EDSON YUI

MULTIPLICAÇÃO "IN VITRO" DE PORTA-ENXERTOS DE MACIEIRA (Malus domostica Borkh.)

100 part 1 1 100

Dissertação apresentada à Escola Superior de Agricultura de Lavras, como parte das exigências do curso de Pós-Graduação em Agronomia, área de Concentração, Fitotecnia, para obtenção do grau de "MESTRE".

ESCOLA SUPERIOR DE AGRICULTURA DE LAVRAS

LAVRAS - MINAS GERAIS

1990

MULTIPLICAÇÃO "IN VITRO" DE PORTA-ENXERTOS DE MACIEIRA (Malus domestica Borkh.)

APROVADA:

Prof. Dr. Moacir Pasqual
Orientador

Prof. Dr. Amauri Alves de Alvarenga

Prof. Dr. Nilton Nagib Jorge Chalfun

À minha família e amigos

DEDICO

AGRADECIMENTOS

Às seguintes instituições pela oportunidade de auxílio na execução deste projeto:

- Escola Superior de Agricultura de Lavras (ESAL)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

À amizade, incentivo, apoio e colaboração de:

- Prof. Orientador Moacir Pasqual
- Prof. Amauri Alves de Alvarenga
- Prof. Nilton Nagib Jorge Chalfun
- Prof. Wagner Pereira Reis
- Denise de Mello Corrêa
- Eduardo Fonseca Arello
- Vantuil Antonio Rodrigues (laboratorista)
- Evaldo de Sousa Arantes (laboratorista).

À todos que, direta ou indiretamente, contribuíram para a realização deste trabalho.

BIOGRAFIA DO AUTOR

Edson Yui, filho de Mário Yui e Mitie Yui, nasceu no dia 19 de setembro de 1961 em Dracena, São Paulo.

Em 1979, diplomou-se no segundo grau na Escola Estadual de Segundo Grau Professor Moacir Simardi, em Dracena - São Paulo.

Em 1985, diplomou-se Engenheiro Agrônomo pela Escola Superior de Agricultura de Lavras (ESAL), Lavras - Minas Gerais.

Em 1987, iniciou o Curso de Mestrado em Fitotecnia, na Escola Superior de Agricultura de Lavras, Lavras - Minas Gerais.

SUMÁRIO

		Página
1.	INTRODUÇÃO	1
2.	REVISÃO DE LITERATURA	3
	2.1. Considerações gerais	3
	2.2. Auxinas	4
	2.3. Citocininas	5
	2.4. Giberelinas	8
	2.5. Outros compostos	9
	2.6. Fatores físicos do meio de cultura	11
3.	MATERIAL E MÉTODOS	13
4.	RESULTADOS E DISCUSSÃO	17
	4.1. Experimento 1 - BAP x GA ₃	17
	4.1.1. Número de brotos totais (NBT) e acima de	
	1,0 cm (NBS)	17
	4.2. Experimento 2 - BAP x ANA	31
	4.2.1. Número de brotos totais (NTB) e acima de	
	1,0 cm de comprimento (NBS)	31
	4.3. Experimento 3 - GA ₃ × ANA	45

		Página
	4.3.1. Número de brotos totais (NTB) e acima de	
	1,0 cm de comprimento	45
5.	CONCLUSÕES	58
6.	RESUMO	60
7.	SUMMARY	62
8.	REFERÊNCIAS BIBLIOGRÁFICAS	64

LISTA DE QUADROS

Quadro		Página
1	Composição do meio de MURASHIGE & SKOOG (1962)-	14
2	Resumo da análise de variância do efeito das con centrações de BAP e GA3 no número total de bro-	
	tos e número de brotos superiores a 1,0 cm de comprimento por explante de porta-enxerto 'MM-	*
	106'. ESAL, Lavras-MG, 1989	18
3	Médias do número total de brotos por explante do porta-enxerto 'MM-106' nas diferentes concentra-	
	ções de BAP e GA3. ESAL, Lavras-MG, 1989	18
4	Médias do número de brotos superiores a 1,0 cm por explante do porta-enxerto 'MM-106' nas dife-	
	rentes concentrações de BAP e GA3. ESAL, Lavras-	
	MG, 1990	20

0			3	_
\mathbf{v}	u	αl	ıL	O

Página

5	Resumo da análise d <mark>e variância do efeito das co<u>n</u></mark>	
	centrações de BAP e GA3 sob o número total de	
	brotos e número de brotos superiores a 1,0 cm de	
	comprimento por explante do porta-enxerto 'M-7'.	
	ESAL, Lavras-MG, 1989	22
6	Médias do número total de brotos/explante do por	
	ta-enxerto 'M-7' nas diferentes concentrações de	9
	BAP e GA3. ESAL, Lavras-MG, 1989	23
7	Médias do número de brotos superiores a 1,0 cm	
	por explante do porta-enxerto 'M-7' nas diferen-	
	tes concentrações de BAP e GA3. ESAL, Lavras-MG,	
	1989	24
8	Resumo da análise de variância do efeito das con	
	centrações de BAP e GA3 no número total de bro -	
	tos e número de brotos superiores a 1,0 cm de	
	comprimento por explante do porta-enxerto 'MI-	
	793'. ESAL, Lavras-MG, 1989	26
9	Média do número total de brotos/explante do por-	
	ta-enxerto 'MI-793' nas diferentes concentrações	
	de BAP e GA3. ESAL, Lavras-MG, 1989	27
10	Médias do número de brotos superiores a 1,0 cm/	
	explante do porta-enxerto 'MI-793' nas diferen -	
	tes concentrações d <mark>e</mark> BAP e GA3. ESAL, Lavras-MG,	
	1989	28

0	ua	d	r	0
\sim	ua	ıu	T	O

Página

11	Resumo da análise de variância do efeito das co <u>n</u>	
	centrações de BAP e ANA no número total de bro -	*
	tos e número de brotos superiores a 1,0 cm de	
	comprimento/explante do porta-enxerto 'MM-106' .	
	ESAL, Lavras-MG, 1989	32
12	Médias do número total de brotos/explante do por	
	ta-enxerto 'MM-106' nas diferentes concentrações	
	de BAP e ANA. ESAL, Lavras-MG, 1989	33
13	Médias do número de brotos superiores a 1,0 cm/	
	explante do porta-enxerto 'MM-106' nas diferen -	
	tes concentrações de BAP e ANA. ESAL, Lavras-MG,	
	1989	34
14	Resumo da análise de variância do efeito das con	
	centrações de BAP e ANA no número total de bro-	
	tos e número de brotos superiores a 1,0 cm de	
	comprimento/explante para o porta-enxerto 'M-7'.	
	ESAL, Lavras-MG, 1989	35
15	Média do número total de brotos/explante do por-	
	ta-enxerto 'M-7' nas diferentes concentrações de	
	BAP e ANA. ESAL, Lavras-MG, 1989	36
16	Médias do número de brotos superiores a 1,0 cm /	
	explante do porta-enxerto 'M-7' nas diferentes	
	concentrações de BAP e ANA. ESAL, Lavras-MG,1989	38

48

explante do porta-enxerto 'MM-106' nas diferen -

tes concentrações de GA3 e ANA. ESAL, Lavras-MG,

1989

Quadro	Página

23	Resumo da análise de variância do efeito das con	
	centrações de ANA e GA3 no número total de bro-	
	tos e número de brotos superiores a 1,0 cm de	
	comprimento por explante do porta-enxerto 'M-7'.	
	ESAL, Lavras-MG, 1989	50
24	Médias do número total de brotos/explante do por	
	ta-enxerto 'M-7' nas diferentes concentrações de	
	GA ₃ e ANA. ESAL, Lavras-MG, 1989	51
25	Médias do número de brotos superiores a 1,0 cm/	
	explante do porta-enxerto 'M-7' nas diferentes	
	concentrações de GA3 e ANA. ESAL, Lavras - MG,	
	1989	52
26	Resumo da análise de variância do efeito das con	
	centrações de ANA e GA3 no número total de bro-	
	tos e número de brotos superiores a 1,0 cm de	
	comprimento/explante do porta-enxerto 'MI-793' .	
	ESAL, Lavras-MG, 1989	53
27	Média do número total de brotos/explante do por	
	ta-enxerto 'MI-793' nas diferentes concentrações	
	de GA ₃ e ANA. ESAL, Lavras-MG, 1989	54
28	Média do número de brotos superiores a 1,0 cm /	
	explante do porta-enxerto 'MI-793' nas diferen -	
	tes concentrações de GA3 e ANA. ESAL, Lavras-MG,	
	1989	55

LISTA DE FIGURAS

i	gura		Página
	1	Médias do número total de brotos/explante do por	
		ta-enxerto 'MM-106' nas diferentes concentrações	
		de BAP	19
	2	Médias do número total de brotos/explante do por	
		ta-enxerto 'MM-106' nas diferentes concentrações	
		de GA ₃	19
	3	Média do número de brotos superiores a 1,0 cm de	
		comprimento/explante do porta-enxerto 'MM-106'em	
		função das concentrações de GA3	21
	4	Média do número de brotos superiores a 1,0 cm de	
		comprimento/explante do porta-enxerto 'MM-106'	
		nas diferentes concentrações de BAP	21
	5	Média do número total de brotos/explante do por	
		ta-enxerto 'M-7' nas diferentes concentrações de	
		BAP	24

35

Figura		Página
6	Média do número de brotos superiores a 1,0 cm de comprimento por explante do porta-enxerto 'M-7' nas diferentes concentrações de BAP	25
7	Média do número total de brotos/explante do por- ta-enxerto 'MI-793' nas diferentes concentrações de BAP	27
8	Média do número total de brotos/explante do por- ta-enxerto 'MI-793' nas diferentes concentrações	
9	de GA ₃	28
	comprimento/explante do porta-enxerto 'MI-793' nas diferentes concentrações de BAP	29
10	Média do número de brotos superiores a 1,0 cm de comprimento/explante do porta-enxerto 'MI-793'	29
11	nas diferentes concentrações de GA ₃	29
12	de BAP	33
12	de comprimento do porta-enxerto 'MM-106' em fun-	

ção das concentrações de BAP

Figura		Página
13	Média do número total de brotos/explante do por-	
	ta-enxerto 'M-7' nas diferentes concentrações de	
	BAP	37
14	Média do número total de brotos/explante do por-	er .
	ta-enxerto 'M-7' nas diferentes concentrações de	
	ANA	37
15	Média do número de brotos superiores a 1,0 cm de	
	comprimento por explante do porta-enxerto 'M-7'	
	nas diferentes concentrações de BAP	39
16	Médias do número total de brotos/explante do por	
	ta-enxerto 'MI-793' nas diferentes concentrações	
	de BAP	41
17	Médias do número total de brotos/explante do por	
	ta-enxerto 'MI-793' nas diferentes concentrações	
	de ANA	42
18	Média do número de brotos superiores a 1,0 cm de	
	comprimento por explante do porta-enxerto 'MI-	
	793' nas diferentes concentrações de BAP	43
19	Médias do número total de brotos/explante do por	
	ta-enxerto 'MM-106' nas diferentes concentrações	
	de GA ₃	48

Figura		Página
20	Média do número de brotos superiores a 1,0 cm de comprimento do porta-enxerto 'MM-106' nas di-	
	ferentes concentrações de GA3	49
21	Média do número total de brotos/explante do por	
	ta-enxerto 'M-7' nas diferentes concentrações de	
	GA ₃	51
22	Média do número de brotos superiores a 1,0 cm de	
	comprimento/explante do porta-enxerto 'M-7' nas	
	diferentes concentrações de GA3	52
23	Média do número de brotos superiores a 1,0 cm	
	de comprimento por explante do porta-enxerto 'MI-	
	793' nas diferentes concentrações de GA ₃	55

1. INTRODUÇÃO

A produção nacional de maçã vem registrando aumentos significativos, não somente na produtividade como principal mente na expansão da área plantada, com perspectiva de se atingir
em curto espaço de tempo, a autosuficiência.

No Brasil poucas são as regiões favoráveis ao cultivo da macieira, e Santa Catarina é o maior produtor do país. Ape
sar disso, esta cultura tem sido incrementada, tornando-se necessário o aprimoramento das práticas culturais e aperfeiçoamento das
tecnologias de produção existentes.

A macieira é uma planta que se propaga vegetativamente através da enxertia e os porta-enxertos são obtidos comumente, utilizando-se a técnica da "amontoa de cepa", apresentando porém um rendimento extremamente baixo, o que tem contribuído para uma elevação do custo das mudas.

