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ABSTRACT 
 

SILVEIRA, Eduarda Martiniano de Oliveira. Mappinf forests: A 
mutiltemporal analysis. 2007. 75 p. Dissertação (Mestrado em Manejo 
Ambiental) – Universidade Federal de Lavras, Lavras, MG.1 

 

The North of Minas Gerais, Brazil, characterized by extensive cerrado areas, 
semideciduous and deciduous forest was chosen to validate the hypothesis that 
long time series combined with feature extraction algorithm and image fusion 
can be used to improve classification accuracy. Thus, this study was organized 
in five chapters. The first is a General Introduction. Chapter 02 evaluated the 
seasonal dynamics of this vegetation classes by analyzing time series of NDVI 
and EVI derived from MODIS sensor. On Chapter 03 the potential of the 
discrete wavelet transform in order to extract features to improve classification 
accuracy was tested. The objective of Chapter 04 was to assess the potential of 
using fused images between MODIS and TM images as well as feature 
extraction algorithm combined with image fusion to produce accurate maps. 
Chapter 05 is as General Conclusion. As a conclusion (1) the vegetation indices 
(NDVI and EVI) temporal profiles were efficient to depict the seasonal 
dynamics of vegetation and the best index for mapping was the NDVI; (2) The 
Wavelet decomposition improved land cover classification accuracy when the 
algorithm used in the transformation and the levels were properly chosen; 
(3)The data fusion and feature extraction method performed well in terms of 
overall  accuracies as compared to results obtained by the original time series of 
NDVI. 

 

 

 

 

Key-words: Classification; time series; feature extracion; image fusion. 
 

                                                 
1 Comitê orientador: Luis Marcelo Tavares de Carvalho – UFLA (Orientador); Fausto 

Weimar Acerbi Junior – UFLA (Co-orientador); José Márcio de 
Mello – UFLA; Yosio Edemir Shimabukuro – INPE; Laerte 
Ferreira Guimarães – UFG. 
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RESUMO 

SILVEIRA, Eduarda Martiniano de Oliveira. Mappinf forests: A 
mutiltemporal analysis. 2007. 75 p. Dissertação (Mestrado em Manejo 
Ambiental) – Universidade Federal de Lavras, Lavras, MG.2 

 

O Norte do estado de Minas Gerais, caracterizado por grandes áreas de cerrado, 
floresta estacional semidecidual e decidual foi escolhido para validar a hipótese 
de que séries temporais juntamente com algoritmos de extração de feições e 
fusão de imagens podem ser utilizados para aperfeiçoar a acurácia da 
classificação de imagens. Assim este estudo foi organizado em cinco capítulos. 
O capítulo 01 é uma introdução geral. O capítulo 02 avaliou a dinâmica sazonal 
da vegetação analisando as séries temporais dos índices de vegetação NDVI e 
EVI do sensor MODIS. No capítulo 03 o potencial da transformada em 
ondaletas discreta para extração de feições no aperfeiçoamento da classificação 
foi testado. O objetivo do capítulo 04 foi avaliar o potencial da fusão de imagens 
entre os sensores MODIS e TM, bem como algoritmos de extração de feições 
combinados com fusão de imagens com o intuito de aprimorar a classificação. O 
capítulo 05 é uma conclusão geral. Concluiu-se que (1) as assinaturas temporais 
dos índices de vegetação NDVI e EVI foram eficientes para detectar a dinâmica 
sazonal da vegetação e o melhor índice foi o NDVI; (2) a transformada em 
ondaletas aperfeiçoou a classificação da vegetação quando o algoritmo utilizado 
na transformação e os níveis de decomposição foram adotados corretamente; (3) 
a fusão de imagens e o método de extração de feições obtiveram bons resultados 
em termos de acurácia global quando comparados com resultados obtidos apartir 
das séries temporais de NDVI. 

 

 

Palavras-chave: Classificação; série temporal; extração de feições; fusão de   
imagens. 

                                                 
2 Comitê orientador: Luis Marcelo Tavares de Carvalho – UFLA (Orientador); Fausto 

Weimar Acerbi Junior – UFLA (Co-orientador); José Márcio de 
Mello – UFLA; Yosio Edemir Shimabukuro – INPE; Laerte 
Ferreira Guimarães – UFG. 
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1 GENERAL INTRODUCTION 

 

The mapping of land cover types with similar reflectance behavior is a 

problem when the spectral information is provided by a single remotely sensed 

image. 

However, the spectral behavior of these land cover classes may be 

identified when they are analyzed along the annual cycle, including both the dry 

and the rainy seasons. Thus, long time series combined with feature extraction 

algorithms and image fusion can be used to improve the separation of spectrally 

similar objects and produce accurate maps.  

To validate this hypothesis an area of the State of Minas Gerais, 

characterized by extensive cerrado areas, semideciduous and deciduous forest 

was chosen. The MODIS vegetations indices, covering the rainy and dry season 

of 2003, 2004 and 2005 were analyzed and classified in order to produce 

accurate maps of the study area.  

This study was motivated by problems that start with these questions: 

 

(1) Can MODIS vegetation indices depict vegetation dynamics? 

 

(2) Can feature extractions algorithms improve classification accuracy? 

 
(3) Can image fusion combined with feature extraction algorithm improve 

classification accuracy? 
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To answer these questions this study was organized in five chapters 

listed below: 

 

CHAPTER 01. General Introduction. 

 

CHAPTER 02. The assessment of vegetation seasonal dynamics using 

multitemporal NDVI and EVI images derived from MODIS.  

On this Chapter we evaluated the seasonal dynamics of cerrado, 

deciduous and semideciduous forest in the north of Minas Gerais, Brazil, using 

time series of NDVI and EVI derived from MODIS. They were compared by 

analyzing temporal profiles and image classification results. 

 

CHAPTER 03.  Multiscale feature extraction of MODIS multitemporal 

vegetation index using wavelets. 

On this Chapter the use of NDVI time series and the 1D version of the 

algorithm “à trous” with linear and cubic spline wavelets to improve 

classification accuracy was analyzed. After decomposition, the smoothed 

signatures were used as feature vectors in the classification as well as the 

original time series of NDVI. 

 

CHAPTER 04.  Multisensor image fusion and multiscale feature 

extraction on classification accuracy. 

The objective of this chapter was to assess the potential of using fused 

images between MODIS and TM images as well as feature extraction algorithm 

combined with image fusion to produce accurate maps. 

 

CHAPTER 05. General Conclusions. 
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Abstract: The objectives of this work were to characterize seasonal 

dynamics of cerrado, deciduous and semideciduous forests in the north of Minas 

Gerais, Brazil. Time series of NDVI (Normalized Difference Vegetation Index) 

and EVI (Enhanced Vegetation Index) derived from MODIS sensor, were 

compared by analyzing temporal profiles and image classification results. The 

results showed that: (1) there is an agreement between vegetation indices and the 

monthly precipitation pattern; (2) deciduous forest showed the lowest values and 

the highest variation; (3) cerrado and the semideciduous forest presented higher 

values and lower variation; (4) based on the classification accuracies the best 

vegetation index for mapping the vegetation classes in the study area was the 

NDVI, however both indices might be used to assess the vegetation seasonal 

dynamic; and (5) further research need to be carried out exploring the use of 

feature extractions algorithms to improve classification accuracy of cerrado, 

semideciduous and deciduos forests in Minas Gerais, Brazil. 

Keywords: Remote sensing, time series, vegetation indices. 
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Resumo: O objetivo deste trabalho foi caracterizar a dinâmica sazonal do 

cerrado, floresta estacional semidecidual e decidual no norte do estado de 

Minas Gerais, Brasil. Séries multitemporais dos índices de vegetação NDVI 

(índice de vegetação da diferença normalizada) e EVI (índice de vegetação 

melhorado) derivados do sensor MODIS, foram comparadas analisando o perfil 

temporal e os resultados de classificação das imagens. Os resultados mostraram 

que: (1) Os índices de vegetação estudados refletiram o padrão sazonal das 

fisionomias, diferenciando os períodos chuvosos e os períodos de seca; (2) a 

fisionomia floresta estacional decidual apresentou menores valores dos índices 

e maior variação; (3) as fisionomias cerrado e floresta estacional semidecidual 

apresentaram alto valores dos índices e baixa variação; (4) de acordo com os 

resultados das classificações o melhor índice para o mapeamento das 

fisionomias na área de estudo foi o NDVI, porém ambos podem ser usados para 

avaliar a dinâmica sazonal da vegetação; e (5) estudos precisam ser realizados 

explorando algoritmos de extração de feições para melhorar a acuracidade do 

mapeamento das fisionomias cerrado, floresta decídua e semidecidua na área 

de estudo.  

