents of D (2). 

For each pair (ki, dj), ki ∈ K e dj ∈ D, it is associated a weight wi,j ≥ 0. A document dj is represented as a vector of 

weights (3). Each wi,j represents the importance of the term ki to describe the semantic content of the document dj.  

 D = {d1, d2, ..., dn)      (1) 

 K = {k1, k2, ..., kt}       (2) 

������= {w1,j, w2,j, ..., wt,j)    (3) 

 

A scheme used to calculate the weights, known as TF-IDF (Term-Frequency x Inverse Document Frequency), 

consider the frequency of the term in the document (TF) and the rarity of the term in the collection (IDF). The degree 

of similarity between a query q and one document d is evaluated as the correlation between the vectors ������	and	q��. This 

correlation can be quantified by the cosine of the angle between those two vectors (4). This similarity measure is 

known as Cosine Similarity [9]. 

 

��	
�, �
 = 	 ∑ ��,�	.��,�����
�∑ ��,������ 	.�∑ ��,����	�	�

  (4) 

  
After obtaining the results of the ranking function, it is important to evaluate their quality. Typically, this 

evaluation is the comparison of the results of the Information Retrieval system with the results proposed by experts that 

reviewed the collection of documents [9]. Two classical measures to evaluate Information Retrieval systems are 

Precision and Recall [9]. Formally, these measures are: q a query from a reference collection, R the set of documents 

judged as relevant to q and, |R| the number of documents in R. By submitting q, we obtain a set of results A (|A| 

documents). Considering |R ∩ A| the number of documents in the intersection between R and A, the precision (5) can 

be defined as the fraction of retrieved documents that are relevant, and the recall (6) as the fraction of relevant 

documents retrieved. 

 ���������	 = 	 |!	∩#|
|#|   (5) 

  

 $��%&&	 = 	 |!	∩#|
|!|   (6) 

 

 

The Jaccard Coefficient Similarity (7) is a function based on words (tokens) used to quantify the similarity and 

diversity between sets of strings [14]. It is the result of the intersection divided by the result of the union of the sets of 

evaluated strings. 

 

 '%��%��
#,(
 =	 |#	∩		(|
|#	∪	(	| (7) 

 

 

4 Strategies to Rank References and to Detect Non-Papers and Duplicates 

Figure 2 depicts a Primary Selection stage process. In this process, researchers have to deal with hundreds or thousands 

of references exported by different search engines. This collection of references has papers and non-papers, such as, 

Table of Contents and Copyright Notice, and can be added in a database (Sum database). Due to the search in more 

than one source (or machine), the number of duplicates increases and they have to be removed (Union database). After 

that, the researchers have to remove references for non-papers obtaining a database composed only by references for 

papers (Papers database). In this last database, the ranking by relevance performed by the search engines is lost when 

the results are aggregated due to the joint of the exported references, and the database manipulation for removal of 
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duplicates and non-papers. This section presents the strategies that we propose to filter only papers for full-text read 

and to rank the references regarding to the search string.  

 

Figure 2: Process of Primary Selection Stage 

 

 4.1 Strategy to Detect Duplicates 

After exporting and aggregating the results of the searches conducted during the Primary Selection, the removal of 

duplicated references is necessary. The first strategy to remove duplicates is to sort the references by their titles. 

However, we had exported references with definite and indefinite articles omitted at the beginning of the titles, some 

symbols removed, such as colons and dashes, or even extensions of papers that had the original title changed. 

Therefore, this simple strategy is not efficient. 

To help in this process, we proposed an algorithm to detect duplicates based on the Jaccard Similarity Coefficient 

(Jaccard) (Figure 3). The algorithm receives as input a set of references R and a threshold value, and returns a list of 

duplicated references L. The algorithm goes through the references in a nested loop, checking the similarity (Jaccard 

Similarity function) of the current reference with the subsequent. The ObtainTitleAbs function receives a document as 

parameter and returns its title and abstract concatenated (titleAbsDoc). If the similarity between the references is 

greater than or equal to the threshold, then the reference and its similarity are inserted in the list L. At the end, the list L 

with the duplicated references is returned. 

 

Figure 3: Algorithm to Detect Duplicates 

 

} 
 

. 

. 

. 

Database n 

Database 1 

Sum Union 

Remove duplicates 

Papers 

Remove non-papers 
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Although Jaccard indicates the degree of similarity returning a number between 0 and 1, we have to define a 

threshold value to indicate that a reference is duplicated. That is, if a Jaccard value between two references is greater 

than or equal to the threshold value, one of the references is considered duplicated. From our experiments using one of 

the SLRs, we obtained a threshold value equals to 0.7 (70%).  

The implemented algorithm receives, as input, a Bibtex file (a set of references R) and returns a CSV (Comma 

Separated Values) file with each reference and its duplicates along with their degree of similarity (list of duplicates L). 

Figure 4 shows an example of the output of the Strategy to Detect Duplicates. This example depicts a group of 

references indicated as duplicates, i.e., the algorithm read the reference “Dynamic coupling measures for object-

oriented software” from the input and indicated the reference “Dynamic coupling measurement for object-oriented 

software” as a duplication with 0.89 of similarity between them. 

 

Title Similarity 

Dynamic coupling measures for object-oriented software - 

Dynamic coupling measurement for object-oriented software 0.89 

Figure 4: Example of Output of the Strategy to Detect Duplicates 

 
 4.2 Strategies to Rank References for Full-Text Read 

Aiming to reorder the references according to their relevance regarding the search string, we proposed two ranking 

strategies. In both strategies, we used the Vector Model and the weights of the terms in documents were calculated 

using only the information present in the input document, i.e., global information was not considered, such as, the IDF 

that requires data from a collection of documents to be calculated. The weight of a term in a document is defined by its 

frequency in the document. Therefore, the more times the terms of the query appear in a document, more relevant that 

document is to the query. To obtain this relevance, the weight wi,j of the term i in document j (8) is calculated, being fi,j 

the frequency of the term i in document j, and max fl,j the frequency of the term l, where l is the most frequent term in 

document j. In both strategies, we considered title, abstract, and keywords of the references. 
 