Os métodos de propagação "in vitro" são de grande im portância para o desenvolvimento da cultura, pois são bastante eficientes na multiplicação tanto das matrizes como de porta-enxer

tos, pois além de permitirem a manutenção de sua genuinidade permite ainda a obtenção de plantas fitossanitariamente sãs. Atualmente com os recentes sistemas de plantio adensados tornou-se maior a demanda de mudas sadias, produtivas e de baixo custo, sendo isto proporcionado pelo cultivo "in vitro".

Entretanto, o estabelecimento de um sistema efetivo de propagação de plantas "in vitro" requer a consideração de
vários fatores como: tipo de explante, condições de ambiente e es
pecialmente a composição do meio pertinente a cada uma das fases
do cultivo, o qual muitas vezes não podem ser extrapolados e deve
ser definido experimentalmente.

O objetivo deste trabalho foi testar o efeito de várias concentrações de benzilaminopurina (BAP), ácido naftalenoacé tivo (ANA) e ácido giberélico (GA3) sobre a multiplicação "in vitro" dos porta-enxertos de macieira 'MM-106', 'M-7' e 'MI-793'.

2. REVISÃO DE LITERATURA

2.1. Considerações gerais

O sucesso com a implantação de pomares depende, em grande parte, da qualidade das mudas utilizadas. Para a macieira, estas mudas são obtidas normalmente através da enxertia de uma cultivar copa sobre determinado porta-enxerto. O processo da produção de porta-enxertos usado tradicionalmente, é o da "amontoa de cepa", sendo entretanto de baixa eficiência, demandado muito tempo, mão-de-obra e considerável espaço físico, além de possibilitar a propagação de materiais vegetativos com problemas fitossanitários (CAMPBELL & SPARKS, 1972 e BARBOSA et alii, 1986).

O cultivo "in vitro" de meristemas de plantas herbáceas tem sido utilizado há vários anos para produzir plantas livres de vírus. Mais recentemente, esta técnica tem sido também
empregada para promover a eliminação de viroses de plantas lenhosas (ABBOTT & WHITELEY, 1976).

Além disso, a propagação "in vitro" possilita ainda, a obtenção de um grande número de plantas com características i-

dênticas a planta mãe, contribuindo também com trabalhos de melho ramento genético conforme (DUNSTAN et alii, 1985 e BARBOSA et alii, 1986). O conhecimento de alguns fatores que afetam a multiplicação destas plantas, constitui ponto importante.

2.2. Auxinas

As auxinas são sintetizadas nas plantas em regiões de crescimento ativo como os meristemas apicais, gemas axilares, folhas jovens e meristemas de raízes, sendo translocadas para diferentes órgãos onde atuam no mecanismo interno de regulação do crescimento. Esse fitohormônio geralmente causa a elongação e aumento no tamanho dos tecidos, divisão celular, formação de raízes adventícias, inibição da formação de brotos adventícios e axilares (VÁLIO, 1985 e PIERIK, 1987).

O alongamento do caule se faz por atividade mitótica e principalmente pelo aumento do volume de células. A forma das plantas depende da correlação de crescimento entre suas partes. Assim, o crescimento dos ramos laterais está geralmente sob controle do ápice vegetativo, fenômeno denominado por dominância apical. As auxinas e outros fitohormônios do ápice possivelmente causam uma translocação de nutrientes para essa região, em detrimento das gemas laterais, que ficam carentes de substrato para crescimento (VÁLIO, 1985).

Entre as auxinas, o ácido indolbutírico (AIB) e o ácido naftalenoacético (ANA) são os mais utilizados nos cultivos "in vitro" da macieira, em concentrações entre 0,001 e 10,0 mg/l.

LANE (1978) verificou que para a cultivar McIntosh de macieira , não é necessário a aplicação de auxina exógena para proliferação de brotos. Entretanto, alguns autores, entre os quais DUNSTAN et alii (1985), observaram que a aplicação de pequenas doses de AIB (0,2 mg/l) pode estimular a produção de brotações. A adição de ANA ao meio de cultura pode provocar inibição da proliferação de brotações, quando usado em doses entre 0,1 e 0,2 mg/l, segundo ABBOTT & WHITELEY (1976) e LANE (1978), e pode induzir a uma gran de formação de calos quando aplicado em concentrações elevadas, en tre 1,0 e 2,0 mg/l (OCHATT & CASO, 1983).

2.3. Citocininas

São reguladores de crescimento que causam a divisão celular nas plantas, tendo sido demonstrado que as citocininas tam bém estão envolvidas num grande número de processos fisiológicos, como celular, crescimento e senescência foliar, dominância apical.

Muito pouco se conhece a respeito do movimento das citocininas nas plantas e a principal fonte produtora deste regulador são os meristemas das raízes.

A propriedade mais comumente associada as citocini - nas é sua habilidade em promover a divisão celular, mesmo em con-

centrações muito baixas.

As citocininas interferem na dominância apical tanto em plantas intactas como em estacas. O crescimento de gemas laterais parece estar relacionado com o efeito desses reguladores na diferenciação dos tecidos vasculares e sua liberação da dominân - cia apical coincide com o crescimento e a união das células do xilema do entrenó do caule principal à base da gema. Esta nova conexão vascular, é normalmente inibida pela auxina endógena do ápice, permitindo o crescimento das gemas laterais através do aumento na disponibilidade de nutrientes (JACQUES, 1985a).

De acordo com PIERIK (1987), altas concentrações no meio de cultivo, de 1,0 a 10,0 mg/l, as citocininas podem induzir a formação de brotos adventícios, mas o enraizamento normalmente é inibido (PIERIK, 1987).

A citocinina mais utilizada na multiplicação "in vitro" da macieira é o 6-Benzilaminopurina (BAP), e geralmente são aplicadas concentrações de 0,5 a 5,0 mg/l para cultivares e porta-enxertos, de acordo com JONES et alii (1977, 1979), WERNER & BOE (1980), SNIR & EREZ (1980), JAMES & THURBON (1981), DUNSTAN et alii (1985) e BARBOSA et alii (1982).

Em alguns trabalhos, JONES (1979), LUNDERGAN & JA-NICK (1980) e DUNSTAN et alii (1985), verificaram que a citocinina mais efetiva na micropropagação "in vitro" da macieira é o BAP, mas em concentrações mais elevadas, acima de 3,0 mg/l, pode afetar a qualidade dos brotos, tornando-os atrofiados.

Neste sentido, BARBOSA et alii (1982), testando vá-

rios níveis de BAP, verificaram que para as cultivares de macieira Rainha e Gala e para as seleções IAC 1381-22, 3881-8 e 4881-11, as melhores concentrações de BAP estão em torno de 2,5 mg/l. Para LANE (1978), a adição de BAP (1,0 mg/l) ao meio de cultura constituído de sais MS é fundamental para o crescimento e desenvolvimento dos meristemas e também para o desenvolvimento de gemas a xilares da cultivar da macieira McIntosh.

A aplicação de cinetina em meio constituído de sais de Linsmayer & Skoog (LS) em concentrações superiores a 5,0 mg/l ou inferiores a 0,1 mg/l, inibe totalmente a proliferação de brotos da cultivar Cox's Orange Pippin de macieira, conforme resultados obtidos por ABBOTT & WHITELEY (1976).

Em cultura nodal sobre meios MS utilizando explantes do porta-enxerto KSC-3, HICKS & NAIR (1986), verificaram que quando o BAP foi aplicado nas concentrações de 0,1 e 1,0 mg/1,hou ve um aumento rápido no tamanho das brotações, o mesmo ocorrendo com as matérias fresca e seca. Na cultura em meio contendo 1,0 mg/1 de BAP quase que o total das amostras apresentaram a formação de uma ou mais gemas secundárias desenvolvidas.

O estímulo ao crescimento e desenvolvimento, através da divisão e alongamento celular, é aumentado quando utilizase uma combinação entre auxina e citocinina, que atua no controle da morfogênese e formação de órgãos em cultura de tecidos.

Em vários trabalhos usando os porta-enxertos 'EMLA-25', 'M-26', 'M-4', 'MM-104', 'MM-106' e 'MM-109', verificaram que a aplicação da citocinina (BAP) combinada com a auxina (AIB) em

meio MS, resultou na indução de uma grande proliferação de brotações com JONES, 1967; SNIR & EREZ, 1980; CHEEMA & SHARMA, 1983; OCHATT & CASO, 1983 e DUNSTAN et alii, 1985. Resultados semelhan tes foram também obtidos nos trabalhos de NIEUWKERK & ZIMMERMAN (1986), com o cultivar Gala em meio MS.

Testando combinações entre a citocinina BAP com as auxinas AIB e ANA, CHEEMA & SHARMA (1983), concluíram que a interação BAP/AIB sobre meio MS produz melhores resultados do que BAP/ANA sobre a proliferação de brotações do porta-enxerto 'EMLA-25'.

2.4. Giberelinas

De todos os reguladores de crescimento, as giberelinas são as que mostram os maiores efeitos quando aplicados as plantas. Como classe, elas são substâncias promotoras de crescimento, cujos efeitos podem ou não ser semelhantes aos da auxina. Uma das maiores diferenças entre estes dois grupos é que as giberelinas geralmente produzem grande efeito em plantas intactas e muito pouco em segmentos de plantas. As giberelinas estão presentes em toda a planta e parece que são sintetizadas em regiões apicais da planta (JACQUES, 1985b).

Este grupo de reguladores normalmente não é utilizado na cultura "in vitro" de plantas superiores. As giberelinas são muito sensíveis ao calor e após a autoclavagem, cerca de 90% da atividade biológica é perdida. Em geral, as giberelinas induzem a elongação dos internódios e crescimento de meristemas ou gemas cultivados "in vitro" (JACQUES, 1985b).

Vários autores, entre os quais LANE (1978), LUNDER-GAN & JANICK (1980), CHEEMA & SHARMA (1983) e OCHATT & CASO (1983), verificaram que a adição de giberelina ao meio MS em doses que variam entre 0,1 e 1,0 mg/l, não apresenta efeitos significativos sobre a proliferação de brotações de macieira para os porta-enxertos 'EMLA-25' e 'M-4' e para as cultivares Golden Delicious e Mc-Intosh.

Para o cultivo "in vitro" de macieira, normalmente as giberelinas são aplicadas em concentrações baixas, ao redor de 0,1 mg/l, mas quando o objetivo da cultura é a obtenção de brotos alongados, apropriados para a fase de enraizamento, é necessário a utilização de concentrações mais elevadas (SNIR & EREZ, 1980).

2.5. Outros compostos

Diferentes resultados têm sido obtidos com a aplicação de compostos fenólicos, em meio de cultivo, para proliferação de brotações de macieira. JAMES & THURBON (1981) utilizando o floroglucinol em meio LS, verificaram que não houve aumento significativo na taxa de multiplicação do porta-enxerto de macieira M-9 e em alguns casos ocorreu decréscimo nessa taxa. Entretanto, JONES (1976) e JONES & HATFIELD (1976) relataram que a aplicação

de compostos fenólicos no meio de cultura ocasiona aumentos sign<u>i</u> ficativos na produção de brotações de macieira.

Como carboidratos, o composto mais utilizado na propagação "in vitro" da macieira tem sido a sacarose, em concentrações que oscilam em torno de 30 g/l no meio de cultura (WALKEY, 1972; JONES et alii, 1976 e SNIR & EREZ, 1980). A utilização de glucose e frutose no meio de cultivo apresentou resultados equivalentes à sacarose quando aplicados na mesma proporção (DUTCHER & POWELL, 1972). Quanto aos aminoácidos, segundo MURASHIGE & SKOOG (1962), DUTCHER & POWELL (1972), LANE (1978), WERNER & BOE (1980) e JAMES & THURBON (1981), somente a glicina tem sido utilizada na micropropagação "in vitro" da macieira e dentre as vitaminas, a tiamina é a única considerada essencial, no entanto, a piridoxina e o ácido nicotínico são também normalmente adicionados.

O pH, na maioria dos trabalhos, tem sido ajustado na faixa de 5,0 a 6,0 para culturas "in vitro" (JONES et alii, 1977; LANE, 1978; SNIR & EREZ, 1980; WERNER & BOE, 1980 e VAZ & NEGUERO LES, 1981).

O mio-inositol é um composto que vem sendo frequente mente aplicado na micropropagação de plantas, apresentando efei - tos benéficos e apesar disto não é considerado um composto essencial (MURASHIGE, 1974).

