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An Eulerian Immersed Boundary 
Method for Flow Simulations over 
Stationary and Moving Rigid Bodies 
The fluid flow over bodies with complex geometry has been the subject of research of many 
scientists and widely explored experimentally and numerically. The present study proposes 
an Eulerian Immersed Boundary Method for flows simulations over stationary or moving 
rigid bodies. The proposed method allows the use of Cartesians Meshes. Here, two-
dimensional simulations of fluid flow over stationary and oscillating circular cylinders were 
used for verification and validation. Four different cases were explored: the flow over a 
stationary cylinder, the flow over a cylinder oscillating in the flow direction, the flow over a 
cylinder oscillating in the normal flow direction, and a cylinder with angular oscillation. The 
time integration was carried out by a classical 4th order Runge-Kutta scheme, with a time 
step of the same order of distance between two consecutive points in x direction. High-order 
compact finite difference schemes were used to calculate spatial derivatives. The drag and 
lift coefficients, the lock-in phenomenon and vorticity contour plots were used for the 
verification and validation of the proposed method. The extension of the current method 
allowing the study of a body with different geometry and three-dimensional simulations is 
straightforward. The results obtained show a good agreement with both numerical and 
experimental results, encouraging the use of the proposed method. 
Keywords: Immersed Boundary Method, lock-in phenomenon, high order finite difference 
schemes 
 

Introduction1

The Computational Fluid Dynamics (CFD) research area 
increases every day. The main reason is the development in the 
processing and storage capacities of the computers. However, the 
main studies in this area are restricted to simple geometries. The 
numerical studies of flow over bodies with complex geometries, 
stationary or not, require a mesh and numerical code that is able to 
reproduce the physics of the flow. Normally the type of meshes 
adopted coincides with the boundaries of the body. An alternative 
method is the use of approximations where the boundaries of the 
body do not need to coincide with the computational mesh, allowing 
the use of a Cartesian grid. The great challenge of these methods is 
the use of approximations that assure both accuracy and numerical 
efficiency. 
       One of the most cited techniques that have adopted the idea of 
Cartesian grid for the simulation of flows over bodies with complex 
geometries is the Immersed Boundary Method (IBM). This method 
was introduced by Peskin in 1972. His research concerns an 
incompressible flow in a region with immersed bodies which moved 
according to the flow and the forces acting on them. The great 
advantage in his method is that the Navier-Stokes equations are 
solved in Cartesian grids. In his study the elastic bodies are modeled 
by a force added to the Navier-Stokes equations as a source term 
and this force is calculated according to the body configuration. To 
link the body with the flow, since the mesh points do not need to 
coincide with the body points, a function analogous to delta function 
is introduced. The mathematical fundamentals of the IBM can be 
found in Peskin (2002). 
       Goldstein et al. (1993) developed a different way to calculate 
the force field generated by the immersed body, suggesting an 
iterative control with two constants. In their approximation one can 
verify that the method works as a harmonic damped oscillator, with 
one constant for the spring and another for the viscous damper. The 
main difference between their method and the method proposed by 
Peskin (1972, 1977) is that the former was developed to solve 
problems with rigid bodies, while the latter can work with elastic 
bodies as well. 
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Saiki and Biringen (1996) used the method proposed by 

Goldstein et al. (1993) combined with a 4th order code. Their test 
case was a flow over either a stationary or a moving cylinder. 
According to the authors, the use of the finite difference method 
suppressed the numerical oscillations caused by the forcing term 
found by Goldstein et al. (1993), who used a spectral method. Their 
numerical simulations were carried out for Reynolds numbers 
ranging from 25 to 400. Their numerical results suggest that when 
the Reynolds number is high, the forcing term should be imposed at 
all internal points of the body, instead of only at the boundaries. 
Their results were compared with other experimental numerical 
results, showing a good agreement. 