*+,, 	= 	 -�,.
/01	-2,.

  (8) 

 

 4.2.1 Strategy 1 

In Strategy 1, we used the traditional form of the Vector Model that considers the partial contribution of each query 

term. The query terms contained in the search string are treated in the same way, regardless whether they are synonyms 

or not, ignoring duplicated terms and the connectors AND and OR. To check how similar a document is to the query, 

the strategy calculates the degree of similarity using Cosine (4). Figure 5 depicts the algorithm to rank references. It 

receives, as input, a set of references R and a query Q, and returns a list of ranked references L. The algorithm can be 

divided in two steps: the construction of an inverted index structure [9] and the calculus of the ranking function.  

The first step starts inserting distinct tokens from the references into an inverted index structure (Lines 1-6). That 

structure is composed of key-value pairs. In each pair, the key is a distinct token and the value is a list of occurrences 

containing, for each document in which the token occurs, its frequency of occurrence and the identification of the  

document. The construction of this structure is performed by the InsertInvertedIndex function. The Tokenize function 

splits a text into tokens. Before being tokenized, each string is preprocessed, removing punctuation marks, symbols 

(such as (), [], {}), and stopwords (articles, prepositions, and conjunctions), and converting letters to lowercase. 

In the second step (Lines 7-17), the TokenOcurrIndex function verifies the occurrence of each token of the query 

in the inverted index, and the CalcWeight function calculates the weight of each token of the query in the document. 

Next, the similarity of the query with the document is calculated (Line 15). The similarity is obtained by the sum of the 

weights divided by normDoc. NormDoc is a method for document length normalization, in which the document is 
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represented by a weight vector of terms, the denominator of (4). After that, the document and the similarity are inserted 

into a list that is sorted in descending order and returned. 

 

 

Figure 5: Algorithm of the Strategy 1 to Rank References 

 

 4.2.2 Strategy 2 

The idea in the Strategy 2 is to define a ranking function that simulates the Boolean expression of the search string. The 

search terms were organized in groups that aggregates a term and its synonyms using the OR connector. The groups are 

then connected by the AND connector. To verify the similarity of a document with regard to the query, we calculate the 

similarity (9), considering gi as the i
th

 group of terms, sim(gi) the maximum similarity obtained in the group (10), kp as 

the term in the position p between n terms of the group i, and sim(d, kp) the similarity obtained by the cosine similarity 

(4). 

 
��	
�, �
 	= 	∑ ��	
3+
/+	4	5    (9)  

 

��	
3+
 = 		%6	 7��	8�, 9:;< , 1 ≤ ? ≤ � (10) 

 

The algorithm, depicted by Figure 6, shows the steps of the Strategy 2 to rank the references. It receives as input a 

set of references R and a query Q, and returns a list of ranked references L. This algorithm is similar to the algorithm of 

the Strategy 1 regarding to its division in 2 steps, the use of the inverted index structure, and the tokenization process. 

The first step is the same of the Strategy 1: tokenizing each reference and inserting it into the inverted index.  
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Their differences are in the second step because Strategy 1 considers the partial contribution of each query term 

(Lines 7-17) whilst the Strategy 2 verifies the tokens of each group of terms present in the query (Lines 7-23). That is, 

the ObtainGroupQuery function returns the groups of the tokens presented in query file. The TokenOcurrIndex function 

verifies the occurrence for each token of the group in the inverted index, created in the step 1. CalcWeight function 

calculates the weight of each token of the query in the document. In sequence, the InsertWeightTk function inserts the 

weight and the token in W's structure. Then, the maximum weight of the group (the group's similarity) is calculated by 

the ObtainWeightMax function. Next, the similarity of the query with the document is calculated (Line 21). The 

similarity is obtained by the sum of the weights divided by normDoc. NormDoc is a method for document length 

normalization, in which the document is represented by a weight vector of terms, the denominator of (4). After that, the 

document and the similarity are inserted into a list that is sorted in descending order and returned. 

 

 

Figure 6: Algorithm of the Strategy 2 to Rank References 

 4.3 Strategy to Detect Non-Papers 

The strategy to detect non-papers is based on the Strategy 1. That is, this strategy uses Vector Model to rank the 

references according to their relevance considering a search string. However, in this strategy, the search string is 
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composed by terms related to non-papers, such as: Table of Contents and Title Page. The difference is in the return. 

Using the Strategy 1 to detect non-papers, the return is a collection of references with non-papers closer to the top of 

the rank instead of relevant references for full-text read.  

 

5 Evaluation 

This section presents the experiments performed to evaluate the proposed strategies. It is divided in two subsections: i) 

Study Settings: it describes the implemented prototype, the datasets, and the methodological procedures; and ii) Results 

and Discussion: it shows and discusses the results of each strategy.  

 5.1 Experimental Evaluation Settings 

This subsection presents the implemented prototype, the datasets, and the methodological procedures used to perform 

the experiments.  

 5.1.1 Prototype 

We implemented the strategies as a prototype, in Java, to evaluate their applicability. We used a computer with a CPU 

Intel Core i5-3570 3.40GHz Quad-Core and 8GB of RAM memory, Java Development Kit 1.7, and NetBeans 8.0.1. 

The implemented prototype does not have a graphical interface and we defined its inputs in the source code.  

The prototype receives as input: one text file with a collection of references in Bibtex format (Figure 7); one text 

file containing terms present in non-papers (Figure 8a); and one text file containing terms present in the search string 

(Figure 8b). As output, it returns the ranked references with non-papers closer to the top, references detected as 

duplicates with the degree of similarity (value between 0 and 1), ranked references, and recall and precision of the non-

papers and of the ranking strategies. 

Figure 7 depicts an example of a reference for a paper (@ARTICLE) in Bibtex format. Among the attributes of 

this reference, we have author, title, abstract, and keywords. The strategies use the last three attributes: title, abstract, 

and keywords. The files with the terms of non-papers (Figure 8a) and of the search string (Figure 8b) are very similar. 

Each line has a group of terms. A term is a single word or an expression, which is a set of words indicated between 

quotation marks. Regarding the search string file, each line has a term that will be connected by a logical operator OR. 