2.6. Fatores físicos do meio de cultura

Um dos fatores físicos de maior importância na micro propagação de plantas é a temperatura. No cultivo "in vitro" de macieira, normalmente tem sido usada numa faixa que oscila entre 24 e 27°C, ABBOTT & WHITELEY, 1976; JONES et alii, 1977; LANE, 1978; JAMES & THURBON, 1981; CHEEMA & SHARMA, 1983; OCHATT & CASO, 1983 e BARBOSA et alii, 1986.

Em relação à luz, o fotoperíodo aplicado com mais frequência é de 16h, segundo LANE (1978) e YAE et alii (1987) e quanto à intensidade luminosa, a faixa de variação está geralmente em torno de 4000 lux (SNIR & EREZ, 1980 e NIEUWKERK & ZIMMER-MAN, 1986).

O ágar, composto orgânico mais simples do meio de cultura, é o responsável pela consistência deste meio. A concentração de ágar necessária para se obter um determinado grau de consistência, varia em função do pH do meio de cultura e da qualidade do ágar utilizado. Na micropropagação da macieira, este com posto tem sido aplicado em concentrações entre 6,0 e 8,0 g/l(SNIR EREZ, 1980; SINGHA, 1978 e NIEUWKERK & ZIMMERMAN, 1986). Tem sido verificado que a utilização de altas concentrações de ágar, de 6,0 a 12 g/l, reduz significativamente a proliferação e o crescimento de brotações de macieira, o que em baixas concentrações, a 3,0 g/l, tanto a proliferação como o crescimento das brotações foram excelentes, segundo relato de SINGHA (1978). No entanto, PASQUALETTO et alii (1985) concluíram que concentrações muito bai

xas de ágar no meio de cultura, ocasionam a produção de altas por centagens de brotações vitrificadas, enquanto que o ágar a 4,0 g/l, praticamente não proporciona o aparecimento de brotações vitrificadas.

3. MATERIAL E MÉTODOS

O presente trabalho foi desenvolvido no laboratório de Cultura de Tecidos do Departamento de Agricultura da Escola S \underline{u} perior de Agricultura de Lavras - ESAL, Lavras-MG.

Nos ensaios de multiplicação "in vitro" foram utilizadas brotações mantidas "in vitro" dos porta-enxertos de macieira 'MM-106', 'M-7' e 'MI-793'. Este material propagativo foi obtido por de meristemas em meio de MURASHIGE & SKOOG (1962) - MS (Quadro 01) e multiplicadas neste mesmo meio suplementado com 1,0 mg/1 de BAP e 0,5 mg/1 de GA3.

Utilizou-se nos ensaios o meio MS de cultura suplementado com diferentes concentrações de BAP, GA3 e ANA conforme os tratamentos, sendo que o meio foi solidificado com ágar a 6,0 g/l. O pH do meio de cultura foi ajustado para 6,0 utilizando - se NaOH 1,0 N ou HCl 1,0 N.

Os reguladores de crescimento (BAP, GA3 e ANA) foram dissolvidos em NaOH 1,0 N, tendo sido adicionados ao meio de cultura no final do preparo.

QUADRO 01 - Composição do meio de MURASHIGE & SKOOG (1962) - MS modificado.

Solução estoque	Compostos	Concentração na solução estoque (mg.1 ⁻¹)	Volume da so lução esto- que adiciona do ao meio (ml)	Concentra- ção final (mg.1 ⁻¹)
А	NH ₄ NO ₃	82.500	20	1.650,000
В	KNO ₃	95.000	20	1.900,000
С	H ₃ BO ₃ KH ₂ PO ₄	1.240 34.000	5	6,200 170,000
	KI	166		0,830
	Na2MoO4.2H2O	50		0,250
	CoCl ₂ .6H ₂ O	5	to to	0,025
D	CaCl ₂ .2H ₂ O	88.000	5	440,000
E	MgSO ₄ .7H ₂ O	74.000	5	370,000
	MnSO ₄ .4H ₂ O	4.460		22,300
	ZnSO ₄ .7H ₂ O	1.720		8,600
	Cuso ₄ .5H ₂ O	5		0,025
F	Na ₂ EDTA	7.450	5	37,250
	FeSO ₄ .7H ₂ O	5.570		27,850
	Tiamina			0,500
	Piridoxina			0,500
	Acido nicotínico			0,500
	Mio-inositol			100,000
	Sacarose			30.000,000
	Agar			7.000,000
	Glicina			2,000

O trabalho foi conduzido em tubos de ensaio de 150 x 25 mm acondicionados em suportes com capacidade para 72 tubos. Após a adição do meio de cultura, os tubos foram fechados com tampas plásticas, identificadas e auto colocadas a 121°C durante 20 minutos.

Os ensaios foram instalados em sala asséptica, util<u>i</u> zando-se de câmara de fluxo laminar horizontal. As brotações ou segmentos de brotações foram obtidas uniformemente e após a inoculação de uma brotação por tubo, o material foi mantido em sala de crescimento sob temperatura variando entre 22 e 26°C, fotoperíodo de 16h e intensidade luminosa em torno de 60 µMol quantum/m²s² utilizando-se lâmpadas branca fria.

As avaliações foram efetuadas após 28 dias de cultivo, levando-se em consideração dois parâmetros:

- a) número total de brotos (NTB) número de brotações em condi ções de serem utilizadas em nova fase de multiplicação;
- b) número de brotos superiores a 1,0 cm (NBS) número de novas brotações com comprimento igual ou superior a 1,0 cm, aptos para serem enraizados.

- Experimento 1 - BAP \times GA₃

O delineamento experimental utilizado foi inteiramente casualizado num esquema fatorial 5 x 4, envolvendo cinco doses de BAP e quatro doses de GA3 em 10 repetições para o porta-enxerto 'MM-106', 8 repetições para o 'M-7' e 7 repetições para o 'MI-793'.

O BAP foi usado nas concentrações de 0; 0,5; 1,0;2,0 e 4,0 mg/l em combinação com GA₃ nas concentrações de 0; 0,01; 0,1 e 1,0 mg/l. Além desses reguladores de crescimento, todos os experimentos continham 0,01 mg/l de ANA.

- Experimento 2 - BAP x ANA

Foi utilizado o delineamento experimental inteiramen te casualizado num esquema fatorial 5 x 4, sendo envolvidas cinco doses de BAP e quatro de ANA em 9 repetições para os porta-enxertos 'MM-106' e 'M-7' e 7 repetições para 'MI-793'.

O BAP foi utilizado nas concentrações de 0; 0,5; 1,0; 2,0 e 4,0 mg/l combinado com ANA nas doses de 0; 0,001; 0,01 e 0,1 mg/l. Em todos os instrumentos foi adicionado GA3 na concentra - ção de 0,1 mg/l.

- Experimento 3 - GA3 x ANA

O delineamento experimental utilizado foi inteiramente casualizado num esquema fatorial 5 x 4, envolvendo cinco doses de CA₃ e quatro doses de ANA em 10 repetições para os três portaenxertos testados.

Nestes ensaios as doses usadas de GA₃ foram de 0; 0,01; 0,1; 1,0 e 10,0 mg/l em combinação com ANA nas doses de 0; 0,001; 0,01 e 0,1 mg/l. Todos os instrumentos continham também o BAP a 1,0 mg/l.

4. RESULTADOS E DISCUSSÃO

4.1. Experimento 1 - BAP x GA3

4.1.1. Número de brotos totais (NTB) e acima de 1,0 cm (NBS)

No Quadro 02 são apresentados os quadrados médios para os dois fatores testados no porta-enxerto 'MM-106'. Observa - se significância ao nível de 1% de probabilidade tanto para GA3 como para BAP, em relação ao número total de brotos e de brotos superiores a 1 cm de comprimento e que a interação entre estes dois reguladores de crescimento não foi significativa.

De acordo com o Quadro 03 e Figuras 01 e 02, os valo res mais elevados de número total de brotos para o porta-enxerto 'MM-101', aos 28 dias de cultivo, foram registrados com a aplicação de 1,0 mg/1 de BAP, independente dos níveis aplicados de GA3, e com 0,01 mg/1 de GA3, independente da aplicação de BAP. As médias obtidas com estes níveis de reguladores foram de respectivamente 7,98 e 6,48 novas brotações por explante.

QUADRO 02 - Resumo da análise de variância do efeito das concen - trações de BAP e GA3 no número total de brotos e número de brotos superiores a 1,0 cm de comprimento por explante de porta-enxerto 'MM-106'. ESAL, Lavras-MG, 1989.

Causas de variação	G.L.	Quadrados médios			
		NTB	NBS		
GA ₃	03	11,405 **	3,433 **		
BAP	04	134,557 **	16,457 **		
GA ₃ × BAP	12	3,417	0,704		
Resíduo	180	2,911	0,861		
C.V. (%)		29,088	49,093		

^{**} Significativo nível de 1%

QUADRO 03 - Médias do número total de brotos por explante do porta-enxerto 'MM-106' nas diferentes concentrações de BAP e GA3. ESAL, Lavras-MG, 1989.

GA ₃ BAP	0	0,5	1,0	2,0	4,0	Média
0	2,6	6,4	6,8	6,2	6,0	5,66 AB
0,01	3,4	7,5	8,8	6,9	5,7	6,48 A
0,1	3,3	5,5	8,7	6,1	5,9	5,96 AB
1,0	2,4	5,9	6,7	5,8	5,8	5,36 B
Média	2,93 C	6,33 B	7,98 A	6,25 B	5,85 B	

As médias seguidas de mesma letra não diferem entre si pelo teste Tukey a 5%.

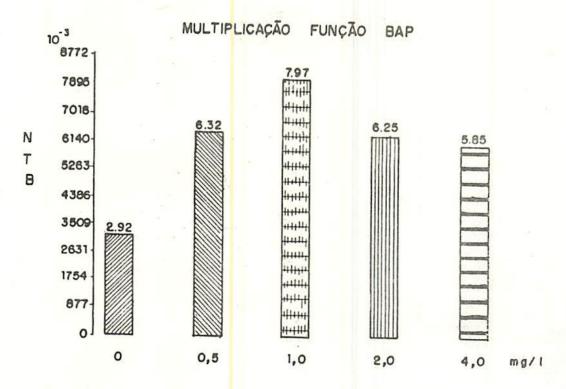


FIGURA 01 - Médias do número total de brotos/explante do porta-en xerto 'MM-106' nas diferentes concentrações de BAP.

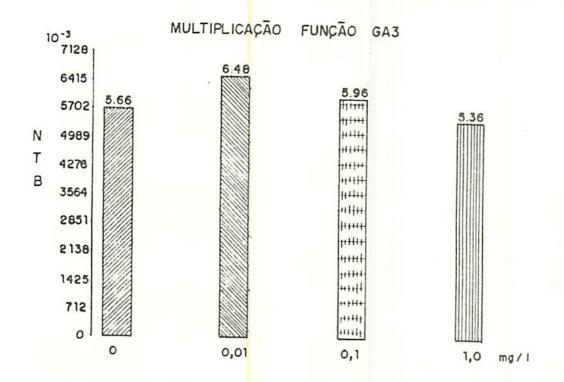


FIGURA 02 - Médias do número total de brotos/explante do porta-en xerto 'MM-106' nas diferentes concentrações de GA3.

Para este mesmo porta-enxerto, com relação ao número de brotos superiores a 1,0 cm de comprimento, os melhores resultados foram alcançados com a aplicação de 0,5 e 1,0 mg/l de BAP, independente dos níveis de GA3, apresentando respectivamente, 2,50 e 2,68 novas brotações por explante. A dose 0,01 mg/l de GA3, independente de BAP, foi a que apresentou melhor comportamento (Quadro 04 e Figuras 03 e 04).

QUADRO 04 - Médias do número de brotos superiores a 1,0 cm por explante do porta-enxerto 'MM-106' nas diferentes con centrações de BAP e GA3. ESAL, Lavras-MG, 1990.

AND THE RESERVE OF THE PARTY OF					
GA ₃ BAP	0	0,5 1,0	2,0	4,0	Média
0	1,3	2,7 3,1	1,3	1,5	1,98 AB
0,01	1,7	3,0 3,2	1,9	1,4	2,22 A
0,1	1,2	2,2 2,5	1,2	1,4	1,70 B
1,0	1,4	2,1 2,0	1,6	1,2	1,66 в
Média	1,40 B	2,50 A 2,68 A	1,50 I	3 1,38 B	

As médias seguidas de mesma letra não diferem entre si pelo teste Tukey a 5%.