Mohd-Yusof (1997) proposes an Immersed Boundary Method 
that allows the study of flows over complex geometry bodies using 
pseudo-spectral methods. An advantage is that it is possible to join a 
high order of accuracy, due the pseudo-spectral apply, with the study 
of flows over complex geometry bodies. Another advantage is that the 
proposed scheme does not need any ad-hoc constant to be set. 
      Linnick (1999) used the Immersed Boundary Method for 
transitional flows simulations. His objective was to investigate 
active flow control using actuators. The actuators were modeled 
using Immersed Boundary Methods. The vorticity-velocity 
formulation was used and the method was verified by simulations of 
flow over a square and a circular cylinder, flow over a cavity and a 
boundary layer flow with a distributed roughness at the wall. 
      Lai and Peskin (2000) present an Immersed Boundary Method 
with 2nd order of accuracy. The method was tested with a flow over 
a cylinder of circular section. The influence of numerical viscosity 
on the results was analyzed by comparing the results with the first-
order code Peskin (1972, 1977). A question that may arise when 
using their method with different Reynolds numbers concerns how 
the scheme performs. In other words, it is important to verify 
whether the numerical method interferes in the physics, especially 
for high Reynolds number flows. Their results show that with the 
2nd order method, the physics is more accurately resolved and it is 
possible to obtain more stable solutions. 
        Balaras (2003) presented an Immersed Boundary Method for 
Large Eddy Simulation (LES) technique. Three test cases were 
analyzed and the results obtained were compared with analytical 
solutions and the results obtained by other numerical simulations. 
He shows that the method can reproduce the physics efficiently. 
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        Linnick and Fasel (2003) used a special treatment of the 
derivatives in the fluid/body interface in their Immersed Boundary 
Method. The spatial derivatives were calculated using 4th order 
compact finite difference schemes. Their results assured that the 4th 
order truncation error was maintained in their studied cases. 

 Lima e Silva et al. (2003) developed an Immersed Boundary 
Method and presented results of a flow over a circular cylinder. In 
their method the force field calculation is performed using the 
Navier-Stokes equations applied to Lagrangian points and then 
distributed over an Eulerian grid. The advantage of their method is 
that the force field calculation is carried out without the need of ad-
hoc constants. 

An interesting phenomenon may occur analyzing flows around 
bodies. When a flow over a blunt body becomes unsteady, a vortex 
shedding can be observed. If the body oscillates at given frequency 
and amplitude, the flow can be influenced by this oscillation. As a 
consequence of the induced vortex shedding resonance, the body 
oscillations can reach sufficient amplitudes such that both body and 
wake reach the same frequency oscillation values. This is called 
lock-in phenomenon, discovered over three hundred years ago by 
Christian Huygens (Burrowes, 2005). The vortex lock-in 
phenomenon is also referred to as vortex lock-on, phase locking, 
mode locking, and wake capture. The presence of certain sound 
fields was also found to cause vortex lock-in. This phenomenon will 
be used for verification and validation of the present method. 
Therefore, a short review of this phenomenon is given below. 
       Griffin and Ramberg (1976) studied experimentally the wake of 
a cylinder vibrating in line with an incident steady flow. All the 
experiments reported were performed at Reynolds number Re = 
190. In their study some bounds for the lock-in regime within wind-
tunnel measurements were obtained. The shedding frequency of the 
stationary cylinder was measured and the cylinder was then 
oscillated at various frequencies and amplitudes. At each frequency, 
the amplitude of oscillation was increased until the vortex-shedding 
frequency had become synchronized with the cylinder motion. The 
lock-in range for the in-line vibrations extended from about 120% to 
nearly 250% of the Strouhal frequency. 
       Choi et al. (2002) investigated the effects of a flow over a 
cylinder with angular oscillation. The simulations were performed at 
Reynolds number Re = 100. It was shown that the forcing-frequency 
range of lock-in became wider as the rotational speed increased. 
Their study also shows that the lowest values of the mean drag and 
the amplitude of the lift fluctuations occurred close to the lock-in 
region. It was also observed that the amount of drag reductions was 
strongly dependent on the Reynolds number. 
         The main objective of this work is to present a new technique 
to calculate the forcing terms added at the governing equations in 
the Immersed Boundary Method. Numerical Simulations of fluid 
flow over circular cylinder were used as test cases, and the lock-in 
phenomenon was also verified. This paper is divided as follows: 
Formulation and Numerical Method are presented at the next 
section, followed by Results and Discussion, where the simulations 
results are discussed and compared with other experimental and 
numerical results from. Finally the Conclusions are presented.   