Palavras chave: Sensoriamento remoto, série multitemporal, índices de 

vegetação. 

 

 



 7 

1 INTRODUCTION 

Maps of the distribution and status of the Earth’s vegetation and land 

cover are critical for parameterization of global climate and ecosystem process 

models as well as characterization of the distribution and status of major land 

surface types for environmental, ecological and natural resource applications at 

global and regional scales (Muchoney et al., 2000). 

The seasonal behavior of vegetation is a fundamental component of 

successful image interpretation (Lillesand & Kiefer, 1987). For land cover 

assessment, the timing of image acquisition can be critical. Knowledge of crop 

calendars and phenology is often a crucial element in vegetation interpretation. 

Since the 1970s, researches have recognized the potential of multitemporal 

satellite observations to provide information about the phenological 

development of natural vegetation and crops (Reed et al., 1994) moreover the 

combination of vegetation indices with multitemporal imagery that captures 

phenology has produced successful vegetation classifications (Sader et al., 

1990).  

Because of the synoptic coverage and repeated temporal sampling that 

satellite observations afford, remotely sensed data possess significant potential 

for monitoring vegetation dynamics (Myneni et al., 1997). Satellite vegetation 

index (VI) data such as the Normalized Difference Vegetation Index (NDVI) are 
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correlated with green leaf area index (LAI), green biomass, and percent green 

vegetation cover (Asrar et al., 1989; Baret & Guyot, 1991).  

The radiometric and geometric properties of the Moderate Resolution 

Imaging Spectroradiometer (MODIS) onboard NASA’s Terra spacecraft, in 

combination with improved atmospheric correction and cloud screening, provide 

a substantially improved basis for studies of this nature (Zhang et al., 2002). The 

MODIS instrument has 36 spectral bands that range from 250 m to 1 km where 

seven spectral bands are specifically designed for land applications (Justice et 

al., 1997).  

The MODIS VI products provide consistent, spatial and temporal 

comparisons of global vegetation conditions which are used to monitor the 

Earth's terrestrial photosynthetic vegetation activity in support of phenologic, 

change detection, and biophysical interpretations. Two VI algorithms were 

produced. One is the NDVI, which is referred to as the continuity index to the 

existing NOAA-AVHRR derived NDVI. The other is an enhanced vegetation 

index (EVI) with improved sensitivity into high biomass regions and improved 

vegetation monitoring through a de-coupling of the canopy background signal 

and a reduction in atmosphere influences. This two VIs complement each other 

in global vegetation studies and improve upon the extraction of canopy 

biophysical parameters (Huete et al., 1997). 
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Thus, this study was motivated by the following research questions: (1) 

Are MODIS vegetation indices (NDVI and EVI) able to depict the seasonal 

dynamics of cerrado, deciduous and semideciduous forest? (2) What is the best 

vegetation index (VI) to map different land cover types in the study area?  

The general objectives of this study were: (1) To characterize the 

seasonal vegetation dynamics captured by NDVI and EVI; (2) To compare the 

performance of NDVI and EVI temporal profiles for image classification. 
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2 MATERIAL AND METHODS 

The study area (Figure 1) is located in the state of Minas Gerais, Brazil 

and is delimited by the coordinates S 14º 47’ 25’’ -  S 15º 53’ 16” and W 43º 52’ 

52’’ - W 45º 6’17’’. The area is cover by three major land cover types: 

deciduous forest, semideciduous forest and cerrado (Brazilian savannas).     

 

Figure 1 – Study area. 

Figure 1 – Área de estudo. 

Figure 2 shows the seasonal patterns in monthly precipitation for the 

year 2003, 2004 and 2005 as well as the historical data for the last 31 years. 
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Figure 2 – Monthly precipitation pattern. 

Figura 2 – Precipitação média mensal. 

MODIS 16-day vegetation indices composite with 250 m of spatial 

resolution from TERRA satellite, were used to derive three years (2003, 2004 

and 2005) NDVI and EVI temporal profiles. The images were resampled to 

Albers Conic Equal Area projection.  

Along with the image data, there exists a map that associates a quality 

assurance number (QA) with each pixel of the image. The QA is a 16 bit coded 

integer. The various groups of this 16 bit long binary code describe different 

properties of the pixel. One can set thresholds or specific values for these 

different groups to check the ‘quality’ of the pixel and then label it either good 

or bad depending upon the application. 
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The quality assessment (QA) was carried out through MODIS metadata 

in order to ensure that the images were generated without errors or artifacts. 

Quality assessment bits from each data indicted data of good quality. 

 The NDVI is a normalized transform of the near infrared (NIR) to red 

reflectance ratio, ρ nir/ ρ red , designed to standardize VI values between –1 

and +1 formulated as: 

�
�

�
�
�

�

+
−=

rednir
rednir

NDVI
ρρ
ρρ

                       (1) 

In spite of the intensive use of the NDVI and its variety of applications, 

several limitations of the index are known. Among these are the sensitivity for 

soil (especially dark and/ or wet) background (Huete et al., 1991), saturation of 

the index values in case of dense and multilayered canopy (Lillesaeter, 1982), 

and sensitivity for atmospheric influence (Holben, 1986) since aerosol increases 

the apparent reflectance in the red band by scattering sunlight directly to the 

sensor and decreases to a lesser degree the reflectance in the NIR by absorption 

of sunlight (Fraser & Kaufman, 1985).  

Liu & Huete (1995) developed a feedback based approach to correct for 

the interactive canopy background and atmospheric influences, incorporating 

both background adjustment and atmospheric resistance concepts. This 

enhanced, soil and atmosphere resistant vegetation index (EVI) was simplified 

to: 
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( )
( )bluerednir

rednir

CCL
EVI

ρρρ
ρρ

21
5.2

+++
−=                    (2) 

Where ρ  is ‘apparent’ (top-of-the-atmosphere) or ‘surface’ directional 

reflectances, L is a canopy background adjustment term, and C1 and C2 weigh 

the use of the blue channel in aerosol correction of the red channel (Huete et al., 

1994). The blue band is sensitive to atmospheric conditions and is often used for 

atmospheric correction. EVI directly adjusts the reflectance in the red bands as a 

function of the reflectance in the blue band (Huete et al., 2002). 

A set of 200 homogeneous pixels  distributed over  the area  were 

randomly selected from each land cover type in order to generate the NDVI and 

EVI temporal profiles and characterize seasonal dynamics of the vegetation. The 

selection was based on field campaigns, as well as on a vegetation map produced 

at the Federal University of Lavras - UFLA (Scolforo & Carvalho, 2006).  

Additionally, the NDVI and EVI multitemporal images were classified 

using a decision tree (DT) algorithm (Figure 3). A DT is defined as a 

classification procedure that recursively partitions a data set into more uniform 

subdivisions based on tests defined at each node in the tree (Quinlan, 1993). A 

DT is composed of a root node, a set of internal nodes and a set of terminal 

nodes.  Each internal node has one parent node and two or more descendant 

nodes.  
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A data set is classified according to the decision surfaces defined by the 

tree, and class labels are assigned to each observation according to the leaf node 

into which the observation falls. Decisions trees share advantages compared 

with traditional probabilistic algorithms because they are strictly nonparametric, 

free from distribution assumptions, able to deal with nonlinear relations, 

insensitive to missing values and capable of handling numerical and categorical 

inputs (Carvalho, 2001). 

The classifier was trained with a set of sampled pixels (1500) distributed 

over seven main land cover types: cerrado, semideciduous and deciduous forest, 

water and others (eucalyptus, cultures and pasture).  

To compare the classified images an accuracy assessment using an 

independent validation set of 1500 pixels was carried out based on the overall 

and per class accuracy as well as on the kappa coefficient. The validation set 

was based on field campaigns. 

Error matrices are very effective representations of map accuracy 

because the individual accuracies of each map category with both the errors of 

inclusion and errors of exclusion (Congalton & Green, 1999). 
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3 RESULTS AND DISCUSSION 

The results showed agreement between the vegetation indices and the 

monthly precipitation pattern. The seasonal behavior of the vegetation, which is 

mainly driven by precipitation, is clearly seen in the NDVI and EVI temporal 

profiles during the three years (Figure 4). 