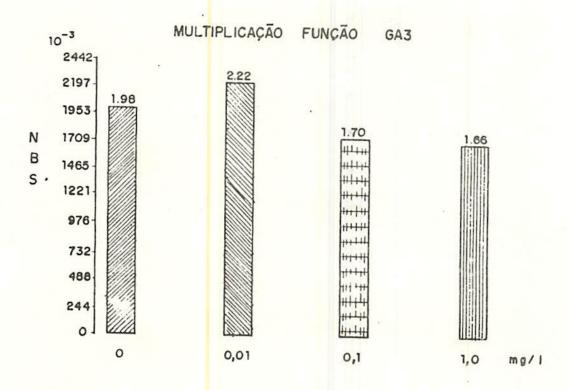


FIGURA 03 - Média do número de brotos superiores a 1,0 cm de comprimento/explante do porta-enxerto 'MM-106' em fun ção das concentrações de GA3.

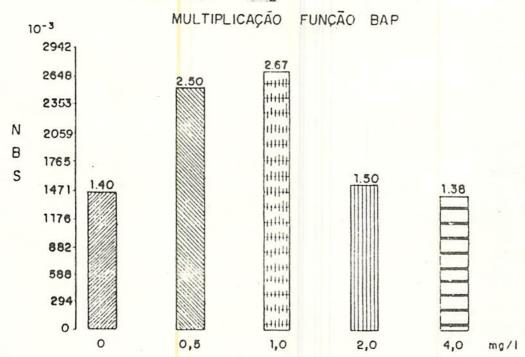


FIGURA 04 - Média do número de brotos superiores a 1,0 cm de comprimento/explante do porta-enxerto 'MM-106' nas diferentes concentrações de BAP.

No Quadro 05, podemos ver os quadrados médios com os respectivos níveis de significância referentes aos reguladores utilizados no porta-enxerto 'M-7'.

Houve diferenças significativas a 1% de probabilidade, tanto em número total de brotos como número de brotos superio res a 1,0 cm apenas em relação ao BAP. Para a interação entre es tes dois fatores não houve significância estatística.

QUADRO 05 - Resumo da análise de variância do efeito das concen - trações de BAP e GA3 sobre o número total de brotos e número de brotos superiores a 1,0 cm de comprimento por explante do porta-enxerto 'M-7'. ESAL, Lavras-MG, 1989.

Causas de variação	G.L.	Quadrados médios			
	220000000	NTB	NBS		
GA ₃	03	3,956	0,225		
BAP	04	54,897 **	6,053 **		
GA ₃ x BAP	12	2,430	0,428		
Resíduo	140	1,972	0,348		
C.V. (%)		26,40	74,933		

^{**} Significativo a 1% pelo teste F.

Os resultados encontrados para o porta-enxerto 'M-7' semelhantes ao 'MM-106'. No entanto, a adição de GA3 ao meio de cultivo não apresentou efeito significativo para nenhum dos parâ-

metros avaliados. Com relação ao número total de brotos os melho res níveis de BAP aplicados foram de 1,0 e 2,0 mg/l, produzindo em média 6,13 e 6,28 novas brotações/explante, respectivamente (Quadro 06 e Figura 05).

QUADRO 06 - Médias do número total de brotos/explante do porta-en xerto 'M-7' nas diferentes concentrações de BAP e GA3.

ESAL, Lavras-MG, 1989.

GA ₃ BAP	0	0,5	1,0	2,0	4,0	Média
0	3,6	5,6	5,6	6,7	5,1	5,32 A
0,01	2,7	6,1	7,2	6,3	6,2	5,70 A
0,1	3,3	6,1	5,5	6,0	4,6	5,10 A
1,0	2,7	6,0	6,1	6,0	4,3	5,02 A
Média	3,13 C	5,97 AB	6,13 A	6,28 A	5,09 B	

As médias seguidas da mesma letra não diferem entre si pelo teste Tukey a 5%.

Para o número de brotos superiores a 1,0 cm de comprimento o melhor resultado foi seguido com a aplicação de 0,5 mg/
1 de BAP, que produziu em média 1,4 novas brotações superiores a
1,0 cm por explante cultivado (Quadro 07 e Figura 06).

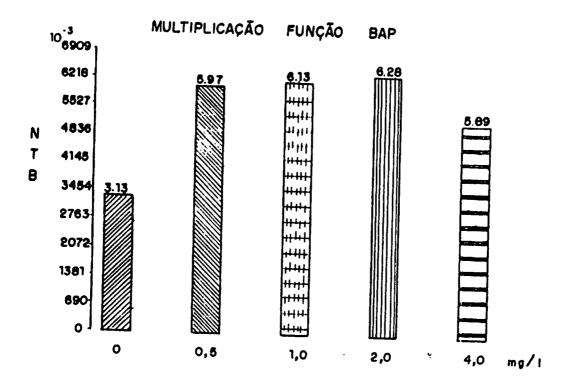


FIGURA 05 - Média do número total de brotos/explante do porta-enxerto 'M-7' nas diferentes concentrações de BAP.

QUADRO 07 - Médias do número de brotos superiores a 1,0 cm por explante do porta-enxerto 'M-7' nas diferentes concentrações de BAP e GA3. ESAL, Lavras-MG, 1989.

GA ₃ BAP	0	0,5	1,0	2,0	4,0	Média
0	1,4	1,2	0,7	0,4	0,4	0,82 A
0,01	0,7	1,2	0,7	0,5	0,4	0,70 A
0,1	0,7	1,5	1,1	0,0	0,2	0,70 A
1,0	1,0	1,5	0,9	0,7	0,2	0,86 A
Média	0,97 B	1,38 A	0,88 B	0,41 C	0,31 C	

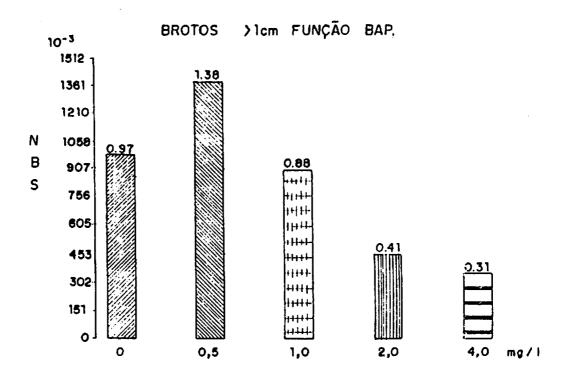


FIGURA 06 - Média do número de brotos superiores a 1,0 cm de comprimento por explante do porta-enxerto 'M-7' nas diferentes concentrações de BAP.

No Quadro 08, são apresentados os dados referentes ao resumo da análise de variância dos fatores BAP e GA3 para o porta-enxerto 'MI-793'. Para o GA3 observou-se significância ao nível de 1% para o número total de brotos e a 5% para brotos superiores a 1,0 cm, enquanto que para o BAP, as diferenças foram altamente significativas para ambos os parâmetros, o mesmo não ocor rendo para a interação entre os dois fatores.

QUADRO 08 - Resumo da análise de variância do efeito das concen - trações de BAP e GA3 no número total de brotos e número de brotos superiores a 1,0 cm de comprimento por explante do porta-enxerto 'MI-793'. ESAL, Lavras-MG, 1989.

Causas de variação	G.L.	Quadrados	s médios
		NTB	NBS
GA ₃	03	18,1 <mark>5</mark> 2 **	1,495 *
BAP	04	34,579 **	9,482 **
GA ₃ × BAP	12	1,831	0,453
Resíduo	120	1,483	0,445
C.V. (%)		22,318	62,278

^{**, *} Significativo a 1% e a 5% pelo teste F.

Com relação ao número total de brotos o melhor nível de BAP utilizado foi de 5,0 mg/l, independente de níveis de GA₃, com um número médio de 6,32 novas brotações/explante. Para o GA₃ os melhores níveis aplicados foram de 0 e 0,01 mg/l, independente dos níveis de BAP, produzindo respectivamente 6,00 novas brotações/explante (Quadro 09 e Figuras 07 e 08). Para o número de brotos superiores a 1,0 cm de comprimento os melhores resultados foram obtidos com 0,5 mg/l de BAP, independente do GA₃, com uma média de 1,89 novas brotações/explante, enquanto que na ausência de GA₃ (0 mg/l) ocorreu em média 1,26 novas brotações / explante (Quadro 10 e Figuras 09 e 10).

QUADRO 09 - Média do número total de brotos/explante do porta-enxerto 'MI-793' nas diferentes concentrações de BAP e GA3. ESAL, Lavras-MG, 1989.

GA ₃ BAP	0	0,5	1,0	2,0	4,0	Média
0	4,3	6,0	6,5	6,7	6,9	6,09 A
0,01	4,1	7,0	6,7	6,9	5,2	6,00 A
0,1	3,2	6,4	5,9	5,4	4,9	5,17 B
1,0	2,7	5,8	4,7	5,5	4,0	4,57 B
Média	3,60 C	6,32 A	5,96 AB	6,14 AB	5,25 B	

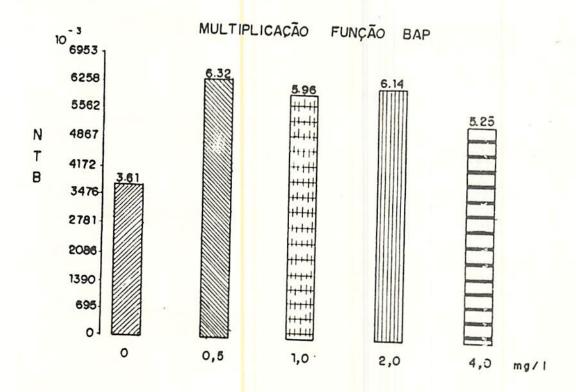


FIGURA 07 - Média do número total de brotos/explante do porta-enxerto 'MI-793' nas diferentes concentrações de BAP.

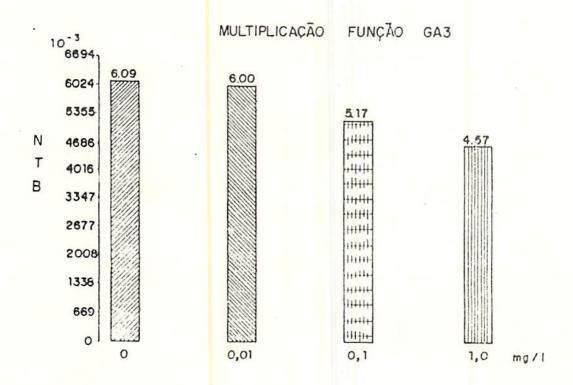


FIGURA 08 - Média do número total de brotos/explante do porta-enxerto 'MI-793' nas diferentes concentrações de GA3.

QUADRO 10 - Médias do número de brotos superiores a 1,0 cm/explante do porta-enxerto 'MI-793' nas diferentes concentrações de BAP e GA3. ESAL, Lavras-MG, 1989.

Média	0,61 C	1,89 A	1,29 B	1,14 B	0,43 C	
1.0	0,4	1,8	1,0	0,5	0,2	0,83 в
0.1	0,4	1,7	1,4	1,1	0,1	0,97 AB
0,01	0,8	2,3	1,0	1,4	0,5	1,23 AB
0	0,7	1,7	1,7	1,4	0,7	1,26 A
GA ₃ BAP	0	0,5	1,0	2,0	4,0	Média

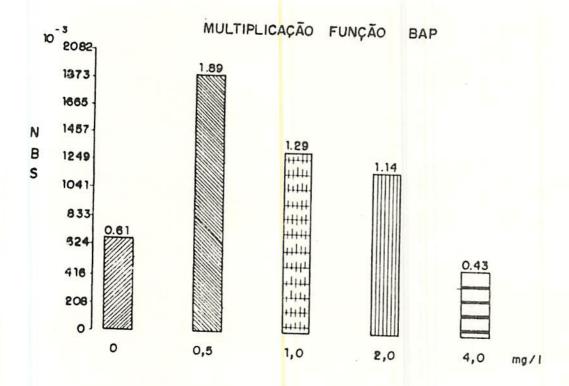


FIGURA 09 - Média do número de brotos superiores a 1,0 cm de comprimento/explante do porta-enxerto 'MI-793' nas diferentes concentrações de BAP.