Nomenclature 

Re = Reynolds Number of the air flow, dimensionless 
u  = velocity component in the streamwise direction x 
v   = velocity component in the normal direction y 
t  = time 
p  = pressure 

      x  = spatial coordinate in streamwise direction 
       = spatial coordinate in normal direction y
    F x  = forcing term in the streamwise direction x 

    Fy  = forcing term in the normal direction y 
    Cd  = drag coefficient 
    Cl  = lift coefficient 
    F  = oscillation frequence 
    A   = oscillation amplitude 
    rt  = relaxation term 
     f    = ramp function 
Greek Symbols 
     ω = vorticity 
     δ  = variable value 
     α   = maximum rotation angle 
Subscripts 
     l     lift  
     d   drag  
     x   streamwise direction 
     y   normal direction 
    0   begin of domain 
    max   end of domain 

Formulation and Numerical Method 

In the present study, the governing equations are the 
incompressible unsteady Navier-Stokes equations with constant 
density and viscosity. They consist of the momentum equations 
given by: 
 

 
                                                                                                          (1) 
 
 
                                                                                                          (2) 
                                                                                                                                    
 
and the continuity equation given by: 
 
 
                                                                                                          (3) 
   
                                                                                                          
                        
where u and v are the velocity components in the streamwise x and 
in the normal direction y, respectively, p is the pressure, Fx and Fy 
are the forcing terms used by the Immersed Boundary Technique 
and the Laplacian term is given by: 
 
 
                                                                                                          (4) 
                                          
                                                                                                       
where Re is the Reynolds Number defined by: 

 
                                                                                                          (5) 
   
 
where U∞ is the reference velocity, D is the cylinder length diameter 
and ν is the kinematic viscosity. 
      The vorticity is here defined as the negative curl of velocity 
vector. Taking the curl of the momentum equations, the vorticity 
transport equation can be obtained by: 
 
   
       (6) 

 
 
Taking the definition of vorticity and the continuity equation, it 

is possible to obtain the Poisson equation for v velocity component: 
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     (7) 
 

        
       All variables are dimensionless quantities. They are related to 
the dimensional variables by: 
 
                                                                                 

 
                                                                                                  (8)

                                                                                                                                                                                      
 
 
 
       The dimensionless frequency adopted in the cylinder oscillation 
cases is: 

 
                                                                                                        (9) 
   
                                                                                                       
where fe is the cylinder oscillation frequency and fo is the natural 
vortex shedding frequency. 

Figure 1 shows the computational domain. The boundary 
conditions are: at the inflow boundary (x = x0), the velocity and 
vorticity components are specified; at the outflow boundary (x = 
xmax), the second derivative of the velocity and vorticity components 
in the streamwise direction is set to zero and, at the upper and lower 
boundaries, the derivative of v in the y direction is set to zero. The 
number of points adopted in all simulations was 641 and 497 in the 
x and y directions, respectively. The distance between two 
consecutive points was dx = dy = 0.03, and the time step was dt = 
0.006. The cylinder has a radius of R = 0.5 and the cylinder center 
position (initial center position in the cases of cylinder with 
oscillating) is shown in Fig. 1. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

Figure 1. Computational domain. 