The groups will be connected by a logical operator AND. 

 

 

Figure 7: Example of Reference in Bibtex Format 
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(a) 

 
(b) 

Figure 8: Example of Text File with (a) Terms of Non-Papers and (b) Terms of Search String 

 

 5.1.2 Datasets 

We used two datasets from two SLRs published in 2012 (SLR-1) [10] and 2014 (SLR-2) [11]. Each dataset is 

composed by a Bibtex file with the results exported by the search engines, a Bibtex file without references for non-

papers, a Bibtex file without duplicated references, a text file with the terms of the search string used in the SLR, and a 

text file with the titles of the selected studies for full-text read.  

Table 1 and Table 2 present the terms used in the search strings in the SLR-1 and SLR-2, respectively. Each line of 

these tables represents a group of terms (term and synonyms) from the text file that has the search string. We can notice 

that SLR-1 search string has 11 groups with 33 terms (Table 1), and SLR-2 has 2 groups with 21 terms (Table 2). 

Table 1: Terms used in SLR-1 Search String 

# Groups of terms 

1 software, application, system, program, product, “software product”, “software system” 

2 metric, metrics, measure, measurement 

3 reference value, “reference values” 

4 quality, “internal quality” 

5 feature Oriented, “feature-oriented” 

6 aspect Oriented, “aspect-oriented” 

7 product line, “product family”, “product-family”, “family based”, “family-based” 

8 modularization, modularity, modularisation 

9 maintenance, maintainability 

10 concern, aspect 

11 crosscutting, “cross-cutting” 

Table 2: Terms used in SLR-2 Search String 

# Groups of terms 

1 "Bad Smell", "Code Smell", "code anomaly", "variability anomaly", "variability smell" 

2 

"Software Product Line", "software product lines", "software product-line", "software product-lines", "software product family", 

"software product families", "software product-family", "software product-families", "software family based", "software family-based", 

"software variability", "software mass customization", "software mass customization production line", "software mass customization 

production lines", "software-intensive system", "software-intensive systems" 

 

Using those terms (Table 1), the authors of the SLR-1 elaborated the following search string. They used it in the 

IEEEXplore, Scopus, and Science Direct search engines and obtained 672 references (Table 3). 

(software OR application OR system OR program OR product OR software product” OR 

“software system”) AND (metric OR metrics OR measure OR measurement) AND (quality OR 

“internal quality”) AND (modularization OR modularisation OR modularity) AND 

(maintenance OR maintainability) AND ((“feature oriented” OR “feature-oriented” OR 

“product line” OR “product family” OR “family based” OR “product-family” OR “family-

based”) OR ((“reference value” OR “reference values”) AND (“aspect oriented” OR “aspect-

oriented”) AND (concern OR aspect) AND (crosscutting OR “cross-cutting”))) 

Software, application, system, product, "software product"  

Metric, metrics, measure, measurement 

Reference value, "reference values" 

Quality, "internal quality" 

Feature Oriented, "feature-oriented" 

"copyright notice", "copyright page" 

"title pages", "title page", title, pages, page 

"guest  editorial" 

"table of contents", table, contents 

"career opportunities", career, opportunities 
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The authors of the SLR-2 elaborated the following search string using the terms presented in Table 2 and used it in 

the IEEEXplore, Scopus, Elsevier Science Direct, El Compendex, Web of Science, ACM Digital Library, DBLP 

Computer Science Bibliography, and Computer Science Bibliographies. They obtained 165 references (Table 3). 

(“bad smell” OR “code smell” OR “code anomaly” OR “variability anomaly” OR “variability 

smell”) AND (“software product line” OR “software product-line” OR “software product 

family” OR “software product-family” OR “software family based” OR “software family-

based” OR “software variability” OR “software mass customization” OR “software mass 

customization production lines” OR “software-intensive system”) 

Table 3 summarizes the number of references in SLR-1 and SLR-2. For example, in SLR-1, 672 references were 

exported by the search engines. In this collection of references, 20 non-papers and 16 duplicates were detected. At the 

end, only 13 references were selected for full-text read (Table 4).  

Table 3: Datasets used 

SLR # of references # of non-papers # of duplicates # of selected studies 

SLR-1 672 20 16 13 

SLR-2 165 7 29 44 

Table 4: References selected as relevant in SLR-1 

# References 

1 
M. S. Ali, M. Ali Babar, L. Chen, and K-J Stol. “A Systematic Review of Comparative Evidence of Aspect-Oriented Programming”. 

Journal of Information and Software Technology, v. 52, n. 9, pp. 871-887, 2010. 

2 
P. Arpaia, M. L. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia. “An Aspect-Oriented Programming-Based Approach to Software 

Development for Fault Detection in Measurement Systems”. Journal of Computer Standards & Interfaces, vol. 32, n. 3, pp. 141-152, 2010. 

3 
E. K. Piveta, A. Moreira, M. S. Pimenta, J. Araújo, P. Guerreiro, R. T. Price. “An Empirical Study of Aspect-Oriented Metrics”. Science of 

Computer Programming, 2012. 

4 
E. Figueiredo, C. Sant'Anna, A. Garcia, and C. Lucena. “Applying and Evaluating Concern - Sensitive Design Heuristics”. Journal of 

Systems and Software, vol. 85, n. 2, pp. 227-243, 2012. 

5 
R. Brcina, M. Riebisch. “Architecting for evolvability by means of traceability and features”. In: 23rd IEEE/ACM International Conference 

on Automated Software Engineering, pp. 72-81, 2008. 

6 
A. L. Medeiros, E. Figueiredo, I. Galvão, A. Garcia, T. Batista, and C. Sant'Anna. “Concern-Based Assessment of Architectural Stability: 

A Comparative Study”. In: 4th Brazilian Symposium on Software Components, Architectures and Reuse, pp. 27-29, 2010. 

7 
R. Burrows, A. Garcia, F. Taiani. “Coupling Metrics for Aspect-Oriented Programming: A Systematic Review of Maintainability 

Studies”. In: 4th International Conference on Evaluation of Novel Approaches to Software Engineering, 2009. 