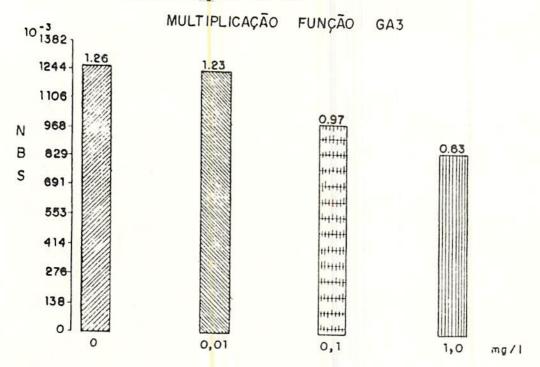


FIGURA 10 - Média do número de brotos superiores a 1,0 cm de comprimento/explante do porta-enxerto 'MI-793' nas diferentes concentrações de GA3.

Os resultados obtidos para os três porta-enxertos tes tados mostram índices mais elevados, tanto para número total de brotos como para número de brotos superiores a 1,0 cm de comprimento, nas concentrações que variam entre 0,5 e 2,0 mg/l de BAP a 1 0 mg/l é fundamental para o crescimento e desenvolvimento de meristemas e gemas de macieira; corroboram afirmações de HICKS & NAIR (1986) de que há um efeito benéfico de BAP a 0,1 e 1,0 mg/l sobre a proliferação de brotações em diversos porta-enxertos de macieira; e estão de acordo com BARBOSA et alii (1982) que identificaram melhores resultados para alguns cultivares e seleções de macieira, quando da aplicação de 2,5 mg/l de BAP. Entretanto não concorda com os trabalhos desenvolvidos por JONES et alii (1977, 1979), SNIR & EREZ (1980) e WERNER & BOE (1980).

Os significativos efeitos da citocinina no meio de cultura sobre a multiplicação "in vitro" da macieira, podem ser explicados através de sua ação na quebra da dominância apical, que apresenta como consequência a indução de brotações secundárias (PIERIK, 1987). Os efeitos ora detectados provenientes da citocinina exógena na proliferação de brotos, pode ocorrer também devido ao baixo nível endógeno em que este se encontra nos explantes. Sabe-se que a principal fonte deste regulador são os meristemas das raízes durante a fase de multiplicação "in vitro" de brotações, os níveis endógenos de citocinina permanecem insuficientes para promover a formação de novas brotações.

O ácido giberélico (${\rm GA}_3$) apresentou resultados divergentes entre os porta-enxertos testados. Estas observações estão de acordo com LANE (1978), LUNDERGAN & JANICK (1980), CHEEMA &

SHARMA (1983) e OCHATT & CASO (1983), onde mencionam ser dispensável na multiplicação de brotações de macieira. Este regulador de crescimento conforme SNIR & EREZ (1980), em concentrações mais elevadas é indicado para obtenção de brotações alongadas, apropriadas para enraizamento. Por outro lado, segundo LANE (1978), a plicação de giberelina exógena no meio de cultivo não é necessária, pois a giberelina endógena é suficiente para o desenvolvimento e proliferação da macieira "in vitro".

4.2. Experimento 2 - BAP x ANA

4.2.1. Número de brotos totais (NTB) e acima de 1,0 cm de comprimento (NBS)

No Quadro 11 são apresentados para o porta - enxerto 'MM-106', os quadrados médios do número total de brotos e número de brotos superiores a 1,0 cm de comprimento, para os fatores BAP e ANA. Para ambos os parâmetros registrou-se significância a 1% de probabilidade apenas para BAP, o mesmo não ocorrendo para o GA3 e para a interação entre esses dois fatores.

QUADRO 11 - Resumo da análise de variância do efeito das concentrações de BAP e ANA no número total de brotos e número de brotos superiores a 1,0 cm de comprimento/explante do porta-enxerto 'MM-106'. ESAL, Lavras-MG, 1989.

Causas de variação	G.L.	Quadrados médios			
	e.	NTB	NBS		
ANA	03	13,620	1,022		
BAP	04	464,464 **	38,387 **		
ANA x BAP	12	11,412	2,749		
Resíduo	160	11,896	2,196		
C.V. (%)		38,299	59,011		

^{**} Significativo a 1% pelo teste F.

De acordo com o Quadro 12 e Figura 11, observa-se que para o porta-enxerto 'MM-106' os melhores níveis utilizados na multiplicação total de brotos foram 0,5; 1,0; 2,0 e 4,0 mg/l de BAP, independente das concentrações de ANA aplicadas, sendo que não houve diferenças significativas entre estas doses, que foram estatisticamente superiores à testemunha. Em média foram obti-das de 9,61 a 11,42 novas brotações por explante. A aplicação do ANA não apresentou efeito significativo na multiplicação dos brotos.

QUADRO 12 - Médias do número total de brotos/explante do portaenxerto 'MM-106' nas diferentes concentrações de BAP e ANA. ESAL, Lavras-MG, 1989.

ANA	0	0,5	1,0	2,0	4,0	Média
0	2,8	8,4	10,5	10,5	11,7	8,78 A
0,001	2,8	11,8	11,1	11,8	10,3	9,56 A
0,01	2,9	10,3	9,0	11,7	11,7	9,12 A
0,1	2,3	10,7	7,9	9,2	11,5	8,32 A
Média	2,69 B	10,36	A 9,61 A	10,94 A	11,42 A	

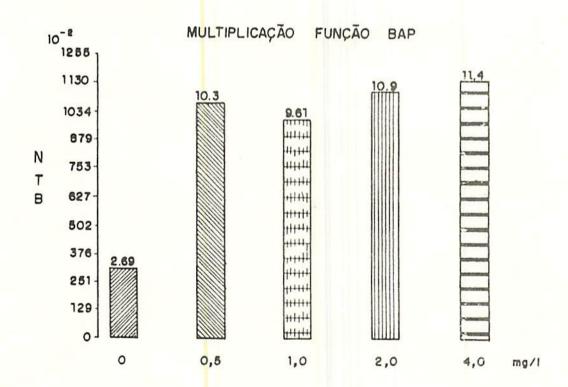


FIGURA 11 - Média do número total de brotos/explante do porta-enxerto 'MM-106' nas diferentes concentrações de BAP.

Para o parâmetro número de brotos superiores a 1,0 mg/l os melhores resultados foram obtidos com a aplicação de 5,0 mg/l de BAP, independente do ANA, produzindo em média 3,67 novas brotações por explante. O ANA não apresentou efeito significativo sobre este parâmetro e não foi observado interação significativa entre os dois reguladores (Quadro 13 e Figura 12).

No Quadro 14 são apresentados os quadrados médios referentes a aplicação do BAP e ANA no porta-enxerto 'M-7'. Observa-se que houve significância estatística para o número total de brotos em ambos os fatores e também para a interação. Por outro lado o número de brotos maiores que 1,0 cm de comprimento ocorreu significância estatística apenas para aplicação do BAP.

QUADRO 13 - Médias do número de brotos superiores a 1,0 cm/explante do porta-enxerto 'MM-106' nas diferentes concentrações de BAP e ANA. ESAL, Lavras-MG, 1989.

ANA	0	0,5	1,0	2,0	4,0	Média
0	0,7	3,0	3,1	2,4	2,3	2,30 A
0,001	1,0	3,6	3,5	3,5	1,5	2,62 A
0,01	1,1	3,8	2,7	3,0	2,0	2,52 A
0,1	0,6	4,1	2,0	2,4	3,0	2,42 A
Média	0,89 C	3,67 A	2,86 AB	2,86 AB	2,28 B	

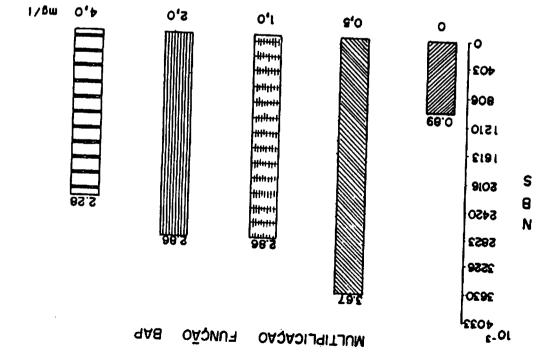
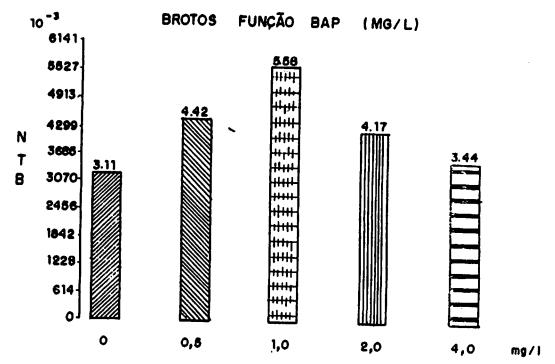


FIGURA 12 - Médias do número de brotos superiores a 1,0 cm de comprimento do porta-enxerto 'MM-106' em função das concentrações de BAP.

QUADRO 14 - Resumo da análise de variância do efeito das concentrações de BAP e ANA no número total de brotcs e núme ro de brotos superiores a 1,0 cm de comprimento explan te para o porta-enxerto 'M-7'. ESAL, Lavras-MG, 1989.


(%) ·v.o		24,095	72,940
onprsey	09Т	L66'0	987'0
₫A∃ × AVĀ	75	** 99ħ'Z	7₹ 7
₫ ∀ 8	⊅ 0	33,325 **	**
ANA	60	** EE6'E	<i>ħħ</i> 0′0
		ВТИ	ива
Causas de variação	G.L.	Quadrado	zo;bэ́т го

^{**} Significativo a 1% pelo teste F.

Pelo Quadro 15 e Figura 13 e 14 nota-se que a melhor concentração de BAP utilizada para o número total de brotos foi de 1,0 mg/l com produção em média de 5,58 novas brotações por explante cultivado. A aplicação de ANA também apresentou efeito significativo sendo que a melhor dose foi de 0,01 mg/l, produzindo em média 4,42 novas brotações por explante. Para o número total de brotos a interação entre BAP e ANA foi significativa estatisticamente, sendo que para a dose de 1,0 mg/l de BAP o melhor nível de ANA foi de 0,1 mg/l que produziu 6,1 novas brotações por explante.

QUADRO 15 - Média do número total de brotos/explante do porta-enxerto 'M-7' nas diferentes concentrações de BAP e ANA. ESAL, Lavras-MG, 1989.

ANA	0	0,5	1,0	2,0	4,0	Média
0	2,8	4,4	4,9 abcd	4,3	2,9	3,89 AB
0,001	3,3	4,2	5,5 abc	4,9	3,9	4,38 AB
0,01	3,5	4,1	6,1 a	4,4	4,1	4,42 A
0,1	2,9	4,9	5,8 ab	3,0	2,9	3,89 AB
Média	3,110	4,42 B	5,58 A	4,17 B	3,44 C	

F1GURA 13 - Média do número total de brotos/explante do porta-enxerto 'M-7' nas diferentes concentrações de BAP.

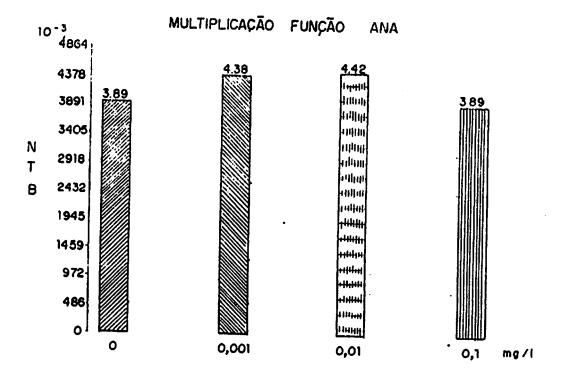


FIGURA 14 - Média do número total de brotos/explante do porta-enxerto 'M-7' nas diferentes concentrações de ANA.

Para o número de brotos superiores a 1,0 cm de comprimento os melhores resultados obtidos foram quando utilizou-se
o BAP em níveis de 0,0; 0,5 e 1,0 mg/l, independente do ANA, produzindo em média 1,11; 1,00 e 0,92 novas brotações por explante
respectivamente, não diferindo entretanto entre si. Não foi observado efeito significativo tanto para a aplicação do ANA, como
para a interação entre os dois fatores (Quadro 16 e Figura 15).

QUADRO 16 - Médias do número de brotos superiores a 1,0 cm/explante do porta-enxerto 'M-7' nas diferentes concentra - ções de BAP e ANA. ESAL, Lavras-MG, 1989.