         
Three damping zones are used in the simulations to force the 

disturbances to gradually decay to zero. The basic idea is to multiply 
the vorticity components by a ramp function f after each step of the 
integration scheme. This technique has been proved by Kloker et al. 
(1993) to be very efficient in avoiding reflections that could arise 

from the boundaries when simulating unsteady flows. Using this 
technique, the vorticity component between x1and x2 is: 2 2

2 2 .zu v
x y x

ω∂∂ ∂
+ = −

∂ ∂ ∂
          
                                                                                                        (10) 
   

*( , , ) ( , , ),z zx

where ωz
*(x,y,t) is the disturbance vorticity component that arises 

from the time integration scheme and f is a ramp function that 
ranges smoothly from 1 to 0. The implemented function, in the x 
direction is:  
 
                                                                                                        (11) 

y t f x y tω=

5 4 3( ) 1 6 15 10

where Є = (i-i1)/ (i2-i1) for i1 ≤ i ≤ i2 corresponds to positions x1 and 
x2 in the streamwise direction, respectively. Between i1 and i2 there 
are 50 points and between i2 and imax 40 points. In the normal 
direction the same idea is adopted in the buffer domain regions. 

The spatial derivatives are calculated using high order compact 
finite difference schemes given by Souza et al. (2005). The v-
Poisson is solved using a Full Approximation Scheme (FAS) 
multigrid with a V-cycle working with 4 grids (Stuben and 
Trottenberg, 1981). 

The forcing terms are calculated using: 
 
 
                                                                                                      (12) 
   
                                                                                                 
where δ(x,y) is a function that goes from δ(x,y) = 0 outside the 
immersed boundary to δ(x,y) = 1 at the boundary and inside the 
immersed body, using a Gaussian function. Furthermore, rt is the 
relaxation term, which has a value of rt = -Re, and ucil and vcil are 
the body velocity component in the streamwise and normal 
directions, respectively. If the body is stationary these values are set 
to zero. 
      The time integration is performed using a classical fourth-order 
Runge-Kutta scheme, and the numerical procedure works as 
described below. For each step of the Runge-Kutta scheme the 
following instructions are necessary: 

 
1. Compute the spatial derivatives of the vorticity transport 

equation. 
2. Calculate the immersed boundary forces Fx and Fy. 
3. Calculate the rotational of the immersed boundary force. 
4. Integrate the vorticity transport equation over one step of the 

scheme using the values obtained in steps 1 and 3. 
5. Calculate v from the Poisson equation. 
6. Calculate u from de continuity equation. 
 
This scheme is repeated until a stable or a time periodic solution 

has been reached. 
The next section shows the results obtained for flow simulations 

over stationary and oscillating cylinders using the numerical code 
described here. It should be highlighted that, in all simulations, the 
time step adopted was of the same order of the distance between two 
consecutive points in x direction (i.e. the CFL number adopted was 
CFL = 0.2). 

Results and discussion 

       In the present section, the results of numerical simulations of a 
flow over a stationary and an oscillating circular cylinder for low 
Reynolds numbers are shown. Four set ups were verified: flow over 
a stationary cylinder, flow over a cylinder oscillating in the same 
direction of the flow, flow over a cylinder oscillating in the normal 
flow direction, and flow over an angular oscillating cylinder.  
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Stationary cylinder 
 
The results of the simulations of flow over a stationary circular 

cylinder were compared with the numerical results by Peskin (2000) 
and Choi et al. (2007). The simulations were performed for Re = 
100 and a comparison is given in Table 1. The drag and lift 
coefficients Cd and Cl are shown in Fig. 2. The results given by this 
study show some differences when compared with the results by 
Choi et al. (2007), but are in good agreement with results given by 
Lai and Peskin (2000). 

Another simulation with Re = 200 was performed in order to 
compare the results with the ones by Liu et al. (1998). The drag and 
lift coefficients are shown in Fig. 3. Values of Cd = 1.39 and Cl = 
0.63 were obtained, and are in good agreement with the ones by Liu 
et al. (1998), which were between 1.17 and 1.58 for Cd, and between 
0.50 and 0.69 for Cl. 