High NDVI and EVI values, indicative of high photosynthetic activity 

and biomass accumulation were found in the rainy months, while the lowest 

values in the dry period.  

Similar results were found by Espig et al. (2006) using NDVI and EVI 

images for the year 2003 and 2004 working in a semiarid region of Brazil. They 

studied the seasonal variation of six areas and reported that the highest values of 

NDVI and EVI occurred in the months of higher precipitation. 
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Figure 4 – NDVI and EVI temporal profiles for (A) cerrado, (B) deciduous forest and (C) semideciduous forest.  
 
Figura 4 – Perfil temporal dos índices NDVI e EVI para (A) cerrado, (B) floresta estacional decidual, (C) floresta 
estacional semidecidual. 
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Xiao et al. (2006) conducted a regional scale analysis of tropical 

evergreen forests in South America using time series of EVI from MODIS in 

2002 and the results shown a large dynamic range and spatial variations of 

annual maximum EVI The maximum EVI in 2002 typically occurs during the 

late dry season to early wet season. This suggest that leaf phenology in tropical 

evergreen forests is not determined by the seasonality of precipitation. 

Among the vegetation types the deciduous forest showed the lowest VI 

values and the highest variation. This is because more than 50% of the leaves are 

lost during the dry season. These characteristics are consistent and distinct in 

comparison with other land cover types, and may provide valuable information 

that could potentially be used when classifying land cover types. 

Compared to the deciduous forest the cerrado and the semideciduous 

forest presented higher VI values and lower variation. This is because most of 

the species in the cerrado are evergreen or semideciduous. Thus, leaf fall 

proceeds simultaneously with the development of new leaves and the total green 

biomass may decrease during the dry period, but the trees never remain entirely 

leafless.  

According to Ferreira et al. (2004) there is a low overall range in VI 

values among the physiognomies, and this can be readily attributed to the 

narrow radiometric variations associated with the different land cover types. 

Near infrared variation among the physiognomies were low and thus, the EVI, 
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which by design tends to be more sensitive to NIR reflectances (Huete et al., 

1997), yielded lower responses and variations.  

The NDVI showed higher values than the EVI. This occurred because 

the EVI is sensitive to shadows and may be responding to the higher amount of 

shadows in the land cover types. The NDVI, by contrast, tends to be higher with 

shaded backgrounds (Ferreira et al., 2004). 

Considering the classified images, in terms of overall accuracy and 

kappa coefficient the values were 89.9% and 0.86 for maps produced from 

NDVI images (Table 1), and 87.8% and 0.82 for maps produced from EVI 

images (Table 2). Based on these values the best vegetation index for mapping 

the vegetation classes in the study area was obtained using the NDVI images.  

 

Table 1– Accuracy measures for maps produced from NDVI.  

Tabela 1– Medidas de acuracidade da classificação obtida através do NDVI 

Mapped class Cerrado  Semideciduous Deciduous Commission error User accuracy 

Cerrado 90.2 22.0 3.3 9.4% 90.6 % 

Semideciduous 6.6 75.0 0.0 21.0 % 78.9 % 

Deciduous 0.0 0.0 89.6 1.1 % 98.9 % 

Omission error 9.8 % 25.0 % 10.3 %   

Producer accuracy 90.2 % 75.0 % 89.7 %   

Overall accuracy 89.9 %      Kappa coefficient = 0.86     
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Analysing the error matrix 90.2 % of the cerrado class areas have been 

correctly identified as cerrado and 90.6 % of the areas called cerrado on the map 

are actually cerrado on the ground.  

Considering the deciduous class, 89.6 % of this class was correctly 

identified and 98.9% of the areas on the map are deciduous forest on the ground. 

For semideciduous class, 75.0% of this class area has been correctly identified 

and 78.9 % of the areas called semideciduous are actually semideciduous on the 

ground. 

Thus, considering the NDVI time series for classification, the user 

accuracy show higher values than the producer accuracy for all classes. As a 

result the classes areas were more excluded from the category to which they 

actually belong than included in an incorrect category. 

Table 2 – Accuracy measures for maps produced from EVI . 

Tabela 2 – Medidas de acuracidade da classificação obtida através do EVI. 

Mapped class Cerrado  Semideciduous Deciduous Commission error User accuracy 

Cerrado 92.0 12.5 9.7 10.4 % 89.6 % 

Semideciduous 7.8 85.0 0.0 26.1 % 73.9 % 

Deciduous 0.0 0.0 80.0 5.9 % 94.1 % 

Omission error 8.0 % 15.0 % 20.0 %   

Producer accuracy 92.0 % 85.0 % 80.0 %     

Overall accuracy 87.8 %      Kappa coefficient = 0.82     

 
Considering the EVI time series for classification, the user accuracy 

show higher values than the producer accuracy only for the deciduous class. 

Thus considering the cerrado and semideciduous classes, the areas were more 
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included incorrectly than excluded from the classes to witch they belong. The 

inverse occurred with the deciduous class. 

In both classifications, the higher commission error values were 

encountered for semideciduous class. The higher omission error values were 

encountered for semideciduous class for NDVI (25.0%) and deciduous class 

(20.0%) for EVI. 

The classified NDVI and EVI images are shown in Figure 5. Comparing 

the classified images, the shape and spatial location of the classes were well 

defined in both images. The highest misclassification value occurred between 

semideciduous and cerrado class. 

 

Figure 5 – Classified images – (A) NDVI (B) EVI.  

Figura 5 – Imagens classificadas - (A) NDVI (B) EVI.  
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4 CONCLUSIONS 

We evaluated the seasonal dynamics of cerrado, deciduous and 

semideciduous forest in the north of Minas Gerais, Brazil, using time series of 

NDVI and EVI derived from MODIS.   

As a conclusion the vegetation indices temporal profiles were efficient 

to depict the seasonal dynamics of vegetation showing an agreement with the 

monthly precipitation pattern. The best index for mapping cerrado, deciduous 

and semideciduos forest in the study area is the NDVI. However both indices 

might be used to assess the vegetation seasonal dynamic.  

After these promising results, further research need to be carried out 

exploring the use of feature extractions algorithms to improve classification 

accuracy of cerrado, semideciduous and deciduos forests in Minas Gerais, 

Brazil. 
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Abstract: Temporal vegetation signatures generated using the MODIS imagery 

provide information about the phenological development of the vegetation types. 

In this study the use of NDVI time series and feature extraction algorithm to 

improve classification accuracy of cerrado, semideciduous and deciduous forests 

in Minas Gerais, Brazil was analyzed. In order to perform feature extraction the 

temporal signatures were transformed using the 1D version of the algorithm “à 

trous” with linear and cubic spline wavelets. After decomposition, the smoothed 

signatures were used as feature vectors in the classification process as well as 

the NDVI time series. The results demonstrated that wavelet decomposition 

increase the accuracy of the classification when the algorithm in the 

transformation is properly chosen as well as the level of decomposition. 

However, further studies should be done, using a wide variety of wavelets, in 

order to select the most appropriate type for each application and each land 

cover type. 

Key-words: Time series; Vegetation indices; Feature extraction; Wavelets. 
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1 INTRODUCTION 

The MODIS (MODerate resolution Imaging Spectroradiometer) sensor 

has been widely used in areas such as fire detection, water vapor column 

characterization, and burn scar analysis (Wang et al., 2003; Li et al., 2004). 

However, limited work has been done in the field of detailed vegetation 

classification using MODIS data. 

 Because of the synoptic coverage and repeated temporal sampling that 

satellites observation afford, remotely sensed data has significant potential for 

mapping and monitoring vegetation dynamics at regional to global scales 

(Mynemi et al., 1997). Additionally, MODIS provide frequent revisits, typically 

once every other day, and this can be the key for some studies.  

Different types of vegetation have different temporal growth patterns. 

This will affect the characteristic shape of their NDVI (Normalized Difference 

Vegetation Index) temporal signatures. This can then be used to extract features 

that best discriminate different land cover types as well as to train a classifier 

(Bruce et al., 2006). 

Since 1807, Fourier analysis has been the major technique used to 

represent signals in the frequency domain. Nevertheless, many of the signals 

analyzed do not have an appropriate representation using the Fourier Transform. 

This flaw representation occurred, mainly, because Fourier Transform does not 

provide good frequency localization in the time domain. The appropriate 
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localization is achieved by Wavelet Transform and this characteristic has 

brought good results.  