8 
M. Couto, M. Valente, and E. Figueiredo. “Extracting Software Product Lines: A Case Study Using Conditional Compilation”. In: 

European Conference on Software Maintenance and Reengineering, pp. 1-4, 2011. 

9 
J. M. Conejero, J. Hernández, E. Jurado, K. van den Berg. “Mining early aspects based on syntactical and dependency analyses”. Science 

of Computer Programming, vol.75, n.11, pp. 1113-1141, 2010. 

10 
F. d'Amorim and P. Borba. “Modularity Analysis of Use Case Implementations”. Journal of System and Software, vol. 85, n. 4. pp. 1012-

1027, 2012. 

11 

E. Figueiredo, C. Sant'Anna, A. Garcia, T. T. Bartolomei, W. Cazzola, and A. Marchetto. “On the Maintainability of Aspect-Oriented 

Software: A Concern-Oriented Measurement Framework”. In: 12th European Conference on Software Maintenance and Reengineering, 

pp. 183-192, 2008. 

12 
J. M. Conejero, E. Figueiredo, A. Garcia, J. Hernández, E. Jurado. “On the relationship of concern metrics and requirements 

maintainability”. Information and Software Technology, vol. 54, n. 2, pp. 212-238, 2012. 

13 
M. Revelle, M. Gethers, and D. Poshyvanyk. “Using Structural and Textual Information to Capture Feature Coupling in Object-Oriented 

Software”. Journal of Empirical Software Engineering, vol. 16, n. 6, pp. 773-811, 2011. 

 

 5.1.3 Methodological Procedures 

The methodological procedures were: i) we received three Bibtex files from the authors of the SLRs containing all 

references exported by the search engines, references without duplicates, one file without references for non-papers; ii) 

we edited a text file with terms of the search string used in each SLR and a text file with the titles of the selected 

studies for full-text read; and iii) tested and analyzed the strategies.  
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We used all references of SLR-1 to test the algorithm to detect duplicates and define the threshold value. After 

that, we used the algorithm to detect duplicates in the SLR-2 references. In both detections, we manually analyzed the 

indications of duplicates and the Jaccard values. In addition, we compared the references indicated by the strategy as 

duplicates with the duplicated references removed manually by the authors of the SLRs.  

To identify common terms in titles of references for non-papers, we performed a search on IEEEXplore, Science 

Direct and Scopus, and, from the results, built a search string. After that, we used the algorithm with the search string to 

rank the references of SLR-1 and SLR-2. We (i) analyzed the results by checking recall and precision, and (ii) verified 

the positions of the references for non-papers in the ranking.  

We used each file with only references for papers to perform the ranking by using each strategy. After that, we (i) 

analyzed the results by checking recall and precision, and (ii) verified the positions of the references in the ranking and 

the amount of terms of the string found in each reference. In the ranking of the references of SLR-1, we identified 4 

references without abstract and 81 references without keywords, while in SLR-2, we identified 1 reference without 

abstract and 23 references without keywords. This occurred when the results were exported by search engines. We did 

not index the references without abstracts because they would also be excluded in manual analysis. 

 

 5.2 Results 

 5.2.1 Strategy to Detect Duplicates 

The complete base of SLR-1 has 672 references, from which 636 were chosen manually in the Primary Selection stage. 

Thereby, 36 references were removed because they were considered duplicates or non-papers. Comparing the files, we 

concluded that, from the 36 removed references, 16 were considered duplicates and 20 were considered non-papers.  

We executed the duplicates detection algorithm on the Complete Base, and, as result, the algorithm indicated 16 

groups of duplicates with a total of 35 references. From the 16 groups, 13 had 2 references each, and the other 3 had 3 

references each. Summarizing, the algorithm indicated 19 duplicates, 3 duplicates more than the manual process, and 

all 16 duplicates manually detected were also indicated by the algorithm. 

The algorithm detected 3 references with the title “Modularity analysis of use case implementations” (Table 5). 

Taking the first reference and comparing the second and the third to it, the second reference has 100% of similarity and 

the third has 76% of similarity to the first. Analyzing the title and the abstracts of the first and of the third references, 

we noticed that the abstract of the third reference has the differences highlighted in Figure 9. For example, the abstract 

of the first reference begins with “A” and the abstract of the second begins with “Component”. 

Table 5: Duplicated References that have the same Title 

# Title Similarity (%)

1 Modularity analysis of use case implementations - 

2 Modularity analysis of use case implementations 100 

3 Modularity analysis of use case implementations 76 
 

 

 

Reference #1 Reference #3 

A component-based decomposition can result in 

implementations having use cases code tangled with other 

concerns and scattered across components. 

Component-based decomposition can result in 

implementations with use cases code tangled and scattered 

across components. 

Figure 9: Differences between Abstracts of References that have the same Titles 

 

All references manually removed were indicated by the algorithm with 100% similarity between the duplicates. 

Table 6 presents the similarity among the references for non-papers indicated by the algorithm. However, these 

references were manually removed because they were considered non-papers, not duplicates. 



CLEI ELECTRONIC JOURNAL, VOLUME 18, NUMBER 2, PAPER 2, AUGUST 2015 

 

14 

Table 6: Duplicated References for Non-papers 

# Title Similarity (%)
1 IEEE Recommended Practice for Powering and Grounding Electronic Equipment - 

2 IEEE Recommended Practice for Powering and Grounding Electronic Equipment - Redline 75 

3 IEEE Recommended Practice for Powering and Grounding Electronic Equipment - Redline 78 

 

Table 7 shows references that have different titles indicated as duplicates. The title of the third reference is 

different from the title of the first and second references: “Towards A Process-Oriented Software Architecture 

Reconstruction Taxonomy” and “Software Architecture Reconstruction: A Process-Oriented Taxonomy”. The manual 

process detected the similarity between the first and the second references, but the third reference was not detected. 

Analyzing why the algorithm indicated that similarity, we notice that first and second references may be an extension 

of the third because they have 19 pages and were published in a journal, in 2009, by two of the authors of the third 

reference, while, the third reference has 12 pages and was published in a conference in 2007. The manual process 

missed this similarity due to differences in the titles. 