Média	1,11 A	1,00 A	0,92 A	0,39 в	0,25 B	
0,1	1,1	1,1	0,8	0,2	0,2	0,68 A
0,001	1,2	1,0	0,8	0,4	0,2	0,72 A
0,001	1,1	1,0	1,0	0,3	0,3	0,74 A
0	1,0	0,9	1,1	0,5	0,2	0,74 A
NA BAP	0	0,5	1,0	2,0	4,0	Média

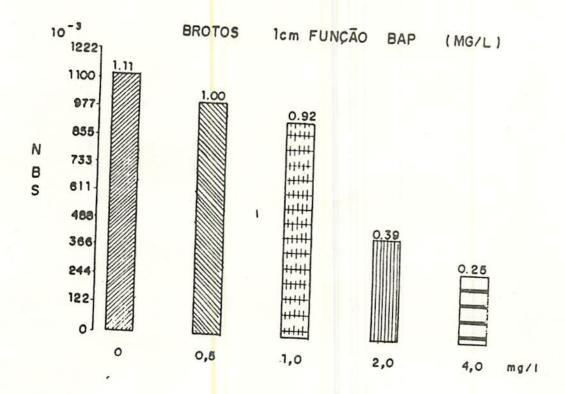


FIGURA 15 - Média do número de brotos superiores a 1,0 cm de comprimento por explante do porta-enxerto 'M-7' nas diferentes concentrações de BAP.

O resumo da análise de variância para o porta-enxerto 'MI-793' é apresentada no Quadro 17. Houve significância a
1% de probabilidade para o fator BAP, tanto em número total de
brotos como em número de brotos superiores a 1,0 cm de comprimento. Por outro lado, para o ANA, houve significância a 5% apenas
em número total de brotos, não ocorrendo significância para a interação entre estes dois fatores.

QUADRO 17 - Resumo da análise de variância do efeito das concen - trações de BAP e ANA no número total de brotos e número de brotos superiores a 1,0 cm/explante do porta-en xerto 'MI-793'. ESAL, Lavras-MG, 1989.

Causas de variação	G.L.	Quadrados médios		
	0.2	NTB	NBS	
ANA	03	2,257	0,426	
BAP	04	31,868	5,189 **	
ANA x BAP	12	1,263	0,384	
Resíduo	120	0,788	0,386	
C.V. (%)		17,806	55,381	

^{**, *} Significativo a 1% e 5%, pelo teste F, respectivamente.

Os melhores resultados para o número total de brotos foram com os níveis de BAP à 0,5 e 4,0 mg/l que produziram em média 5,6l e 5,86 novas brotações por explante, respectivamente, in dependente do ANA. Este, por sua vez, também apresentou efeito significativo tendo sido obtido o melhor resultado com aplicação de 0,1 mg/l, obtendo em média 5,26 novas brotações por explante (Quadro 18 e Figuras 16 e 17).

QUADRO 18 - Médias do número total de brotos/explante do porta-en xerto 'MI-793' nas diferentes concentrações de BAP e ANA. ESAL, Lavras-MG, 1989.

ANA	0	0,5	1,0	2,0	4,0	Média
0	3,2	6,0	5,5	5,0	5,5	5,09 AB
0,001	3,0	5,4	4,2	5,9	6,4	4,94 AB
0,01	3,0	5,0	4,4	5,4	5,4	4,66 B
0,1	3,4	6,0	5,4	5,1	6,2	5,26 A
Média	3,18 C	5,61 A	4,93 B	5,36 AB	5,86 A	

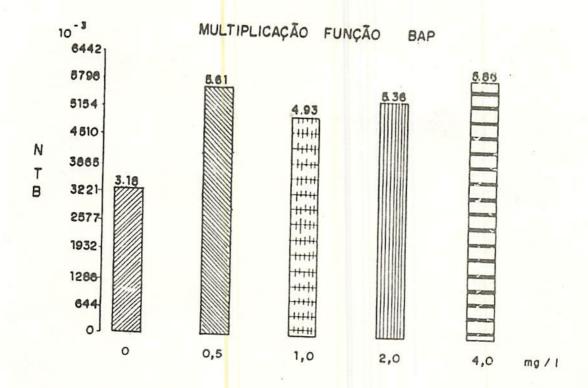


FIGURA 16 - Médias do número total de brotos/explante do porta-en xerto 'MI-793' nas diferentes concentrações de BAP.

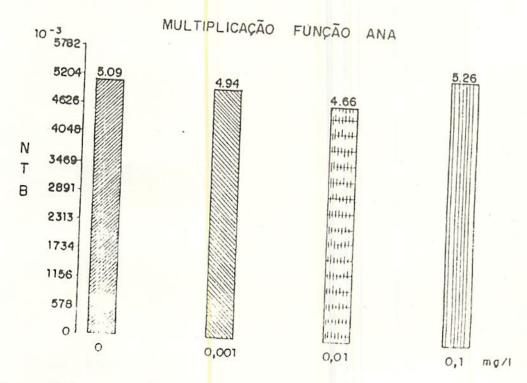


FIGURA 17 - Médias do número total de brotos/explante do porta-en xerto 'MI-793' nas diferentes concentrações de ANA.

Com relação ao número de brotos superiores a 1,0 cm as melhores taxas de multiplicação foram obtidas com a utilização de 0,5 e 1,0 mg/l de BAP, independente do ANA, sendo obtido em média 1,68 e 1,43 novas brotações por explante, respectivamente. A adição de ANA ao meio de cultivo não apresentou efeito significativo para este parâmetro (Quadro 19 e Figura 18).

QUADRO 19 - Médias do número de brotos superiores a 1,0 cm/explante do porta-enxerto 'MI-793' nas diferentes concentrações de BAP e ANA. ESAL, Lavras-MG, 1989.

		1,0	2,0	4,0	Média
0,5	2,0	1,5	1,1	1,1	1,02 A
0,8	1,5	1,2	1,1	0,4	1,00 A
0,5	1,4	1,4	1,2	0,5	1,00 A
1,0	1,7	1,4	0,7	0,5	1,06 A
0,75 C	1,68 A	1,43 AB	1,07 BC	0,68 C	
	0,8 0,5 1,0	0,8 1,5 0,5 1,4 1,0 1,7	0,8 1,5 1,2 0,5 1,4 1,4 1,0 1,7 1,4	0,8 1,5 1,2 1,1 0,5 1,4 1,4 1,2 1,0 1,7 1,4 0,7	0,8 1,5 1,2 1,1 0,4 0,5 1,4 1,4 1,2 0,5 1,0 1,7 1,4 0,7 0,5

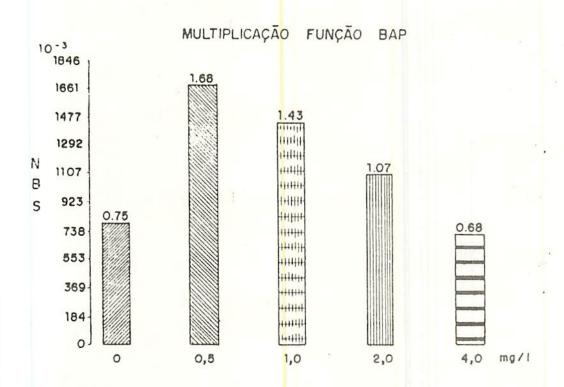


FIGURA 18 - Média do número de brotos superiores a 1,0 cm de com primento por explante do porta-enxerto 'MI-793' nas diferentes concentrações de BAP.

Observa-se que houve um comportamento diferenciado dos três porta-enxertos testados nas diferentes combinações dos reguladores BAP e ANA. De modo geral, o BAP mostrou-se necessário a multiplicação de brotos em concentrações mais elevadas para o número total de brotos do que para número de brotos superiores a 1,0 cm de comprimento. Estes resultados estão de acordo com a expectativa de que maiores concentrações de BAP, promovem a formação de grande número de brotos, em detrimento, porém, de seu desenvolvimento.

Os efeitos da aplicação do BAP sobre a proliferação de brotos de macieira confirmam citações anteriores (LANE, 1978; LUNDERGAN & JANICK, 1980; JAMES & THURBON, 1979; DUNSTAN et alii, 1985; BARBOSA et alii, 1986 e PIERIK, 1987) de que este regulador de crescimento deve ser incorporado ao meio de cultura para permitir uma maior taxa de multiplicação de brotos de macieira.

O ANA mostrou efeitos positivos para o 'M-7' e 'MI-793' apenas para o número total de brotos, concordando com vários autores entre os quais DUNSTAN et alii (1985) que observaram estímulo a produção de brotações com aplicação de pequenas doses de AIB. No entanto LANE (1978), verificou que para a cultivar Mc-Intosh não é necessário a aplicação de auxina exógena para a fase de multiplicação de brotações.

Não foram identificados os efeitos deletérios do uso de auxina no meio de cultura, conforme afirmação de ABBOTT & WHITELY (1976), de que a aplicação de ANA ao meio de cultivo pode provocar a inibição da multiplicação de brotações, quando em doses entre 0,1 e 0,2 mg/1. Discordam também de OCHATT & CASO (1983)

que registraram a ocorrência de calos nos explantes do uso de ANA nas concentrações de 1,0 e 2,0 mg/l.

Apesar das divergências com relação a utilização do ANA na multiplicação de brotos, vários trabalhos (JONES, 1967; SNIR & EREZ, 1980; CHEEMA & SHARMA, 1983, entre outros) mostraram que a aplicação de pequenas concentrações de auxina combinada com BAP induzem a proliferação de brotos, confirmando os dados obti-dos neste trabalho para o porta-enxerto 'M-7', onde houve interação significativa entre BAP e ANA para número total de brotos.

O cultivo "in vitro" é controlado através do balanço auxina/citocinina. Como os níveis endógenos destes reguladores variam com a cultivar, pode se esperar que a aplicação exógena destes reguladores promovam diferentes alterações no balanço auxina/citocinina e consequentemente, as respostas obtidas podem ser divergentes entre as cultivares.

4.3. Experimento 3 - GA3 x ANA

4.3.1. Número de brotos totais (NBT) e acima de 1,0 cm de comprimento (NBS)

No Quadro 20 são apresentados os dados de comprimento (NBS) do resumo da análise de variância do número total de brotos e número de brotos superiores a 1,0 cm de comprimento, para o porta-enxerto 'MM-106' nas diferentes concentrações de ANA e GA₃. Para o fator ANA não obteve-se diferenças significativas em nenhum dos parâmetros avaliados, enquanto para o GA₃ houve significância a 1% para número total de brotos superiores a 1,0 cm de comprimento. Ocorreu interação significativa entre os dois fatores apenas para o número total de brotos, a 5% de probabilidade.

QUADRO 20 - Resumo da análise de variância do efeito das concen - trações de ANA e GA3 no número total de brotos e número de brotos superiores a 1,0 cm de comprimento/explante do porta-enxerto 'MM-106'. ESAL, Lavras-MG, 1989.

Causas de variação	G.L.	Quadrados médios			
	G.L.	NTB	NBS		
ANA	03	1,533	0,413		
GA ₃	04	14,643 **	1,293 *		
ANA x GA ₃	12	3,162 *	0,193		
Resíduo	180	1,444	0,464		
C.V. (%)		18,838	29,890		

^{**, *} Significância a 1% e 5% pelo teste F, respectivamente.

Observa-se no Quadro 21 e Figura 19 que para o porta-enxerto 'MM-106', as melhores taxas de multiplicação para o nú mero total de brotos foram obtidas com 0,0; 0,01 e 0,1 mg/l de GA3, independente dos níveis aplicados de ANA, com produção de 6,98; 6,90 e 6,40 novas brotações/explante, respectivamente. A utilização de ANA não apresentou efeito significativo sobre o núme

ro total de brotos. Observou-se que houve interação significativa estatisticamente entre GA₃ e ANA, sendo que na ausência de GA₃ a melhor dose de ANA aplicada foi de 1,0 mg/l com produção de 7,5 novas brotações por explante cultivado.

QUADRO 21 - Médias do número total de brotos/explante do porta-en xerto 'MM-106' nas diferentes concentrações de GA3 e ANA. ESAL, Lavras-MG, 1989.

GA ₃	0	0,01	0,1	1,0	10,0	Média
0	6,9 abc	6,3	6,9	7,1	5,9	6,62 A
C,001	6,9 abc	7,5	6,2	5,9	5,3	6,36 A
0,01	6,6 abc	6,7	6,4	6,5	5,5	6,34 A
0,1	7,5 a	7,1	6,3	4,6	5,3	6,16 A
Média	6,98 A	6,90 A	6,40 AB	6,13 BC	5,50 C	

As médias seguidas de mesma letra não diferem entre si pelo teste Tukey a 5%.

Para o número de brotos superiores a 1,0 cm de comprimento, a adição do ANA ao meio de cultivo também não apresentou efeito significativo. Não houve interação significativa entre os dois fatores. O melhor resultado foi obtido na ausência
do GA₃ (0 mg/1), com produção de 2,55 novas brotações / explante
cultivados (Quadro 22 e Figura 20).