 Recently, Bruce et al. (2006) described the use of MODIS time series 

data for the detection of specific tropical invasive species vegetation types 

focusing on feature extraction methods. They concluded that the wavelet based 

feature extraction is significantly outperformed to improve classification 

accuracy. 

 Thus, this study was motivated by the following research question: 

1. Can wavelet based feature extraction improve the classification accuracy in 

the study area? 

The general objectives of this study were:  

 (1) To study the potential of the discrete wavelet transform in order to extract 

features to improve classification; (2) To investigate this method in order to 

separate different land cover types; (3) To compare the performance of feature 

extraction method to traditional methods;  
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2. METHODS 

2.1 Study area and MODIS data 

The study area (Figure 1) is located in the state of Minas Gerais, Brazil 

and is delimited by the coordinates S 14º 47’ 25.62’’ - S 15º 53’ 16.44” and W 

43º 52’ 52.21’’ - W 45º 6’17.95’’. The area is covered by three major land cover 

types: deciduous forest, semideciduous forest and cerrado (Brazilian savannas).     

 

FIGURA 1: Study area. 

MODerate resolution Imaging Spectroradiometer (MODIS) 16-day 

vegetation indices composite with 250 m of spatial resolution from TERRA 
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satellite, were used to derive three years (2003, 2004 and 2005) NDVI temporal 

profile.  

The radiometric and geometric properties of MODIS sensor onboard 

NASA’s Terra spacecraft, in combination with improved atmospheric correction 

and cloud screening, provide a substantially improved basis for monitoring 

vegetation dynamics (Zhang et al., 2002). The MODIS sensor has 36 spectral 

bands extending from the visible to the thermal infrared wavelengths, where 

seven bands are specifically designed for land applications with spatial 

resolutions ranging from 250 m to 1 km (Justice et al., 1997).  

The spatial resolution of MODIS imagery varies depending on the type 

of data product. The product number 13 (MOD 13) is a land product that 

provides two gridded vegetation indices, normalized difference vegetation index 

(NDVI) and enhanced vegetation index (EVI). These indices give an estimate of 

the amount of vegetation on a ground pixel with spatial resolution of 250m by 

250m.  

The theoretical basis for empirical based vegetation indices is derived 

from examination of typical spectral reflectance signatures of leaves. The 

reflected energy in the visible is very low as a result of high absorption by 

photosynthetically active pigments with maximum sensitivity in the blue (470 

nm) and red (670 nm) wavelengths. Nearly all of the near-infrared radiation is 

scattered (reflected and transmitted) with very little absorption, in a manner 
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dependent upon the structural properties of a canopy (LAI, leaf angle 

distribution, leaf morphology).  

As a result, the contrast between red and near-infrared responses is a 

sensitive measure of vegetation amount, with maximum red - NIR differences 

occurring over a full canopy and minimal contrast over targets with little or no 

vegetation. For low and medium amounts of vegetation, the contrast is a result 

of both red and NIR changes, while at higher amounts of vegetation, only the 

NIR contributes to increasing contrasts as the red band becomes saturated due to 

chlorophyll absorption. (Huete et al., 1997). 

Along with the image data, there exists a map that associates a quality 

assurance number (QA) with each pixel of the image. The QA is a 16 bit coded 

integer. The various groups of this 16 bit long binary code describe different 

properties of the pixel. One can set thresholds or specific values for these 

different groups to check the ‘quality’ of the pixel and then label it either good 

or bad depending upon the application. 

The images were reprojected to Albers Conic Equal Area projection and 

the quality assessment (QA) was carried out through MODIS metadata in order 

to ensure that the images were generated without errors or artifacts.  

The NDVI is a normalized transform of the NIR to red reflectance ratio, 

ρ nir/ ρ red , designed to standardize VI values between –1 and +1 formulated 

as: 
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As a ratio, the NDVI has the advantage of minimizing certain types of 

band correlated noise (positively-correlated) and influences attributed to 

variations in direct/diffuse irradiance, clouds and cloud shadows, sun and view 

angles, topography, and atmospheric attenuation. Rationing can also reduce, to a 

certain extent, calibration and instrument-related errors (Huete et al., 1997). 

 

2.2 Feature extraction 

In order to perform feature extraction the temporal signatures were 

transformed using the 1D version of the algorithm “à trous” with linear and 

cubic spline wavelets (Holschneider et al., 1989; Carvalho, 2001).  

Wavelet analysis mathematically approximates a data series by a linear 

combination of functions (wavelets) with specific scales (resolutions) and 

locations (positions along the data series). This transform provides a robust 

methodology for analysis in different scales. The wavelet transform allows for 

the decomposition of a signal using a series of elemental functions called 

wavelets and scaling function, which are created by scaling and translating a 

base function, known as the mother wavelet: 
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where “s” governs the scaling and “u” the translation. The wavelet 
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 Another point of view on the wavelet transform is by means of filter 

banks. In signal processing, a digital filter is a time invariant operator, which 

acts on an input vector, producing a transformed vector by means of 

mathematical convolution. Low pass and high pass filters are both considered in 

the wavelet transform, and their complementary use provides signal analysis and 

synthesis (Starck et al., 1998). The lowpass filter reduces the high frequency 

components keeping only the low frequency components of the signal and the 

highpass filter removes the low frequency components.  

 Part of the success of the wavelet transform is due to the existence of 

fast algorithms. A wavelet transform for discrete data might be provided by a 

procedure knows as the “à trous” algorithm (Hoslchneider et al., 1989; Shensa, 

1992). The “à trous” algorithm represents a discrete approach to the classical 

continuous wavelet transform.  
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 Using an algorithm as the “à trous” the decomposed signal has the same 

number of samples as the original signal and thus this wavelet transform is a 

redundant one. A redundant representation, which avoids signal decimation, has 

the same number of wavelet coefficients at all levels. When a dominant or 

significant feature appears at a given level, it should appear at successive levels. 

In contrast, a non-significant feature (i.e. noise) does not appear in next levels. It 

thus appears that a dominant feature is tied to its presence or duplication at 

successive levels.  

Then, it is possible to follow the evolution of the wavelet decomposition 

from level to level, the algorithm produces a single wavelet coefficient plan at 

each level of decomposition and the wavelet coefficients are computed for each 

location allowing a better detection of a dominant feature and the algorithm is 

easily implemented (Chibani & Houacine, 2003). 

The input signal is analyzed by using the coefficients of a properly 

chosen lowpass filter (Chui, 1992). The first approximation ( ){ }kc0 (at scale 0) 

which is the scalar product of the function ( )xf   with the scaling function 

( )xφ (corresponding to an “a trous” lowpass filter H): 

( ) ( ) ( )kxxfkc −= φ,0                               (4) 

 The approximation of ( )xf  at scale 1≥i is then performed by the direct 

“à trous” decomposition: 
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 The signal difference ( ){ } ( ){ }kckc i 10 +−  contains the information 

between two scales and is the discrete set associated with the wavelet transform 

corresponding to ( )xφ . The associated wavelet is therefore ( )xψ : 
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 The wavelet coefficients ( )kwi  are computed by: 

( ) ( ) ( )kckckw iii −= −1                            (7) 

 The algorithm allowing one to rebuild the original signal is evident: the 

smoothed array 
pnc is added to all the differences iw . 

Figure 2 shows an example of a decomposition using the “à trous” 

algorithm. 
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FIGURE 2. Decomposition using the“a trous” algorithm. Average NDVI 

temporal signatures for (A) cerrado, (B) deciduous forest and (C) semideciduous 

forest. 
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After decomposition, the smoothed signatures were used as feature 

vectors in the classification process.  Seven feature sets were input to 

classification: 

SET 01 – NDVI – Time series of NDVI –36 monthly NDVI images 

derived from MODIS sensor acquired yearly from 2003 till 2005. 

SET 02 – LSO - First scale linear spline smoothed NDVI time series 

- 36 months of NDVI yearly from 2003 till 2005 were transformed using the “à 

trous” algorithm using a linear spline filter with one decomposition level. 

SET 03 – LSW - Second scale linear spline smoothed NDVI time 

series - 36 months of NDVI yearly from 2003 till 2005 were transformed using 

the “à trous” algorithm using a linear spline filter with two decomposition levels. 