Table 7: Duplicated References that have Different Titles 

# Title Similarity (%)
1 Software Architecture Reconstruction: A Process-Oriented Taxonomy - 

2 Software Architecture Reconstruction: A Process-Oriented Taxonomy 100 

3 Towards A Process-Oriented Software Architecture Reconstruction Taxonomy 79 

 

 5.2.2 Strategy to Detect Non-Papers 

To perform the detection of non-papers, we had to perform a search to find common terms that appears in the title of 

the references for non-papers. We built the following search string with the terms that we found. For example, the 

terms “IEEE Standard” and “IEEE Std” commonly appeared in the title of the IEEE Standards, and the terms 

“International” and “Proceedings” commonly appeared in the titles of conference, symposium, and workshop 

proceedings. 

 

(“ieee standard”, “ieee std”, “title pages”, “title page”, “title”, “pages”, “page”, 

“guest editorial”, “booklet”, “career opportunities”, “career”, “opportunities”, 

“draft”, “international”, “chapter”, “annotated”, “bibliography”, “table of contents”, 

“table”, “contents”, “index”, “conclusion”, “schedule”, “tutorial”, “papers”, 

“presented”, “journal”, “abstracts”, “proceedings”, “conference”, “symposium”, 

“workshop”, “annual index”, “proceedings of the”, “book of abstracts”, “book”, 

“copyright notice”, “copyright page”, “copyright”, “notice”, “front matter”, “front 

cover”, “frontmatter”, “frontcover”, “front”, “cover”, “art”, “detailed program”) 

 

As a result in ranking the 632 references of the SLR-1, the algorithm retrieved 40 references because they had, at 

least, one term of the search string. From these 40 ranked references, 17 were non-papers and they were positioned as 

follows: 1 to 10, 13, 26, 27, 29, 32, 33 and 34. As a result in ranking the 165 references of the SLR-2, the algorithm 

retrieved 9 references. From these 9 references, 6 were non-papers and they were positioned on the first 6 positions of 

the rank.   

The 3 following non-papers were not ranked in the SLR-1: “Systems and software engineering – Vocabulary”, “An 

assessment of systems and software engineering scholars and institutions (2003–2007 and 2004–2008)” and “Guide to 

the Software Engineering Body of Knowledge 2004 Version”, and, in the SLR-2, only 1 non-paper was not ranked: 

“21st century processes for acquiring 21st century software intensive systems of systems”. Those 4 references were not 

ranked because they do not have any term of the search string. 
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Table 8 shows the precision for the interpolated values in the 11 standard recall levels of the strategy to rank non-

papers. For example, when 50% of the references are retrieved (recall), the precision is 100%. Our strategy (described 

in Section 4.3) retrieved 85% of the non-papers of SLR-1 and SLR-2. 

Table 8: Non-Papers - Recall versus Precision 

Recall (%) 
Precision (%) 

SLR-1 SLR-2 

0 100.0 100.0 

10 100.0 100.0 

20 100.0 100.0 

30 100.0 100.0 

40 100.0 100.0 

50 100.0 100.0 

60 48.4 85.7 

70 48.4 0 

80 48.4 0 

90 0 0 

100 0 0 

 

 5.2.3 Strategies to Rank References 

Strategy 1 and Strategy 2 retrieved 600 references ranking the 632 references of the SLR-1. Table 10 presents the 

position of each selected reference of the SLR-1. For example, in the Strategy 1, the reference 12 is in position 1, and, 

in the Strategy 2, this reference is in the position 2. We also notice that Strategy 2 positioned the 13 references closer to 

top of the rank. 

Table 9: Position of References of SLR-1 - Strategy 1 and Strategy 2 

Strategy 1 Strategy 2 

Position Reference Position Reference 

1 12 1 3 

2 3 2 12 

6 11 5 2 

11 4 8 4 

16 10 12 11 

22 2 13 10 

27 9 15 9 

28 7 16 7 

51 13 61 6 

56 6 64 13 

64 8 67 8 

106 1 93 5 

113 5 97 1 

 
Figure 10 graphically presents the variation of the references positions regarding the applied strategies. Analyzing 

Figure 10, we can notice different positions for the same reference in the both strategies. For example, Strategy ranked 

the reference 5 in the position 113 whilst the Strategy 2 ranked it in the position 93. That is, reference 5 was better 

positioned by Strategy 2 because its position is closer to the top of the rank (position 1). 
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Figure 10: Variation of Positions of References of SLR-1 – Strategy 1 and Strategy 2 

 

Strategy 1 and Strategy 2 retrieved 126 references from the 165 references of the SLR-2. Table 10 and Figure 11 

present the variation of the SLR-2 references position. For example, in the first position of the Strategy 1 and the 

Strategy 2, we have the references 57 and 52, respectively.  

Table 10: Position of References of SLR-2 - Strategy 1 and Strategy 2 

Strategy 1 Strategy 2 

Position Reference Position Reference 

1 57 1 52 

3 63 3 114 

5 80 5 125 

6 81 6 65 

7 68 7 41 

9 114 9 91 

11 89 14 98 

12 44 18 96 

13 43 20 103 

14 123 21 42 

16 87 22 104 

17 98 23 81 

18 96 26 46 

19 104 27 44 

22 125 28 7 

23 65 30 57 

24 42 31 30 

25 41 32 45 

26 62 34 20 

29 103 38 6 

31 91 39 85 

34 25 42 25 
 

Strategy 1 Strategy 2 

Position Reference Position Reference 

35 46 43 123 

36 52 46 59 

39 117 47 89 

41 102 50 43 

44 45 51 53 

45 93 52 93 

46 30 54 86 

47 85 56 80 

49 53 59 68 

50 20 60 102 

53 86 64 117 

57 7 65 111 

59 6 69 107 

63 111 71 63 

64 37 72 87 

69 116 74 116 

70 59 76 64 

79 107 83 62 

85 64 87 28 

93 70 92 37 

97 28 93 70 

124 1 124 1 
 

 

Observing Figure 11, we can notice that the references 1, 70, and 96 were ranked in the same position by both 

strategies. Conversely, the reference 52 was moved from the position 52 (Strategy 1) to the position 1 (Strategy 2), and 

the reference 63 was moved from the position 3 (Strategy 1) to the position 71 (Strategy 2). 
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Figure 11: Variation of Positions of the References of the SLR-2 – Strategy 1 and Strategy 2 

 

We manually counted the terms of the references positioned in the first and in the last position by both strategies 

applied in both SLRs. Table 11 and Table 12 present the counting of terms of the SLR-1, and Table 13 and Table 14 

present the counting of terms of the SLR-2. For example, in SLR-1/Strategy 1 (Table 11), the term software appears 18 

times in the reference 12 (position 1), and 9 times in the reference 5 (position 113).  