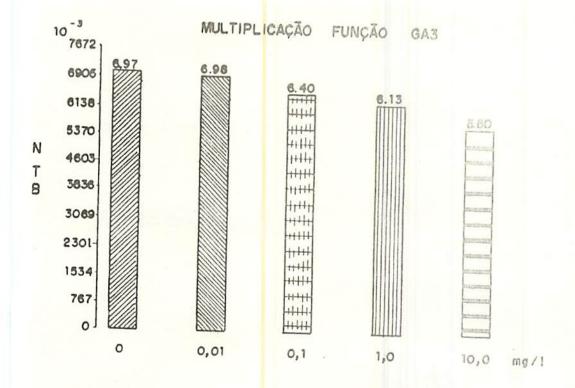


FIGURA 19 - Média do número total de brotos/explante do porta-enxerto 'MM-106' nas diferentes concentrações de GA3.

QUADRO 22 - Médias do número de brotos superiores a 1,0 cm/explante do porta-enxerto 'MM-106' nas diferentes concentrações de GA3 e ANA. ESAL, Lavras-MG, 1989.

0,01	2,8	2,2	2,2	2,1	2,2	2,30 A
0,001	2,4	2,3	2,2	2,0	1,9	2,16 A
0	2,6	2,0	2,5	2,3	2,3	2,34 A
NA GA3	0	0,01	0,1	1,0	10,0	Média

FIGURA 20 - Média do número de brotos superiores a 1,0 cm de comprimento do porta-enxerto 'MM-106' nas diferentes con centrações de GA3.

No Quadro 23 são apresentados, para o porta-enxerto 'M-7', os quadrados médios mostrando significância estatística de GA3, em relação ao número total de brotos e a 5% de probabilidade para o número de brotos superiores a 1,0 cm de comprimento. Não ocorreu efeito significativo para o ANA e para a interação GA3/ANA.

QUADRO 23 - Resumo da análise de variância do efeito das concentrações de ANA e GA3 no número total de brotos e número de brotos superiores a 1,0 cm de comprimento por explante do porta-enxerto 'M-7'. ESAL, Lavras-MG , 1989.

Causas de variação	G.L.	Quadrados médios			
	G.H.	NTB	NBS		
ANA	03	0,298	0,125		
GA ₃	04	6,193 **	0,242 *		
ANA x GA ₃	12	0,652	0,046		
Resíduos	180	0,806	0,1.03		
C.V. (%)		29,486	33,751		

^{** *} Significativo a 1% e a 5% pelo teste F, respectivamente.

O porta-enxerto 'M-7' apresentou resposta semelhante ao 'MM-106' em relação ao número total de brotos, sendo que as melhores taxas de multiplicação, 3,38 e 3,40 novas brotações/explante foram obtidas na ausência (0 mg/1) e com a aplicação de 0,1 mg/1 de GA3 (Quadro 24 e Figura 21).

Em relação ao número de brotos superiores a 1,0 cm de comprimento, a adição de GA₃ à 0,1 mg/l proporcionou a melhor taxa de multiplicação que foi de 1,03 novas brotações/explante cultivado (Quadro 25 e Figura 22).

QUADRO 24 - Médias do número total de brotos/explante do porta-en xerto 'M-7' nas diferentes concentrações de GA3 e ANA. ESAL, Lavras-MG, 1989.

0	0,01	0,1	1,0	10,0	Média
3,4	3,6	3,3	2,6	2,7	3,12 A
3,0	3,0	3,3	3,0	2,4	2,94 A
3,3	3,1	3,4	3,0	2,4	3,04 A
3,8	2,9	3,6	2,7	2,4	3,08 A
3,38 A	3,15 AB	3,40 A	2,83 BC	2,48 C	
	3,4 3,0 3,3 3,8	3,4 3,6 3,0 3,0 3,3 3,1 3,8 2,9	3,4 3,6 3,3 3,0 3,0 3,3 3,3 3,1 3,4 3,8 2,9 3,6	3,4 3,6 3,3 2,6 3,0 3,0 3,3 3,0 3,3 3,1 3,4 3,0 3,8 2,9 3,6 2,7	3,4 3,6 3,3 2,6 2,7 3,0 3,0 3,3 3,0 2,4 3,3 3,1 3,4 3,0 2,4 3,8 2,9 3,6 2,7 2,4

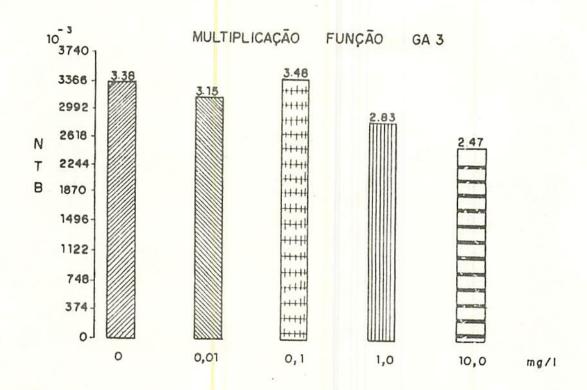


FIGURA 21 - Média do número total de brotos/explante do porta-enxerto 'M-7' nas diferentes concentrações de GA3.

QUADRO 25 - Médias do número de brotos superiores a 1,0 cm/explante do porta-enxerto 'M-7' nas diferentes concentrações de GA3 e ANA. ESAL, Lavras-MG, 1989.

GA ₃	0	0,01	0,1	1,0	10,0	Média
ANA						media
0	0,6	0,9	1,0	1,0	0,9	0,88 A
0,001	0,9	1,0	1,0	1,0	1,0	0,98 A
0,01	0,9	1,0	1,1	1,0	0,9	0,98 A
0.1	0,9	1,0	1,0	1,0	1,0	0,98 A
Média	0,83 B	0,98 AB	1,03 A	1,00 AB	0,95 AB	

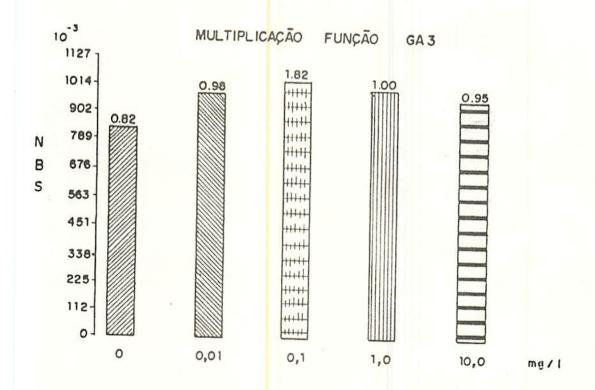


FIGURA 22 - Média do número de brotos superiores a 1,0 cm de comprimento/explante do porta-enxerto 'M-7' nas diferentes concentrações de GA3.

Observa-se pelo Quadro 26 que houve significância estatística a 5% para o número total de brotos e a 1% para o número ro de brotos superiores a 1,0 cm de comprimento, apenas para o fator GA3, no porta-enxerto 'MI-793'. Para o regulador ANA e interação entre este e GA3 não foram registrados diferenças significativas entre os tratamentos.

QUADRO 26 - Resumo da análise de variância do efeito das concen - trações de ANA e GA3 no número total de brotos e número de brotos superiores a 1,0 cm de comprimento/explante do porta-enxerto 'MI-793'. ESAL, Lavras-MG, 1989.

Causas de variação	G.L.	Quadrados médios			
		NTB	NBS		
ANA	03	1,993	0,045		
GA ₃	04	1,957	1,242 **		
ANA x GA ₃	12	1,197	0,116		
Resíduo	180	0,774	0,179		
C.V. (%)		28,297	36,996		

^{**, *} Significativo a 1% e 5% pelo teste F, respectivamente.

A adição do ANA também não afetou a multiplicação de brotações, sendo que também não foi observada interação significativa entre estes componentes (Quadro 27).

QUADRO 27 - Média do número total de brotos/explante do porta-en xerto 'MI-793' nas diferentes concentrações de GA₃ e ANA. ESAL, Lavras-MG, 1989.

GA ANA	, o	0,01	0,1	1,0	10,0	Média
0	3,8	3,1	3,2	2,9	4,0	3,40 A
0,001	3,4	2,9	2,8	2,9	2,7	2,94 A
0,01	3,5	2,6	2,8	2,9	3,2	3,00 A
0,1	2,8	3,5	3,2	2,8	3,3	3,12 A
Média	3,38 A	3,05 A	2,98 A	2,85 A	3,30 A	

A resposta do porta-enxerto 'MI-793' à aplicação do GA3, em relação ao número de brotos superiores a 1,0 cm, foi bastante diferente dos demais porta-enxertos testados e a taxa de multiplicação mais elevada foi obtida em 10,0 mg/l com produção de 1,45 novas brotações/explante. Da mesma maneira que nos ensaios anteriores, a adição do ANA não teve efeito significativo, também não ocorreu o mesmo para a interação entre GA3 e ANA para este parâmetro (Quadro 28 e Figura 23).

QUADRO 28 - Média do número de brotos superiores a 1,0 cm/explante do porta-enxerto 'MI-793' nas diferentes concentr<u>a</u> ções de GA₃ e ANA. ESAL, Lavras-MG, 1989.

GA ₃	0	0,01	0,1	1,0	10,0	Média
0	0,9	1,1	1,0	1,1	1,5	1,12 A
0,001	1,1	1,0	1,2	1,2	1,3	1,16 A
0,01	1,0	1,0	1,0	1,2	1,4	1,12 A
0,1	1,0	1,2	1,1	1,0	1,6	1,18 A
Média	1,00 B	1,08 B	1,08 B	1,13 B	1,45 A	

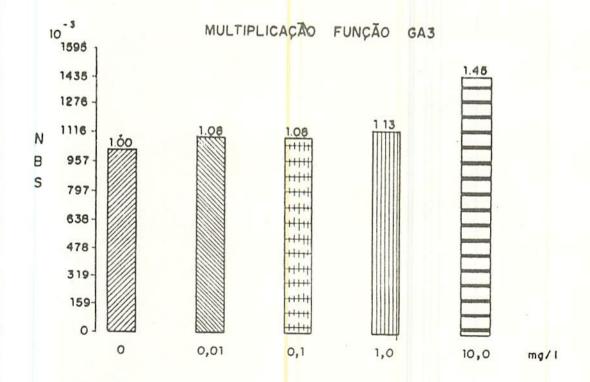


FIGURA 23 - Média do número de brotos superiores a 1,0 cm de com primento por explante do porta-enxerto 'MI-793' nas diferentes concentrações de GA3.

Analisando-se o comportamento dos três porta-enxer tos cultivados em meio com diferentes concentrações de ANA e GA3, observou-se que não houve efeito de aplicação do ANA, e que o GA3 apresentou níveis de significância apenas para o número de brotos superiores a 1,0 cm de comprimento nos porta-enxertos 'MI-793' e 'M-7'. No porta-enxerto 'MM-106' ocorreu interação significativa entre GA3 e ANA para o número total de brotos. Estes resultados estão de acordo com a afirmação de JACQUES (1985), de que as giberelinas normalmente produzem muito pouco efeito em segmentos de plantas. Concordam também com dados obtidos anteriormente por LA NE (1978), LUNDERGAN & JANICK (1980), CHEEMA & SHARMA (1983) OCHATT & CASO (1983), onde verificou-se que a adição de GA3 a 0,1 e 1,0 mg/l ao meio MS, não mostrou efeitos significativos sobre a proliferação de brotações de porta-enxertos e cultivares de macieira. O incremento na multiplicação de brotos com o uso de 10,0 mg/l de GA3 no porta-enxerto 'MI-793', vem confirmar as observa ções de SNIR & EREZ (1980), de que quando o objetivo da cultura é a obtenção de brotos alongados, apropriado para a fase de enraiza mento, é necessária a utilização de doses mais elevadas. Por outro lado, esta afirmação está em desacordo com os resultados registrados para os outros dois porta-enxertos, os quais, mesmo nas doses mais elevadas de GA, não evidenciaram respostas positivas. Estas divergências, provavelmente, ocorreram em função do endógeno mais elevado deste regulador no porta-enxerto 'MI-793'.

Os poucos efeitos observados sobre a proliferação de brotações nos porta-enxertos testados, podem também estarem relacionados ao fato de que as giberelinas, quando submetidas a auto-

clavagem, perdem cerca de 90% de sua atividade biológica. Desta forma, haveria necessidade de concentrações mais elevadas, ou então proceder a esterilização do GA3 a frio, evitando os danos cau sados pelo calor, ao qual as giberelinas são altamente sensíveis.