SET 04 – LST - Third scale linear spline smoothed NDVI time series 

- 36 months of NDVI yearly from 2003 till 2005 were transformed using the “à 

trous” algorithm using a linear spline filter with three decomposition levels. 

SET 05 – CSO - First scale cubic spline smoothed NDVI time series - 

36 months of NDVI yearly from 2003 till 2005 were transformed using the “à 

trous” algorithm using a cubic spline filter with one decomposition level. 

SET 06 – CSW - Second scale cubic spline smoothed NDVI time 

series - 36 months of NDVI yearly from 2003 till 2005 were transformed using 

the “à trous” algorithm using a cubic spline filter with two decomposition levels. 
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SET 07 – CST - Third scale cubic spline smoothed NDVI time series 

- 36 months of NDVI yearly from 2003 till 2005 were transformed using the “à 

trous” algorithm using a cubic spline filter with three decomposition levels. 

 

2.3 Classification procedure 

 The seven features sets were classified using a decision tree (DT) 

algorithm. A DT is defined as a classification procedure that recursively 

partitions a data set into more uniform subdivisions based on tests defined at 

each node in the tree. A DT is composed of a root node, a set of internal nodes 

and a set of terminal nodes. Each internal node in a DT has one parent node and 

two or more descendant nodes. A data set is classified according to the decision 

surfaces defined by the tree, and class labels are assigned to each observation 

according to the leaf node into which the observation falls (Quinlan, 1993).  

Decision trees share advantages compared with traditional probabilistic 

algorithms because they are strictly nonparametric, free from distribution 

assumptions, able to deal with nonlinear relations, insensitive to missing values 

and capable of handling numerical and categorical inputs (Carvalho, 2001).    

The classifier was trained with a set of sampled pixels (1500) distributed 

over seven main land cover types: cerrado, semideciduous and deciduous forest, 

water, eucalyptus, cultures and pasture. The last three classes were combined to 

generate the class others. The selection was based on field campaigns, as well as 
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on a vegetation map produced at the Federal University of Lavras (UFLA) 

(Scolforo & Carvalho, 2006).  

 To compare the classified images an accuracy assessment using an 

independent validation set of 1500 pixels was carried out based on the overall 

and per class accuracy as well as on the kappa coefficient. Error matrices are 

very effective representations of map accuracy because the individual accuracies 

of each map category is estimated from both the errors of comission and errors 

of omission (Congalton & Green, 1999). 
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3. RESULTS AND DISCUSSION 

Considering the classification results, in terms of overall accuracy all the 

classified images presented values higher than 80% (Table 01). In terms of 

overall accuracy and kappa coefficient, the wavelet transform implemented with 

a linear spline filter and two decomposition levels (LSW) was the best technique 

(90.42%) as input for decision tree classification. The worst classification 

accuracy (81.04%) was provided by the wavelet transform implemented with a 

cubic spline filter and two decomposition levels (CSW). 

Table 1 shows the classes accuracy measures for each technique tested. 

TABLE 1. Overall accuracy and kappa coefficient 

Techniques Overall accuracy  kappa coefficient 
NDVI  89.93% 0.86 
LSO 86.32% 0.80 
LSW 90.42% 0.87 
LST 85.07% 0.79 
CSO 81.60% 0.74 
CSW 81.04% 0.73 
CST 81.18% 0.74 

 
In terms of per class accuracy, considering the LSO feature set, the user 

accuracy showed higher values than the producer accuracy for deciduous 

(96.54%) and semideciduous (94.44%) classes (Table 02). The cerrado class 

obtained better results considering the producer accuracy (91.33%). 
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Considering the LSW, LST, CSO and CSW feature sets the user 

accuracy showed higher values than the producer accuracy for all classes. 

Considering the CST feature set, the user accuracy showed higher values than 

the producer accuracy for cerrado and semideciduous classes. For the deciduous 

class, the inverse pattern was verified. 

Considering all these classifications, the lower comission error for the 

cerrado class was obtained with LSW feature set (6.2%). For the deciduous class 

it was obtained with the original NDVI time series (1.1%). For the 

semideciduous class, the best classification result considering the commission 

error was obtained when using LSO feature set (5.56%).  

 Considering the omission errors, the better results were obtained when 

using the LSO feature set (8.67%), the original NDVI time series (10.33%) and 

LSW (11.5%), for cerrado, deciduous and semidecidous classes, respectively. 

 Similar results were found by Bruce et al. (2006) using the wavelet 

based features to increase the overall classification accuracy from 95% to 100% 

for two types of vegetation. 

 As for the choice of the best feature vector to classifier, decisions of 

what should be considered the best or worst in terms of accuracy depends on the 

objective of the mapping project as well as the classes. On this study the 

producer and user accuracy was chosen as indicator.  
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As a result, considering all the classified images but focusing only on 

the cerrado class the highest producer accuracy value (91.33%) was obtained 

using the LSO, however, considering the user accuracy, the best feature vector 

to classify this vegetation type was the LSW (93.80%). Therefore, a compromise 

choice to classify the cerrado areas would be to use the LSW feature set, since it 

presents the highest user accuracy and the second highest producer accuracy. 

The best feature vector to classify the semideciduous class considering 

the producer accuracy was the LSW (88.50%) Considering the user accuracy, 

the best feature vector was the LSO (94.44%). Again, the compromise choice 

would be to select the LSW feature set, since it presents the highest producer 

accuracy and the second highest user accuracy. 

The best feature vector to classify the deciduous class considering the 

producer and user accuracy was the original NDVI time series (89.67% and 

98.90%).  
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Table 02 shows an overview of the results for each technique tested and 

each vegetation type.  

 

TABLE 2. Accuracy measures for maps produced  

Cerrado LSO LSW LST CSO CSW CST NDVI  

Comission Errors (%) 13.43 6.20 9.30 14.55 12.81 11.63 9.38 
Omission Errors (%) 8.67 9.17 15.50 15.83 17.17 24.00 9.83 
Producer's accuracy (%) 91.33 90.83 84.50 84.17 82.83 76.00 90.17 

User's accuracy (%) 86.67 93.80 90.70 85.45 87.19 88.37 90.62 
Deciduous LSO LSW LST CSO CSW CST NDVI  

Comission Errors (%) 3.46 5.47 15.60 3.91 4.47 26.47 1.10 
Omission Errors (%) 16.33 13.67 17.00 26.33 21.67 16.67 10.33 
Producer's accuracy (%) 83.67 86.33 83.00 73.67 78.33 83.33 89.67 

User's accuracy (%) 96.54 94.53 84.40 96.09 95.53 73.53 98.90 
Semideciduous LSO LSW LST CSO CSW CST NDVI  

Comission Errors (%) 5.56 7.81 18.60 31.28 25.00 17.74 21.05 
Omission Errors (%) 40.50 11.50 23.50 28.50 35.50 23.50 25.00 
Producer's accuracy (%) 59.50 88.50 76.50 61.50 64.50 76.50 75.00 

User's accuracy (%) 94.44 92.19 81.40 68.72 75.00 82.26 78.95 
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4. CONCLUSIONS 

 This study demonstrated the importance of wavelet transform to extract 

features of temporal signatures to produce accurate maps. It was demonstrated 

that wavelet decomposition improves land cover classification accuracy when 

the algorithm used in the transformation and the levels are properly chosen. 

Thus, the choice of the best feature vector to classify is dependent on the 

objectives of the mapping projected. 

 However, further studies should be done, using a wide variety of 

wavelets, in order to select the most appropriate type for each application and 

each vegetation type on the study area. 
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ABSTRACT 

SILVEIRA, Eduarda Martiniano de Oliveira. Mappinf forests: a mutiltemporal 
analysis. 2007. 150 p. Dissertação (Mestrado em Manejo Ambiental) – 
Universidade Federal de Lavras, Lavras, MG.3 

 
 

The objectives of this paper were: (1) To assess the potential of using fused 
images between MODIS and TM images to improve classification accuracy; (2) 
To assess the potential of using fused images combined with feature extraction 
algorithms in order to improve image classification. In the multisensor image 
process, the source image consist of one NDVI obtained by Landsat TM image 
acquired on July, 2005 and a 36 monthly NDVI images derived from MODIS 
sensor acquired yearly from 2003 till 2005. The NDVI Landsat TM was 
decomposed by the pyramidal in Fourier space (PFS) wavelet transform. In 
order to perform feature extraction the temporal signatures were transformed 
using the 1D version of the algorithm “à trous” with linear and cubic spline 
wavelets. After decomposition, the smoothed signatures were used as feature 
vectors in the classification process.  The Time series of NDVI as well as fused 
images and smoothed NDVI fused images were classified using a decision tree 
(DT) algorithm. The proposed data fusion and feature extraction method 
performed well in terms of overall accuracies as compared to results obtained by 
the original time series of NDVI. 
 