 
 

 
 
 

 
 

 

 

 

 

 

Figure 2. Cl and Cd for stationary cylinder with Re = 100. 

 
 
 

Table 1. Cd and Cl for stationary cylinder and Re = 100. 

 Cd Cl
Lai and Peskin (2000) 1.4473 0.3299 

Choi et al. (2007) 1.351 0.315 
Present Results 1.44 0.31 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Cd and Cl for stationary cylinder and Re = 200. 

 
 

Cylinder oscillating in the flow direction 
 
In order to verify the implemented code with cylinder oscillations 

in the flow direction, initially, two simulations were performed: one 
with an oscillating cylinder and another with a stationary cylinder and 
an oscillating inflow velocity. The oscillation amplitude for the 
cylinder was A = 0.20, the frequency was F = 0.9 and the Reynolds 
number for these simulations was Re = 185. The vorticity contours 
obtained with each simulation at a given time are shown in Fig. 4. It 
can be seen that the vorticity contours in both cases are analogous. 

In order to compare the results obtained with the proposed 
method with other numerical results, some simulations with the 
same parameters used by Al-Mdallal et al. (2007) were performed. 
These simulations were carried out with an oscillation amplitude of 
A = 0.10 and Reynolds number Re = 200. Three different 
frequencies were tested: F = 0.55, F = 2.20 and F = 2.80. Figures 5 
to 7 show the comparison of the lift coefficient Cl for each case, 
respectively. In all cases, the results are in agreement with the 
results by Al-Mdallal et al. (2007). 

Other numerical simulations were carried out with the same 
parameters adopted in the experiment by Griffin and Ramberg 
(1976). The oscillation amplitude was A = 0.20 and the Reynolds 
number used was Re = 190. 

  

Figure 4. Vorticity contour for flow over a cylinder oscillating in the flow 
direction (left) and oscillatory inflow over a stationary cylinder (right).  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Cl for the cylinder oscillating in the flow direction with A = 0.10, F = 
0.55 and Re = 200. Results given by Al-Mdallal et al. (2007) (top) and present 
results (bottom). 

 
Four oscillation frequency values were tested, namely: F = 

0.50, F = 1.50, F = 2.00 and F = 3.00. In the next figures, the x 
position of the cylinder is the same. Figure 8 shows the vorticity 
contours for frequency value of 0.50. The vorticity field is very 
similar to the one of the flow over a stationary cylinder. However, 
as the frequency oscillation increases, an increase in the number of 
vortices is observed. This increase can be observed in Fig. 9, 
which shows the resulting vortex shedding with cylinder 
oscillation with frequency of F = 1.50. 
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When the cylinder oscillates with F = 2.00, a couple of vortices 
with the same sign is observed, as shown in Fig. 10. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Cl for the cylinder oscillating in the flow direction with A = 0.10, F = 
2.20 and Re = 200. Results given by Al-Mdallal et al. (2007) (top) and present 
results (bottom). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 7. Cl for the cylinder oscillating in the flow direction with A = 0.10, F = 
2.80 and Re = 200. Results given by Al-Mdallal et al. (2007) (top) and present 
results (bottom). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8. Vorticity contours for the cylinder oscillating in the flow 
direction with A = 0.20, F = 0.50 and Re = 190. 

 
  

 
 
 
 

 
 

 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
Figure 9. Vorticity contours for the cylinder oscillating in the flow 
direction with A = 0.20, F = 1.50 and Re = 190. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 

 
Figure 10. Vorticity contours for the cylinder oscillating in the flow 
direction with A = 0.20, F = 2.00 and Re = 190. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 11. Vorticity contours for the cylinder oscillating in the flow 
direction with A = 0.20, F = 3.00 and Re = 190. 