In the counting of terms regarding the Strategy 2 (Table 12 and Table 14), the references were grouped and the 

higher occurrence in each group is highlighted. For example, in SLR-1/Strategy 2 (Table 12), we have 11 groups, and, 

in the group 1, the term software appears 5 times in the reference 52 (position 1) and 3 times in the reference 1 

(position 124). 

Table 11: Count of Terms of the SLR-1 - Strategy 1 

# Terms 
Reference / Position 

12 / 1 5 / 113 
1 software 18 9 

2 application 0 0 

3 system 1 0 

4 program 0 0 

5 product 5 0 

6 software product 2 0 

7 software system 0 0 

8 metric 0 0 

9 metrics 5 2 

10 measure 0 0 

11 measurement 0 0 

12 reference 0 0 

13 value 0 0 

14 values 0 0 

15 reference value 0 0 

16 reference values 0 0 

17 quality 5 3 

18 internal 0 0 

19 internal quality 0 0 

20 feature 0 2 

21 oriented 0 0 

22 feature oriented 0 0 

23 feature-oriented 0 0 
 

# Terms 
Reference / Position 

12 / 1 5 / 113 
24 aspect 0 0 

25 aspect oriented 0 0 

26 aspect-oriented 0 0 

27 line 2 0 

28 family 0 0 

29 product line 2 0 

30 product family 0 0 

31 product-family 0 0 

32 family based 0 0 

33 family-based 0 0 

34 based 0 1 

35 modularization 0 0 

36 modularity 2 0 

37 modularisation 0 0 

38 maintenance 3 0 

39 maintainability 11 0 

40 concern 7 0 

41 crosscutting 11 0 

42 cross-cutting 0 0 

43 cross 0 0 

44 cutting 0 0 

Total 74 17 
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Table 12: Count of Terms of the SLR-1 - Strategy 2 

Group Terms 
Reference / Position 

3 / 1 Higher Occurrence 1 / 97 Higher Occurrence 

1 

software 5 

5 

3 

3 

application 0 0 

system 0 1 

program 0 0 

product 0 0 

software product 0 0 

software system 0 0 

2 

metric 0 

7 

0 

0 
metrics 7 0 

measure 0 0 

measurement 0 0 

3 

reference 0 

1 

0 

0 

value 1 0 

values 1 0 

reference value 0 0 

reference values 0 0 

4 

quality 0 

0 

1 

1 internal 0 0 

internal quality 0 0 

5 

feature 0 

6 

0 

4 
oriented 6 4 

feature oriented 0 0 

feature-oriented 0 0 

6 

aspect 7 

7 

3 

4 
oriented 6 4 

aspect oriented 0 0 

aspect-oriented 6 3 

7 

product 0 

0 

0 

3 

line 0 0 

family 0 0 

product line 0 0 

product family 0 0 

product-family 0 0 

family based 0 0 

family-based 0 0 

based 0 3 

8 

modularization 0 

1 

1 

2 modularity 0 2 

modularisation 1 0 

9 
maintenance 0 

0 
0 

0 
maintainability 0 0 

10 
concern 0 

7 
0 

3 
aspect 7 3 

11 

crosscutting 2 

2 

0 

0 
cross-cutting 0 0 

cross 0 0 

cutting 0 0 

 Total 49  28  
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Table 13: Count of Terms of the SLR-2 - Strategy 1 

# 
 

Terms 
  

Reference / Position 

57 / 1 1 / 124 

1 Bad Smell 0 0 

2 Code Smell 0 0 

3 code anomaly 0 0 

4 variability anomaly 0 0 

5 variability smell 0 0 

6 Bad 0 0 

7 Smell 0 0 

8 Code 5 1 

9 anomaly 0 0 

10 variability 4 0 

11 Software Product Line 0 0 

12 software product lines 1 0 

13 software product-line 0 0 

14 software product-lines 0 0 

15 software product family 0 0 

16 software product families 0 0 

17 software product-family 0 0 

18 software product-families 0 0 

19 software family based 0 0 

20 software family-based 0 0 

21 software variability 0 0 

22 software mass customization 0 0 

23 
software mass customization 
production line 

0 0 
 

# 
 

Terms 
  

Reference / Position 

57 / 1 1 / 124 

24 
software mass customization 

production lines 
0 0 

25 software-intensive system 0 0 

26 software-intensive systems 0 0 

27 software 4 0 

28 product 6 0 

29 line 5 0 

30 lines 1 0 

31 Product-line 0 0 

32 Product-lines 0 0 

33 family 0 0 

34 families 0 0 

35 based 2 0 

36 Family-based 0 0 

37 mass 0 0 

38 customization 0 0 

39 production 0 0 

40 Software-intensive 0 0 

41 intensive 0 0 

42 system 0 0 

43 systems 2 0 

  Total 30 1 
 

Table 14: Count of Terms of the SLR-2 - Strategy 2 

Group Terms 
Reference / Position 

52 / 1 Higher Occurrence 1 / 124 Higher Occurrence 

1 

Bad Smell 0 

12 

0 

1 

Code Smell 0 0 

code anomaly 0 0 

variability anomaly 0 0 

variability smell 0 0 

Bad 0 0 

Smell 0 0 

Code 2 1 

anomaly 0 0 

variability 12 0 

2 

Software Product Line 0 

12 

0 

0 

software product lines 0 0 

software product-line 0 0 

software product-lines 0 0 

software product family 0 0 

software product families 0 0 

software product-family 0 0 

software product-families 0 0 
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Table 14: Count of Terms of the SLR-2 - Strategy 2 (cont.) 