 

 

 

 

 

 

 
                                                 
3 Comitê orientador: Luis Marcelo Tavares de Carvalho – UFLA (Orientador); Fausto 

Weimar Acerbi Junior – UFLA (Co-orientador). 
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1 INTRODUCTION 

Many approaches have been developed to combine complementary 

information coming from input images in order to create a new image where the 

informative content is more suitable for human perception. The new composite 

image is produced according to a process called image fusion (Chibani & 

Houacine, 2003). 

 The wavelet decomposition has become an attractive tool for fusing 

multisensor images. Usually, the input images are decomposed with an 

orthogonal wavelet in order to extract features, which are combined through an 

appropriate fusion rule. The fused image is then reconstructed by applying the 

inverse wavelet transform. 

 Some examples include the fusion of Landsat TM (MS) and SPOT (P) 

images, SPOT (XS) and SPOT (P) images, and IKONOS (MS) and IKONOS (P) 

images (Núñes et al., 1999; Aiazzi et al., 2002; Ranchin et al., 2003).  

More recently, pyramid schemes based on the wavelet transform have 

led many authors (Chapman & Orr, 1995; Wilson et al., 1995; Acerbi-Junior et 

al., 2006) to define more complicated fusion rules in order to improve the 

quality of the fused image. 

For example, Acerbi-Junior et al (2004) demonstrated the efficiency of 

the pyramidal wavelet transform in Fourier space (PFS) wavelet transform to 

perform the fusion between MODIS (MODerate resolution Imaging 
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Spectroradiometer) and TM (Thematic Mapper) images. The Landsat TM 

imagery (30m) offers a good spatial resolution whereas MODIS imagery (250m) 

is a good means to capture most of the vegetation dynamics due to its high 

temporal resolution. 

Since the 1970s, researches have recognized the potential of 

multitemporal satellite observations to provide information about the 

phenological development of natural vegetation and crops (Reed et al., 1994) 

moreover the combination of vegetation indices with multitemporal imagery that 

captures phenology has produced successful vegetation classifications (Sader et 

al., 1990).  

According to Bruce et al (2006), different types of vegetation have 

different temporal growth patterns and this will affect the characteristic shape of 

their NDVI (Normalized Difference Vegetation Index) temporal signatures. This 

can then be used to extract features that best discriminate different land cover 

types as well as to train a classifier. 

 Thus, long time series combined with feature extractions algorithms and 

image fusion can be used to improve the separation of spectrally similar objects 

and produce accurate maps.  

The objectives of this paper were; (1) To assess the potential of using 

fused images between MODIS and TM images to improve classification 
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accuracy; (2) To assess the potential of using fused images combined with 

feature extraction algorithms in order to improve image classification.  
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2 METHODS 

2.1 Study area 

The study area (Figure 1) is located in the state of Minas Gerais, Brazil 

and is delimited by the coordinates S 14º 47’ 25.62’’ - S 15º 53’ 16.44” and W 

43º 52’ 52.21’’ - W 45º 6’17.95’’. The area is cover by three major land cover 

types: deciduous forest, semideciduous forest and cerrado (Brazilian savannas).     

 

 
Figure 1 – Study area. 
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2.2 Data  

MODerate resolution Imaging Spectroradiometer (MODIS) 16-day 

vegetation indices composite with 250 m of spatial resolution from TERRA 

satellite, were used to derive three years (2003, 2004 and 2005) NDVI time 

series. 

In the multisensor image fusion process, the source image consisted of 

one NDVI obtained from Landsat TM image acquired on July 2005 and a 36 

monthly NDVI images derived from MODIS sensor acquired yearly from 

january 2003 till december 2005. 

The radiometric and geometric properties of MODIS sensor onboard 

NASA’s Terra spacecraft, in combination with improved atmospheric correction 

and cloud screening, provide a substantially improved basis for monitoring 

vegetation dynamics (Zhang et al., 2002). The MODIS sensor has 36 spectral 

bands extending from the visible to the thermal infrared wavelengths, where 

seven bands are specifically designed for land applications with spatial 

resolutions ranging from 250 m to 1 km (Justice et al., 1997).  

The spatial resolution of MODIS imagery varies depending on the type 

of data product. The product number 13 (MOD 13) is a land product that 

provides two gridded vegetation indices, normalized difference vegetation index 

(NDVI) and enhanced vegetation index (EVI). These indices give an estimated 
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of the amount of vegetation on a ground pixel with spatial resolution of 250m by 

250m.  

The theoretical basis for empirical based vegetation indices is derived 

from examination of typical spectral reflectance signatures of leaves. The 

reflected energy in the visible is very low as a result of high absorption by 

photosynthetically active pigments with maximum sensitivity in the blue (470 

nm) and red (670 nm) wavelengths. Nearly all of the near-infrared radiation is 

scattered (reflected and transmitted) with very little absorption, in a manner 

dependent upon the structural properties of a canopy (LAI, leaf angle 

distribution, leaf morphology).  

As a result, the contrast between red and near-infrared responses is a 

sensitive measure of vegetation amount, with maximum red - NIR differences 

occurring over a full canopy and minimal contrast over targets with little or no 

vegetation. For low and medium amounts of vegetation, the contrast is a result 

of both red and NIR changes, while at higher amounts of vegetation, only the 

NIR contributes to increasing contrasts as the red band becomes saturated due to 

chlorophyll absorption. (Huete et al., 1997). 

Along with the image data, there exists a map that was used in order to 

associate a quality assurance number (QA) to each pixel of the image. The QA is 

a 16 bit coded integer. The various groups of this 16 bit long binary code 

describe different properties of the pixel. One can set thresholds or specific 
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values for these different groups to check the ‘quality’ of the pixel and then label 

it either good or bad depending upon the application. 

 

2.3 Fusion procedure 

To perform the fusion procedure the NDVI time series were resampled 

from 250 to 240 m and matched to the histogram of the Landsat TM NDVI 

image using linear scaling (Pohl, 1996). The aim was to normalize the mean and 

standard deviation between the images.  

In order to match the spatial resolution of the NDVI MODIS images, the 

NDVI Landsat TM image was decomposed three levels using the pyramidal 

wavelet transform in Fourier space (PFS).  

The PFS is a wavelet transform with a scaling function in Fourier space. 

Working in Fourier space, one can define a wavelet function from scaling 

functions at two different scales which is very appropriate for capturing useful 

scale related properties during the decomposition process (essentially 

relationships between neighboring pixels, as expressed by the frequency 

information in the Fourier transform (Starck et al, 1998; Acerbi Junior et al., 

2006). PFS was selected based on its good performance obtained in a study 

which demonstrated the efficiency of this transform to perform fusion between 

MODIS and TM images (Acerbi-Junior et al., 2006).   
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The approximation images were replaced by the corresponding MODIS 

image and finally the process was inverted in order to reconstruct the fused 

images. 

 

2.4 Quality assessment  

 Quality assessment of the fused images is important when they are used 

for classification. Classification process depends on the spectral information and 

any error in the synthesis of the spectral content of a fused image will result in 

classification errors (Meenakshisundaram & Couloigner, 2004).  

The quality assessment approaches, the basic premise is to establish 

some measures to assess image quality. The quality assessment was based on 

qualitative and quantitative measures and they were associated to two types of 

criteria. The first type of criteria is related to the quality of the spectral 

information of a fused image. The second type of criteria is based on the quality 

of the spatial information of a fused image. It is strongly associated to the 

preservation of the spatial features throughout the fusion process. 

 The qualitative measure was derived from the visual judgment, 

comparing each fused image, according to their spatial similarity with the 

original NDVI TM image. Quantitative measures were applied to quantify the 

spectral differences between each fused image and the NDVI MODIS image.  

First the bias of the mean and variance per data were calculated based on the 
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mean and variance difference between the MODIS images and the fused images. 

Second, the root mean square error (RMSE) between the MODIS image and 

each fused image was calculated using a pixel based comparison. 