 
For frequency oscillation F = 3.00, a complex vortex shedding 

can be observed, as shown by vorticity contours in Fig. 11. Some 
small vortices appear at the top and lower parts of the cylinder. 

These vortices have the same signal on each side, and the pairing 
phenomenon occurs, forming bigger vortices. According to Griffin 
and Ramberg (1976), the lock-in phenomenon occurs at frequency 
values between 120% and 250% of the natural vortex shedding 
frequency, approximately. The results given by the Immersed 
Boundary Method were in good agreement with this observation. 
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It was possible to capture the lock-in phenomenon in cases with 
F = 1.50 and F = 2.00. 

For F = 0.50 and F = 3.00, the lock-in phenomenon does not 
occur, and the streamwise is composed of five vortices. In Fig. 11, 
five vortices were considered, instead of eight, as the vortices with 
the same signal are coalescent. 

Cylinder oscillating in the normal flow direction 

The results given by the simulations of flow over a cylinder 
oscillating in the normal flow direction were compared with the 
numerical results given by Nobari and Naderan (2006). The 
oscillation frequencies tested were F = 0.60 and F = 1.05, with 
amplitude oscillation A = 0.20 and A = 0.40. The Reynolds number 
was Re = 100. 
       The curves of drag and lift coefficients when the cylinder 
oscillates with frequency F = 0.60 and amplitude A = 0.20 are 
shown in Fig. 12. The lock-in phenomenon does not occur in this 
case, as observed by Nobari and Naderan (2006). According to 
them, if the lock-in phenomenon does not occur, there is an 
intermittent vortex shedding due to the double-frequency influence.  
       Figure 13 shows the vortex shedding for A = 0.20 and F = 
0.60. Figure 14 shows the drag and lift coefficients for A = 0.20 
and F = 1.05. The vortex shedding can be observed in Fig. 15. For 
these values, the lock-in phenomenon occurs, forming a regular 
vortex shedding.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure12. Cd and Cl for the cylinder oscillating in the normal flow direction 
with A = 0.20, F = 0.60 and Re = 100. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 13. Vorticity contours for the cylinder oscillating in the normal flow 
direction with A = 0.20, F = 0.60 and Re = 100. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Cd and Cl for the cylinder oscillating in the normal flow direction 
with A = 0.20, F = 1.05 and Re = 100. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 15. Vorticity contours for the cylinder oscillating in the normal flow 
direction with A = 0.20, F = 1.05 and Re = 100. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16. Cd and Cl for the cylinder oscillating in the normal flow direction 
with A = 0.40, F = 0.60 and Re = 100. 
 

When A = 0.40 and F = 0.60, the lock-in phenomenon does not 
occur. Figure 16 shows the drag and lift coefficients, and the vortex 
shedding can be seen in Fig. 17. 

The results for Cd and Cl when A = 0.40 and F = 1.05 are given 
in Fig. 18. Figure 19 shows the vortex shedding for this case. Here, 
the lock-in phenomenon can be observed, with a regular vortex 
shedding. A comparison between Cd and Cl can be observed in 
Table 2. The results given by the present method are in good 
agreement with the results given by Nobari and Naderan (2006). For 
F = 1.05, the lift coefficient increases due to the occurrence of the 
lock-in phenomenon. 

482 / Vol. XXXII, No. 5, December-Special Issue 2010  ABCM 



An Eulerian Immersed Boundary for Flow Simulations over Stationary and Moving Rigid Bodies 

The drag coefficient obtained, for an oscillation amplitude of A = 
0.40, frequency of F = 1.05, and the present code was Cd = 2.309, which 
is in agreement with Nobari and Naderan (2006), Cd = 2.31. 

Cylinder with angular oscillation 

For the verification of the flow over the cylinder with angular 
oscillations, the results were compared with the numerical results 
given by Baek and Sung (1998). Here, the amplitude oscillation is 
defined as a maximum rotation angle, α. The Reynolds Number was 
Re = 110. 