Group Terms 
Reference / Position 

52 / 1 Higher Occurrence 1 / 124 Higher Occurrence 

2 

software family based 0 

 

0 

 

software family-based 0 0 

software variability 1 0 

software mass customization 0 0 

software mass customization production line 0 0 

software mass customization production lines 0 0 

software-intensive system 0 0 

software-intensive systems 0 0 

software 3 0 

product 0 0 

line 0 0 

lines 0 0 

Product-line 0 0 

Product-lines 0 0 

family 0 0 

families 0 0 

based 0 0 

Family-based 0 0 

variability 12 0 

mass 0 0 

customization 0 0 

production 0 0 

Software-intensive 0 0 

intensive 0 0 

system 1 0 

systems 1 0 

 Total 32 
 

1 
 

 
Table 15 and Figure 12 show the recall and precision of the strategies to rank references. For example, in SLR-

1/Strategy 2, when 80% of the selected references are retrieved (recall), the precision is 50%. We can note that Strategy 

2 was equal to or better than Strategy 1, i.e., it ranked the selected references closer to the top of the rank. When 

applied in the SLR-2, Strategy 2 was better than Strategy 1 in the first two recall levels obtaining 100% of precision. 

However, Strategy 1 obtained higher precision in the other recall levels. 

Table 15: Ranking References - Recall versus Precision  

Recall (%) 

Precision (%) 

SLR-1 SLR-2 

Strategy 1 Strategy 2 Strategy 1 Strategy 2 

0 100.0 100.0  73.7  100.0 

10 100.0 100.0  73.7  100.0 

20 50.0 100.0  73.7  66.7 

30 36.4 60.0  73.7  66.7 

40 28.6 50.0  72.0  66.7 

50 28.6 50.0  64.7  53.5 

60 28.6 50.0  63.3  53.5 

70 17.9 50.0  63.3  53.2 

80 17.2 50.0  57.1  53.2 

90 11.5 14.8  50.6  52.0 

100 11.5 13.4  35.5  35.5 
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Figure 12: Recall versus Precision SLR-1 and SLR-2 – Strategy 1 and Strategy 2 

6 Discussion 

In our experimental evaluations, the results of the strategy to detect duplicated references show that it can minimize the 

effort to detect duplicates because it considers similarities in the title or in the abstract of references. To verify the 

similarity, we combined the title and the first 100 characters of the abstract. This was sufficient to detect all duplicates 

that were also manually removed in SLRs and to detect extensions of papers.  

The use of more characters of the abstract increases the algorithm execution time and the results are not better. The 

threshold value (70%) and the use of the 100 first characters of the abstract may be not optimal values because they 

were defined using only one SLR. Despite this, we used them to detect duplicates in SLR-2 and the algorithm detected 

all 29 references manually detected plus 2 duplicated references that have different titles. Hence, the strategy to detect 

duplicated references can be used before the detection of non-papers minimizing the effort to detect them.  

In the strategy to detect non-papers, we used only the title because some references for non-papers do not have 

abstract or keywords. We tested the use of the abstract for ranking and more non-papers were retrieved. However, the 

recall and the precision were worse due to the large number of references that were also retrieved. Despite the good 

results, the search string has to be improved with more or differently terms aiming to retrieve more non-papers, and, at 

the same time, avoiding the retrieve of more references for papers. 

Regarding the strategies to rank references, with the ranking generated by Strategy 1, researchers could find the 

relevant references in the first 113 (17.7%) ranked references of the SLR-1, and, in the first 97 (75.2%) ranked 

references of the SLR-2. Strategy 2 ranked the selected references of SLR-1 in the first 97 (15.3%) positions, while it 

ranked the references of SLR-2 in the first 92 (71.3%) positions.  

When we analyzed the number of common terms between ranked references and the search strings, we noticed 

that, in the SLR-1, for example: i) the reference in the position 1 of Strategy 1 has a relatively small number of terms 

(30%), however it stayed in the first position because it has a total of 74 occurrences of the terms; ii) no more than 73% 

of the groups have the search string terms; iii) 5% of the references do not have any terms of search string; and iv) 13% 

of the references exported by the search engines do not have keyword field. 

The relatively low amount of terms between the search string and the references indicates that 70% of them may 

have interfered negatively in a search result, because irrelevant references may be present in search results. Therefore, 

we can use the proposed strategies to verify if relevant references are closer to the top of the rank in a pilot search. If 

not, we can choose better terms and improve the results. For example, the reference in position 31 (Strategy 2/SLR-2) 

has the term “software anomalies” in its title and this term is not present in the search string. If it was present, perhaps 

that reference would be better ranked. 
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The existence of references that do not have terms of the string in the title, abstract or keywords can happen due to 

how the engines perform the search. The documentation of Scopus and Science Direct engines indicates that, when 

informing an expression in quotes, they do similarity search, i.e., the engines return the same result for the terms "heart-

attack" and "heart attack", for example. However, the use of quotation marks in the IEEExplore search engine indicates 

an exact search, although return the same result for the terms "solid-state" and "solid state".  

These search engines use the technique of stemming, that is, a search for the term “metrics” generates results with 

the term “metric”, inclusive. The IEEExplore performs stemming even among British and American English, but its 

documentation indicates that some technical terms may not be in stemming dictionary. In IEEExplore, this technique is 

only applied if the search is not exact, i.e., if the term is not in quotes. 

Another feature available on these search engines is the ability to specify which fields the researchers want to 

perform the search. In IEEExplore, there is an option called “metadata” that includes, for example: abstract, index 

terms, document title, publication title, and authors. In the SLRs used, the authors performed the searches in 

IEEEXplore using this option, which may have generated 5% of references that do not have the string terms in title, 

abstract, and keywords. 

In the Primary selection stage, after the execution of the search string, the result must be exported to be analyzed 

but some search engines do not provide appropriate mechanisms to this aim. For example, in the ACM Digital Library, 

we can export the references of the search results, but we have to export each reference individually. In IEEExplore, 

Scopus, and Science Direct, we can export sets of references, but in IEEExplore, the results can be exported in blocks 

with a maximum of 100 references (if the results have 1000 references, the export must be performed in 10 steps). On 

the other hand, in the Science Direct and Scopus engines, we can export all references of the search result in a single 

step if the result has no more than 1000 references. 