 

2.5 Feature extraction  

In order to perform feature extraction the temporal signatures were 

transformed using the 1D version of the algorithm “à trous” with linear and 

cubic spline wavelets (Holschneider et al., 1989; Carvalho, 2001).  

Wavelet analysis mathematically approximates a data series by a linear 

combination of functions (wavelets) with specific scales (resolutions) and 

locations (positions along the data series). This transform provides a robust 

methodology for analysis in different scales. The wavelet transform allows for 

the decomposition of a signal using a series of elemental functions called 

wavelets and scaling function, which are created by scaling and translating a 

base function, known as the mother wavelet. 

Another point of view on the wavelet transform is by means of filter 

banks. In signal processing, a digital filter is a time invariant operator, which 

acts on an input vector, producing a transformed vector by means of 

mathematical convolution. Low pass and high pass filter are both considered 

into the wavelet transform, and their complementary use provides signal analysis 

and synthesis (Starck et al., 1998). The lowpass filter reduces the high frequency 
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components keeping only the low frequency components of the signal and the 

highpass filter removes the low frequency components.  

 Part of the success of the wavelet transform is due to the existence of 

fast algorithms. A wavelet transform for discrete data might be provided by the 

“à trous” algorithm (Hoslchneider et al., 1989; Shensa, 1992). The “à trous” 

algorithm represents a discrete and redundant approach to the classical 

continuous wavelet transform.  

 A redundant representation, which avoids image decimation, has the 

same number of wavelet coefficients at all levels. When a dominant or 

significant feature appears at a given level, it should appear at successive levels. 

In contrast, a non-significant feature, i.e. noise, does not appear in the next 

levels. It thus appears that a dominant feature is tied to its presence or 

duplication at successive levels.  

Then, it is possible to follow the evolution of the wavelet decomposition 

from level to level, the algorithm produces a single wavelet coefficient plan at 

each level of decomposition and the wavelet coefficients are computed for each 

location allowing a better detection of a dominant feature and the algorithm is 

easily implemented (Chibani & Houacine, 2003). 

After decomposition, the smoothed signatures were used as feature 

vectors in the classification process.  Seven feature sets were input to 

classification: 
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SET 01 – Original Time series of NDVI – 36 monthly NDVI images 

derived from MODIS sensor. 

SET 02 – Time series of NDVI fused images – 36 monthly NDVI 

images derived from the fused images. 

SET 03 – FLSO - First scale linear spline smoothed NDVI fused 

images time series - 36 months of NDVI derived from the fused images were 

transformed using the “à trous” algorithm using a linear spline filter with one 

decomposition level. 

SET 04 – FLSW - Second scale linear spline smoothed NDVI fused 

images time series - 36 months of NDVI derived from the fused images were 

transformed using the “à trous” algorithm using a linear spline filter with two 

decomposition levels. 

SET 05 – FLST - Third scale linear spline smoothed NDVI fused 

images time series - 36 months of NDVI derived from the fused images were 

transformed using the “à trous” algorithm using a linear spline filter with three 

decomposition levels. 

SET 06 – FCSO - First scale cubic spline smoothed NDVI fused 

images time series - 36 months of NDVI yearly from 2003 till 2005 were 

transformed using the “à trous” algorithm using a cubic spline filter with one 

decomposition level. 
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SET 07 – FCSW - Second scale cubic spline smoothed NDVI fused 

images time series - 36 months of NDVI derived from the fused images were 

transformed using the “à trous” algorithm using a cubic spline filter with two 

decomposition levels. 

SET 08 – FCST - Third scale cubic spline smoothed NDVI fused 

images time series - 36 months of NDVI derived from the fused images were 

transformed using the “à trous” algorithm using a cubic spline filter with three 

decomposition levels. 

 

2.6 Classification procedure 

The Time series of NDVI as well as fused images and smoothed NDVI 

fused images were classified using a decision tree (DT) algorithm. A DT is 

defined as a classification procedure that recursively partitions a data set into 

more uniform subdivisions based on tests defined at each node in the tree 

(Quinlan, 1993). A DT is composed of a root node, a set of internal nodes and a 

set of terminal nodes. Each internal node has one parent node and two or more 

descendant nodes. A data set is classified according to the decision surfaces 

defined by the tree, and class labels are assigned to each observation according 

to the leaf node into which the observation falls. Decisions trees share 

advantages compared with traditional probabilistic algorithms because they are 

strictly nonparametric, free from distribution assumptions, able to deal with 



 61 

nonlinear relations, insensitive to missing values and capable of handling 

numerical and categorical inputs (Carvalho, 2001).    

The classifier was trained with a set of sampled pixels distributed over 

seven main land cover types: cerrado, semideciduous and deciduous forest, 

water and others (eucalyptus, cultures and pasture). To evaluate the classified 

images an accuracy assessment was carried out based on the overall and per 

class accuracy as well as on the kappa coefficient. Error matrices are very 

effective representations of map accuracy because the individual accuracies of 

each map category with both the errors of inclusion and errors of exclusion 

(Congalton &Green, 1999). 
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3 RESULTS AND DISCUSSION 

3.1 Quality assessment 

The visual judgment between the TM image and fused image have 

shown that the size, shape and location of the spatial features were considered 

unchanged and the spectral content was considered to be similar to the MODIS 

image. Small spatial structures were not visible on the MODIS image but they 

were visible on the fused image, which means that small vegetation patches that 

were not detected due to MODIS spatial resolution can now be assessed using 

the fused images.  

The results calculated by using the mean, standard deviation and the root 

mean square error (RMSE) as a quantitative measure (Table 01) comply with the 

results obtained from de visual judgment. These measures were selected in order 

to evaluate the similar spectral information and the spatial information since 

they show the similarity at pixel level between the MODIS image and the fused 

images.  

 The mean values for all fused images are identical to the mean values of 

the original MODIS images, which is expected since the wavelet coefficients 

have mean values around zero. The standard deviation values are measures of 

the quantity of spectral information added or lost during a fusion process. For all 

fused images the standard deviation values are similar to the standard deviation 

values of the MODIS original images, which demonstrates the good 
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performance of the fusion algorithm. The RMSE is another measure of similarity 

among the fused and the MODIS images, since all images presented values close 

to zero. 

 Based on these quantitative measures as well as on the visual judgment, 

one can say that the fused images are of good quality and can, therefore, be used 

for mapping and monitoring the vegetation dynamics. 
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Table 1. Statistcs of the fused images. 

Mean Standard deviation Mean Standard deviation Mean Standard deviation 2003 

Fusão MODIS Fusão MODIS 

RMSE 2004 

Fusão MODIS Fusão MODIS 

RMSE 2005 

Fusão MODIS Fusão MODIS 

RMSE 

                  

Jan 0.781214 0.781214 0.096306 0.094456 0.062751 Jan 0.758471 0.758471 0.118036 0.122016 0.087178 Jan 0.742355 0.742355 0.108854 0.104724 0.067794 

Feb 0.779549 0.779549 0.102091 0.09923 0.065381 Feb 0.771181 0.771181 0.136808 0.133972 0.087803 Feb 0.740529 0.740529 0.157716 0.157816 0.107929 

Mar 0.754012 0.754012 0.106167 0.103562 0.068942 Mar 0.781832 0.781832 0.10797 0.104775 0.068971 Mar 0.780843 0.780843 0.104785 0.100723 0.064807 

Apr 0.721803 0.721803 0.091469 0.087761 0.057409 Apr 0.775631 0.775631 0.098172 0.094559 0.061756 Apr 0.741399 0.741399 0.100348 0.095733 0.061761 

May 0.682263 0.682263 0.103278 0.097643 0.062809 May 0.704811 0.704811 0.115884 0.107944 0.067725 May 0.678149 0.678149 0.116217 0.107855 0.067420 

Jun 0.558148 0.558148 0.126918 0.115479 0.069533 Jun 0.631169 0.631169 0.140202 0.127331 0.076279 Jun 0.609677 0.609677 0.125334 0.11187 0.070383 

Jul 0.528947 0.528947 0.130422 0.119008 0.071946 Jul 0.57984 0.57984 0.148682 0.134426 0.079729 Jul 0.740529 0.740529 0.157716 0.119611 0.070776 

Aug  0.435768 0.435768 0.116133 0.10637 0.065069 Aug  0.491478 0.491478 0.139093 0.124739 0.072709 Aug  0.464598 0.464598 0.131014 0.117551 0.069002 

Sep 0.447261 0.458461 0.151868 0.13615 0.063003 Sep 0.458339 0.458339 0.138137 0.124211 0.073089 Sep 0.477426 0.477426 0.133948 0.120305 0.070176 

Oct  0.421778 0.421778 0.11396 0.10405 0.071506 Oct  0.458371 0.458371 0.151967 0.13628 0.079198 Oct  0.443056 0.443056 0.127286 0.115338 0.068506 

Nov 0.511257 0.511257 0.111966 0.106014 0.066831 Nov 0.616991 0.616991 0.151365 0.139831 0.085207 Nov 0.640998 0.640998 0.1502051 0.143551 0.091215 

Dec 0.685198 0.685198 0.142295 0.134042 0.084812 Dec 0.769383 0.769383 0.105783 0.100864 0.064466 Dec 0.749316 0.749316 0.140648 0.132721 0.082654 
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3.2 Classification procedure 

 In terms of overall accuracy all the classified images presented values 

higher than 80%. The highest overall accuracy value (95.41%) was reached 

using the second scale cubic spline smothed NDVI fused images as feature 

vector. 