 
 

 
 
 
 

 
 

      The first simulation was performed with α = 15º of maximum 
rotation angle and two different frequency values: F = 0.15 and F = 
0.17. The lift coefficient for F = 0.15 is shown in Fig. 20. It can be 
observed that there is a sign change in Cl. According to Baek and 
Sung (1998), the frequency of F = 0.15 is a critical point (i.e., the 
lock-in phenomenon occurs). 

 
 
 A comparison between the lift coefficients obtained with the 

proposed code and the results given by Baek and Sung (1998) is 
shown in Table 3. 

 
 
 
 A second test was performed for rotation angle α = 30º. The lift 

coefficient comparison for the results obtained with the present code 
and the results given by Baek and Sung (1998) is shown in Table 4. 

 
 
 
 The last comparisons were carried out with an oscillation angle 

α = 60º with three different frequency values: F = 0.14, F = 0.17 and 
F = 0.20. The results for lift coefficients obtained with the present 
code and the results by Baek and Sung (1998) are shown in Table 5. 

Figure 17. Vorticity contours for the cylinder oscillating in the normal flow 
direction with A = 0.40, F = 0.60 and Re = 100. 
 

 
  
  

  
  
  
  
  
  
  
   
  
  
  
  
 Figure 18. Cd and Cl for the cylinder oscillating in the normal flow direction 

with A = 0.40, F = 1.05 and Re = 100.  
 Figure 20. Cl for rotating cylinder, α = 15º and F = 0.15. 

  
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table  3. Cl for rotating cylinder, α = 15º. 

 F = 0.15 F = 0.17 
Baek and Sung (1998) 0.5 0.75 

Present Results 0.60 0.70 
 

Table 4 . Cl for rotating cylinder, α = 30º. 

 F = 0.14 F = 0.17 F = 0.20 
Baek and Sung (1998) 0.75 1.10 0.48 

Present Results 0.86 1.04 0.90 
 

Table 5 . Cl for rotating cylinder, α = 60º. 

 F = 0.14 F = 0.17 F = 0.20 
Baek and Sung (1998) 1.40 1.60 0.81 

Present Results 1.10 1.63 1.40 

Figure 19. Vorticity contours for the cylinder oscillating in the normal flow 
direction with A = 0.40, F = 1.05 and Re = 100. 

 
  

 Table 2. Cl comparison for amplitude oscillation A = 0.20. 
In the simulations for the flow over cylinders with angular 

oscillation, the results were in agreement with Baek and Sung 
(1998). The only discrepancy was observed for frequency F = 0.20. 

 F = 0.60 F = 1.05 
Nobari and Naderan (2006) 0.50 0.60 

Present Results 0.40 0.60 
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Conclusions 

The aim of this study was to propose an Immersed Boundary 
Method to simulate the flow over rigid bodies. A rigid body can 
be stationary or moving in the flow field. A circular cylinder was 
taken as a rigid body for verification and validation. Four 
different cases were simulated: flow over a steady cylinder, flow 
over an oscillating cylinder in the same direction of the flow, 
cylinder oscillating in the normal flow direction and flow over a 
cylinder with angular oscillation. The numerical results were 
compared to numerical and experimental results.  
       The drag and lift coefficients and vorticity contour plots 
were used for comparisons. With the vorticity contour plots, the 
vortex shedding could be analyzed. The lock-in phenomenon was 
used for verification and validation of the proposed code with a 
moving rigid body. The influence of the changes in frequency 
and amplitude oscillation on the lock-in phenomenon was also 
studied. The results were in good agreement with the numerical 
and experimental results. 

In all simulations the CFL number was CFL = 0.2. The 
results have shown that the proposed method is suitable for 
numerical simulations over rigid bodies, stationary or not. The 
extension of the present code for simulations over bodies with 
different configurations and/or for three dimensional simulations 
is straightforward.  
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