Additionally to those drawbacks, some references are exported with incomplete data, e.g., abstract and keywords. 

We executed the SLR-1 search string in the ACM Digital Library and selected a reference. The reference data (e.g., 

title, authors, abstract and keywords) were presented in the screen, but when we exported	 the reference, the abstract 

was not exported. The absence of any information can affect the ranking because fewer terms are indexed, which can 

result in a lower ranking. 

Analyzing the strategies evaluation, we noticed an unexpected result in the Strategy 2 results. We observed, in 

SLR-1, that only eight groups have, at least, one term in common with the references. However, we expected, at least, 

one term from each group (11 groups) due to the search string organization. To verify if the Strategy 2 was wrong, we 

executed the following SLR-1 search string part: 

 
(software OR application OR system OR program OR product OR “software product” OR 

“software system”) AND (metric OR metrics OR measure OR measurement) AND (quality OR 

“internal quality”) AND (modularization OR modularisation OR modularity)AND(maintenance 

OR maintainability) AND... 
 

Observing the search string above, we can note 5 groups (terms connected by the OR operator) connected by the 

AND operator, i.e., the result should have at least one term from each group. By analyzing the term count, we noticed 

that references 1 and 3 (Strategy 2) do not meet this restriction. Both references were exported from Science Direct. 

Therefore, we simulated a search on Science Direct using only this piece of string and limiting the search by: i) fields: 

title, abstract and keywords; ii) area: Computer Science; and iii) period: 1990 to 2012. That search engine sorts the 

results by relevance and, in the first position, we had reference 12, as well as in Strategy 1. Performing the count of 

terms per group (Strategy 2), we found that the first three references do not follow the restriction of the search string. 

This indicates a fault in Boolean searching or the usage of a strategy not mentioned in the search engine documentation, 

because if the groups were connected with AND, at least one term from each group should exist in the selected 

references returned by the search engine. This fault may generate results that do not meet the search string increasing 

the effort to export the search results and to select relevant references.  

The selection of relevant references typically involves "random" reading, since the result may not be sorted by 

relevance when the results of different search engines are combined in only one repository. A subsequent ranking of the 
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references using the same terms as the search string or other terms may reduce the effort in Primary Selection, because 

the reading will be guided by the ranking, in which the most relevant search results will be at the top. 

One issue that must be considered is the subjectivity present in the texts, because the context may indicate the 

relevance of the study to a research question, not only the presence of one or more terms and their synonyms. For 

example, in the abstract of a reference from SLR-1, it is mentioned that: i) the aspect-oriented (AOP) promises to 

enhance programming software modularization and providing better separation of concerns; ii) an SLR was performed 

to find empirical studies that presented comparisons between AOP and non-POA approaches; and iii) the studies 

analyzed showed positive or negative effects related to performance, code size, modularity and evolution. Therefore, 

the context indicates the use of measures related to AOP and their use to evaluate software quality, because empirical 

studies were surveyed. 

For example, in SLR-1, reference 1 was selected by subjectivity and was retrieved in Strategy 1 because it has 5 

terms of the search string with a total of 17 occurrences. The reference 5 was also selected by subjectivity and occupies 

position 97 in Strategy 2 with 28 terms of 7 groups. Regarding the SLR-2, reference 1 was positioned in the last 

position by both strategies. Reading its abstract, we noticed the presence of the term “feature-oriented programming”, 

which is associated to Software Product Lines. However, it lacks other terms related to the search string indicating the 

selection by the subjectivity. 

We noticed that the subjectivity affected the Recall and Precision values (Figure 12) because references of this 

type, in general, has a low number of terms, and, therefore, they are not closer to the top of the rank. The low presence 

of the search string terms in the reference 52 (first position - Table 14) of the SLR-2 indicates that the majority of 

references was selected by subjectivity reflecting the low precision. 

7 Conclusion 

A Systematic Literature Review is one of the main techniques for synthesizing relevant work related to a particular 

topic or issue. In the Primary Selection stage, title, abstract, and keywords of each reference returned in the initial 

search should be read to identify relevant studies to answer research questions. The Primary Selection stage demands 

effort of researchers due to increased amount of published work. Aiming to reduce this effort, in this paper, we 

proposed the use of Information Retrieval techniques to detect duplicated references, non-papers, and to rank references 

according to their relevance regarding a search string.  

The strategy to detect duplicates is based on Jaccard Similarity Coefficient and the strategies to rank the references 

are based on Vector Model. We used the Vector Model in a strategy to position non-papers at the top of the rank and in 

another two strategies to rank relevant references at the top of the rank. These two strategies are: i) Strategy 1: uses the 

traditional Vector Model; and ii) Strategy 2: simulates the Boolean expression of the search string. 

The evaluation of these strategies was conducted using two real datasets. The results of the strategy to detect 

duplicates indicate that it can be used in the place of manual detection, because it detected all duplicates that were 

manually detected and, in addition, it detected references for extensions of studies. The results of the strategy for non-

papers show that the strategy can help detecting non-papers, despite it missed some papers due to the search string 

limitation. Both strategies to rank relevant references can be used to reduce the manual effort, because, in the results, 

relevant documents were positioned, for example, between 15% to 20% of the references of the top ranking. The 

strategies do not indicate a percentage of references to be read in advance, but the ranking of references enables reading 

more adherent to the elaborated search string.  

Some limitations of this study include the need to (i) evaluate more datasets to further confirm the results, and (ii) 

consider the subjectivity of the texts analyzed. Still, the study proved to be promising since the goal is to use the 

proposed strategies as an aid in the selection process and not to replace human labor. We implemented the strategies as 

a prototype only to evaluate their applicability and it does not have a graphical interface. In spite of that, the proposed 

strategies are simple to implement and showed relevant results. 

As future work, we intend to implement the strategies in a Web tool and improve the strategies to detect non-

papers and rank relevant references. Finally, it is suggested to evaluate the use of the strategies to analyze the full-text 

of papers aiming to improve the ranking. 
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