Decisions of what should be considered the best or worst in terms of 

accuracy depends on the objective of the mapping projected as well as the 

classes. Considering all the classified images but focusing only on the cerrado 

class the highest producer accuracy value (99.33%) was obtained using the third 

scale linear spline smothed NDVI time series. however. considering the user 

accuracy. the best feature vector to classify this vegetation type was the second 

scale cubic spline smothed NDVI fused images (100%) as well as time series of 

NDVI fused images (100%).v 

The best feature vector to classify the deciduous class considering the 

producer accuracy was the second scale cubic spline smothed NDVI fused 

images (99.67%). however considering the user accuracy. the best feature vector 

was the first scale cubic spline smothed NDVI fused images (100%) or the first 

scale linear cubic smothed NDVI fused images (100%). 

The best feature vector to classify the semideciduous class considering 

the producer accuracy was the first scale linear spline smothed NDVI fused 

images (86%) as well as the second scale cubic spline smothed NDVI fused 
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images (86%). Considering the user accuracy the best feature vector was the 

second scale cubic spline smothed NDVI fused images (87.31%). 

Table 2 shows the classes accuracy measures for all the classified 

images. 
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Table 2. Accuracy measures. 

Error Matrix Cerrado Deciduous Semideciduous 
Feature Vector 

Overral Accuracy Kappa Coefficent Producer Accuracy User Accuracy Producer Accuracy User Accuracy Producer Accuracy User Accuracy 

Time series of NDVI 89.93 0.86 90.17 90.62 89.67 98.90 75.00 78.95 

Time series of NDVI fused images 94.09 0.91 97.50 100.00 95.67 97.29 82.00 85.42 

First scale linear spline smothed NDVI fused images 83.95 0.77 98.17 79.17 94.00 100.00 86.00 86.87 

Second scale linear spline smothed NDVI fused images 89.30 0.85 96.67 99.83 98.67 82.91 71.50 81.25 

Third scale linear spline smothed NDVI time series 92.50 0.89 99.33 97.07 98.67 83.08 81.00 83.94 

First scale linear cubic smothed NDVI fused images 92.48 0.90 96.67 99.49 98.33 100.00 72.50 84.80 

Second scale cubic spline smothed NDVI fused images 95.41 0.93 97.67 100.00 99.67 98.03 86.00 87.31 

Third scale cubic spline smothed NDVI fused images 90.90 0.87 93.50 93.39 93.67 89.78 81.00 81.82 
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4 CONCLUSIONS 

This study evaluated the potential of using fused images between 

MODIS and TM images to improve classification accuracy and the  potential of 

using fused images combined with feature extraction algorithms in order to 

improve image classification.  

The assessment of classification accuracies was useful to reveal the 

potential of fused images for mapping and improve classification accuracy of 

cerrado. semideciduous and deciduos forests in Minas Gerais. Brazil. 

The proposed data fusion and feature extraction method performed well 

in terms of overall accuracies when compared to results obtained by the original 

time series of NDVI. 
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1 GENERAL CONCLUSION 
 

This work was based on the following hypothesis: The spectral behavior 

of the land cover classes may be identified when they are analyzed along the 

annual cycle. including both the dry and the rainy seasons. Thus. long time 

series combined with feature extractions algorithms and image fusion can be 

used to improve the separation of spectrally similar objects and produce accurate 

maps.  

 To validate this hypothesis the following research questions were done: 

(1)Can MODIS vegetation indices depict vegetation dynamics? (Chapter 02) 

(2)Can feature extractions algorithms improve classification accuracy? 

(Chapter 03) 

(3)Can image fusion combined with feature extraction algorithm improve 

classification accuracy? (Chapter 04) 

 

Responding these questions we can concluded that:  

 (1) The vegetation indices (NDVI and EVI) temporal profiles were 

efficient to depict the seasonal dynamics of vegetation and the best index for 

mapping was the NDVI;  

(2) The wavelet decomposition improved land cover classification 

accuracy when the algorithm used in the transformation and the levels were 

properly chosen;  

(3) The data fusion and feature extraction method performed well in 

terms of overall accuracy as well as in terms of classes compared to results 

obtained by the original time series of NDVI. 
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According to all feature vectors used in the classification process we can 

conclude that:  

(1) The best feature vector to classify the cerrado class considering the 

producer accuracy is the third scale linear spline smothed NDVI time 

series (99.33%). however considering the user accuracy. the best feature 

vector is time series of NDVI fused images (100%) or second scale 

cubic spline smothed NDVI fused images (100%). 

 

(2) The best feature vector to classify the deciduous class considering the 

producer accuracy is the second scale cubic spline smothed NDVI fused 

images (99.67%). however considering the user accuracy. the best 

feature vector is the first scale cubic spline smothed NDVI fused images 

(100%) or the first scale linear cubic smothed NDVI fused images 

(100%). 

 

(3) The best feature vector to classify the semideciduous class considering 

the producer accuracy is the Second scale linear spline smothed NDVI 

time series (88.5%). however considering the user accuracy. the best 

feature vector is the first scale linear spline smothed NDVI time series 

(94.44%). 

 

According to these results is clearly seen that each technique is more appropriate 

to classify each vegetation type and depends to the accuracy measure that is 

chosen. Table 1 shows the classes accuracy measures. 
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Table 1. Accuracy measures. 
 

Error Matrix Cerrado Deciduous Semideciduous 
Feature Vector 

Overral Accuracy Kappa Coefficent Producer Accuracy User Accuracy Producer Accuracy User Accuracy Producer Accuracy User Accuracy 

Time series of NDVI 89.93 0.86 90.17 90.62 89.67 98.90 75.00 78.95 

Time series of EVI 87.77 0.82 92.00 89.61 80.00 94.12 85.00 73.91 

First scale linear spline smothed NDVI time series 86.32 0.80 91.33 86.67 83.67 96.54 59.50 94.44 

Second scale linear spline smothed NDVI time series 90.42 0.87 90.83 93.80 86.33 94.53 88.50 92.19 

Third scale linear spline smothed NDVI time series 85.07 0.79 84.5 90.70 83.00 84.40 76.50 81.40 

First scale cubic spline smothed NDVI time series 81.60 0.74 84.17 85.45 73.67 96.09 61.50 68.72 

Second scale cubic spline smothed NDVI time series 81.04 0.73 82.83 87.19 78.33 95.53 64.50 75.00 

Third scale cubic spline smothed NDVI time series 81.18 0.74 76.00 88.37 83.33 73.53 76.50 82.26 

Time series of NDVI fused images 94.09 0.91 97.50 100.00 95.67 97.29 82.00 85.42 

First scale linear spline smothed NDVI fused images 83.95 0.77 98.17 79.17 94.00 100.00 86.00 86.87 

Second scale linear spline smothed NDVI fused images 89.30 0.85 96.67 99.83 98.67 82.91 71.50 81.25 

Third scale linear spline smothed NDVI time series 92.50 0.89 99.33 97.07 98.67 83.08 81.00 83.94 

First scale linear cubic smothed NDVI fused images 92.48 0.90 96.67 99.49 98.33 100.00 72.50 84.80 

Second scale cubic spline smothed NDVI fused images 95.41 0.93 97.67 100.00 99.67 98.03 86.00 87.31 

Third scale cubic spline smothed NDVI fused images 90.90 0.87 93.50 93.39 93.67 89.78 81.00 81.82 

 
 