5. CONCLUSÕES

- A citocinina é essencial para multiplicação "in vitro" de porta-enxertos de macieira e recomenda-se, tanto para a produção total de brotos como para produção de brotos superiores a 1,0 cm de comprimento, a utilização de BAP nas concentrações de 0,5 a 1,0 mg/1.
- Para obtenção de brotos superiores a 1,0 cm de com primento, os porta-enxertos 'M-7' e 'MI-793' respondem positiva mente a adição de altas concentrações de GA₃ (10,0 mg/1). Para o porta-enxerto 'MM-106' este regulador é dispensável tanto para o número total de brotos como para o número de brotos superiores a 1,0 cm de comprimento.
- O ANA apresentou efeitos positivos sobre o número total de brotos para o porta-enxerto 'M-7' quando aplicado em pequenas doses (0,01 e 0,1 mg/1) em combinação com o BAP. O mesmo não ocorreu para o porta-enxerto 'MM-106' e 'MI-793'.
- A interação significativa entre GA₃ e ANA para o número total de brotos mostrou que o porta-enxerto 'MM-106' apre-

sentou melhores respostas quando foram aplicados 0,1 mg/l de ANA combinado com 0 a 0,01 mg/l de GA3.

6. RESUMO

Objetivou-se testar o efeito de várias concentrações de 6-benzilaminopurina (BAP), ácido naftalenoacético (ANA) e ácido giberélico (GA3) sobre a multiplicação "in vitro" dos portaenxertos 'MM-106', 'M-7' e 'MI-793'.

Foram testadas todas as combinações possíveis entre BAP (0 a 4,0 mg/l) e GA_3 (0 a 1,0 mg/l); entre BAP (0 a 4,0 mg/l). ANA (0 a 0,1 mg/l), entre GA_3 (0 a 10,0 mg/l) e ANA (0 a 0,1 mg/l).

Os explantes se constituíram de segmentos de brotos com aproximadamente 1,0 cm de comprimento e foram inoculados em número de 1 por tubo de ensaio e incubados em sala de crescimento sob temperatura de 27 ⁺ 2°C, fotoperíodo de 16 horas e intensidade luminosa de 60 µMol.

As avaliações foram efetuadas após 28 dias de cultivo, registrando-se o número total de brotos e o número de brotos
superiores a 1,0 cm. O delineamento experimental foi inteiramente casualizado num esquema fatorial 5x4 utilizando de 7 a 10 repe

tıções.

As respostas dos três porta-enxertos à adição dos re quladores de crescimento foram semelhantes. De um modo geral multiplicação "in vitro" pode ser realizada com sucesso utilizando-se tanto para número total de brotos quanto para brotos supe riores a 1,0 cm, BAP em concentrações entre 0,5 e 1,0 mg/1. porta-enxertos 'M-7' e 'MI-793' respondem a adição de 10,0 mg/1de GA, na produção de brotos superiores a 1,0 cm de comprimento. A adıção do ANA em pequenas doses (0,01 e 0,1 mg/1) em combinação com o BAP apresentou efeitos positivos sobre o número total de brotos para o porta-enxerto 'M-7'. A interação entre GA3 e ANA sobre o número total de brotos, mostrou que para o porta-enxerto 'MM-106' os melhores resultados foram obtidos com a aplicação 1 0 mg/l combinado com 0 (ausência) ou 0,01 mg/l de GA3.

7. SUMMARY

The objective of this work was to test the effect of different concentrations of 6-benzylaminopurine (BA), nafthale neacetic acid (NAA) and gibberellic acid (GA3) on the "in vitro" multiplication of apple tree rootstocks 'MM-106', 'M-7' and 'MI-793'.

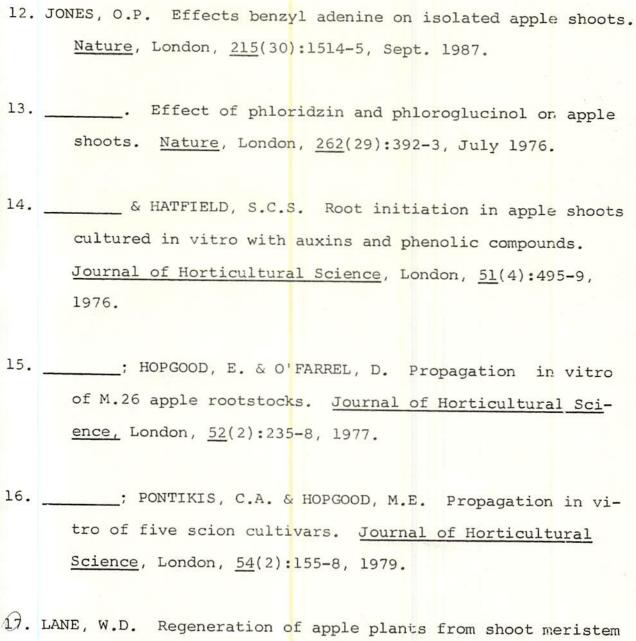
In this experiments were tested all possible combinations between BA (0.0 at 4.0 mg/l), and GA_3 (0.0 at 1.0 mg/l) between BA (0.0 at 4.0 mg/l), and NAA (0.0 at 0.1 mg/l), and between GA_3 (0.0 at 10.0 mg/l), and NAA (0.0 at 0.1 mg/l).

The explants (segments of shoots with 1.0 cm lenght) were inoculates (one/tube) and cultured in a growthroom at 27 $^{\pm}$ 2°C under 16 hr photoperiods and 60 µMol light intensity.

The avaliations were made after 28 cultive days and it was registered total number of new shoots and number of branches better 1.0 cm of length. The experimental design was completely randomized in factorial scheme 5x4, using 7 at 10 replications.

KER/MUL.) MARITUS.
7634.113 CETTO
YUI /MUI.

of the three rootstocks to the growth regulators addition were the same. Generally, the "in vitro" multiplication can be made successfully using BA at 0.5 and 1.0 mg/l concentration.


The rootstocks 'M-7' and 'MI-793' responsed positive ly to addition of 10.0 mg/l of GA₃ in production of branches better 1.0 cm of length. The addition of NAA in small concentration (0.01 and 0.0 mg/l) combinated with BA, showed positive effects on the total number of new shoots to 'M-7' rootstock. The interaction between GA₃ and NAA on the total number of new shoots, showed, to 'MM-106' rootstock that better results have being obtained with application of 0.1 mg/l of NAA combinated with 0.0 (absence) on 0.01 mg/l of GA₃.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. ABBOTT, A.J. & WHITELEY, E. Culture of malus tissues in vitro. I. Multiplication of apple plants from isolated shoot apices. Scientia Horticulturae, Amsterdam, 4(2):183-9, 1976.
- 2. BARBOSA, W.; DALL'ORTO, F.A.C.; OJIME, M.; CAMPOS, S.A.F. & TOMBOLATO, A.F.C. Propagação vegetativa "in vitro" de cultivares de macieira. <u>Bragantia</u>, Campinas, <u>45</u>(1):143-54, 1986.
- 3. CAMPBELL, A.J. & SPARKS, T.R. Virus induced changes in ghe growth of pome fruit trees. Acta Horticulturae, Hague, 75:123-32, 1972.
- 4) CHEEMA, G.S. & SHARMA, D.P. In vitro propagation of apple rootstock EMLA 25. Acta Horticulturae, Hague, 131:75-89, 1983.

- 5. DUNSTAN, D.I.; TURNER, K.E. & LAZAROFF, W.R. Propagation "in vitro" of apple rootstock M.4: effect of phytohormones on shoot quality. Plant Cell Tissue Organ Culture, Netherlands, 4:55-60, 1985.
- 6. DUTCHER, R.D. & POWELL, L.E. Culture of apple shoots from buds in vitro. <u>Journal of the American Society for Horti-</u> <u>cultural Science</u>, New York, <u>97</u>(4):511-4, 1972.
- 7. HICKS, G.S. & NAIR, A. Growth and morphogenesis in shortterm nodal cultures of an apple rootstock in vitro. Canadian Journal of Botany, Ottawa, 64:2299-304, 1986.
- 8. JACQUES, R.M. Citocininas. In: ____. Fisiologia vegetal.
 São Paulo, EPU, 1985a, v.2, cap.4, p.93-128.
- 9. _____. Giberelinas. In: ____. <u>Fisiologia vegetal</u>. São Paulo, EPU, 1985b, v.2, cap.5, p.129-62.
- 10. JAMES, D.J. & THURBON, I.J. Rapid in vitro rooting of the apple rootstock M.9. <u>Journal of Horticultural Science</u>, London, 54(4):309-11, 1979.
- 11. _____ & _____. Shoot and root initiation in vitro in the apple rootstock M.9 and the promotive effects of phloroglucinol. Journal of Horticultural Science, London, 56 (1):15-20, 1981.

- tips. <u>Plant Science Letters</u>, Amsterdam, <u>13</u>(3):281-5, 1978.
- 18. LUNDERGAN, C.A. & JANICK, J. Regulation apple shoot proliferation and growth in vitro. <u>Horticultural Research</u>, 20: 19-24, 1980.

- 19. MURASHIGE, T. Plant propagation through tissue cultures.

 Annual Review of Plant Physiology, Palo Alto, 25:135-66,
 1974.
- 20. <u>& SKOOG</u>, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. <u>Physiologia</u>

 <u>Plantarum</u>, Copenhagen, <u>15(3):473-97</u>, 1962.
- 21. NIEUWKERK, J.P. & ZIMMERMAN, R.H. Thiadiazuron stimulation of apple shoot proliferation in vitro. Hortscience, Alexandria, 21(3):516-8, June 1986.
- 22. OCHATT, S.J. & CASO, H.C. In vitro meristem culture of M.4 apple (Malus pumila Mill.). I. Optimal nutrient medium.

 Plant Cell Tissue Organ Culture, Netherlands, 2:39-48,
 1983.
- 23. PASQUALETTO, P.L.; ZIMMERMAN, R.H. & FORDHAM, I. Gelling agent growth regulator effects on shoot vitrification of 'Gala' apple in vitro. <u>Journal of the American Society</u> for Horticultural Science, New York, <u>111</u>(6):976-80, 1986.
- 24. PIERIK, R.L.M. Preparation and composition nutrient media.

 In: _____, In vitro culture of higher plants, Dordrescht,

 Martinus Nijhoff, 1987, cap.6. p.45-82.

- 25. SINGHA, S. Influence of agar concentration on in vitro shoot proliferation of Malus sp. 'almey' and Pyrus communis Seckel. Journal of the American Society for Horticultural Science, New York, 107(4):675-60, 1982.
- 26. ____ & POWELL, L.E. Response of apple buds cultured in vitro to abscisic acid. <u>Journal of the American Society</u>

 for Horticultural Science, New York, <u>103(5):620-2</u>, 1978.
- 27. SNIR, I. & EREZ, A. In vitro propagation of malling merton apple rootstocks. <u>Hortscience</u>, Alexandria, <u>15(5):597-8</u>, 1980.
- 28. VÁLIO, I.F.M. Auxinas. In: FERRI, M.C. <u>Fisiologia vegetal</u>. São Paulo, EPU, 1985, v.2, cap.2, p.39-72.
- 29. VASIL, I.K. & HILDEBRANDT, A.C. Growth and chlorophyll production in plant callus tissues grown in vitro. Planta, 68:69-82, 1966.
- 30. VAZ, R.L. & NEGUEROLES, J. Micropropagação e influência do tempo de permanência em meio contendo floroglucinol no en raizamento de brotos apicais de pessegueiro e macieira.

 In: CONGRESSO BRASILEIRO DE FLORICULTURA, 6., Recife, 1981. Anais... Recife, Sociedade Brasileira de Fruticultura, 1981. p.1160-5.

- 31. WALKEY, D.G. Production of apple plantlets from axillary bud meristems. <u>Canadian Journal of Plant Science</u>, Ottawa, 52:1085-7, 1972.
- 32. WERNER, E.M. & BOE, A.A. In vitro propagation of malling 7 apple rootstock. Hortscience, Alexandria, 15(4):509-10, Aug. 1980.
- 33. YAE, B.W.; ZIMMERMAN, R.H. & FORDHAM, I. Influence of photoperiod, apical meristem and explant orientation on axillary shoot proliferation of apple cultivars in vitro. Journal of the American Society for Horticultural Science, New York, 112(3):588-92, 1987.

EBAL Elemotion our care