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ABSTRACT: Digital soil mapping (DSM) permits continuous mapping soil types and 
properties through raster formats considering variation within soil class, in contrast to 
the traditional mapping that only considers spatial variation of soils at the boundaries of 
delineated polygons. The objective of this study was to compare the performance of SoLIM 
(Soil Land Inference Model) for two sets of environmental variables on digital mapping of 
saturated hydraulic conductivity and solum depth (A + B horizons) and to apply the best 
model on runoff risk evaluation. The study was done in the Posses watershed, MG, Brazil, 
and SoLIM was applied for the following sets of co-variables: 1) terrain attributes (AT): 
slope, plan curvature, elevation and topographic wetness index. 2) Geomorphons and 
terrain attributes (GEOM): slope, plan curvature, elevation and topographic wetness 
index combined with geomorphons. The most precise methodology was applied to predict 
runoff areas risk through the Wetness Index based on contribution area, solum depth, 
and saturated hydraulic conductivity. GEOM was the best set of co-variables for both 
properties, so this was the DSM model used to predict the runoff risk. The runoff risk 
showed that the critical months are from November to March. The new way to classify 
the landscape to use on DSM was demonstrated to be an efficient tool with which to 
model process that occurs on watersheds and can be used to forecast the runoff risk.
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INTRODUCTION
Identification of wetlands, in a landscape, allows the identification of regions that are 
vulnerable to runoff as well as areas of either greater or smaller water recharge potential 
based on soil infiltration rate. Runoff occurs when the saturated soil does not allow water 
to continue infiltrating and, thus, the excess water drains over the soil surface, producing 
both detachment and transport of soil particles. The drained away volume determines 
the erosive power and depends upon the amount of rain, soil infiltration capacity, and 
water holding capacity on soil surface.

Runoff can be obtained by applying wetness indices, which mathematically describe the 
spatial distribution of this process in the landscape. There are wetness indices such as 
the topographic wetness index, which describe soil moisture patterns in the watershed 
based only on the topography without taking into account the soil characteristics. Those 
indices are useful when one intends to topographically identify the path covered by water 
on the soil surface, but they cannot be used to evaluate the water infiltration capacity 
in soil and runoff.

There are other indices that utilize information about soils and allow the determination 
of where it is most favorable to runoff. This is the case for the wetness index developed 
by O’Loughlin (1986), which is based upon topographical information such as the upward 
contribution area and the terrain slope; in addition, information about water percolation 
into the soil profile (soil transmissivity) determines the soil saturation pattern inside a 
watershed and allows the areas that are most vulnerable to runoff to be identified. This 
index considers that the flow infiltrates as far as a condition of lowest conductivity, 
in general, the soil-rock contact, following then the method determined by topography 
(Oliveira, 2011). Thus, topography as well as soil properties have an important role in 
modelling wetness index for watersheds requiring accurate and detailed soil information 
to describe spatial pattern of the input data in the model.

Topographical data are easily obtained from digital elevation models (DEM), while detailed 
soil information can be acquired through digital soil mapping approaches (DSM). DSM 
has been strongly studied and applied in the last 30 years in order to provide detailed 
and continuous maps of soil types and properties in a raster format. This technique takes 
into consideration the existence of variation within soil class rather than considering 
soils vary only on the borders between a class and another as provided by traditional 
soil polygon maps. McBratney et al. (2003) present a number of methods that have been 
utilized in the attempt to capture the variability of soils and their attributes with greatest 
precision, including linear models, classification and regression trees, fuzzy logic, neural 
networks and geostatistics.

Fuzzy logics have proved successful in predicting soil-related attributes (Zhu and Band, 
1994; Zhu et al., 1997, 2001; Zhu and Lin, 2010; Menezes et al., 2013, Da Silva et al., 
2015). This approach has the advantage of working with smaller soil datasets incorporating 
the soil-landscape relationships and the knowledge of soil experts instead of using simply 
statistical techniques. This method is based on the premise that the knowledge of a soil 
expert and the understanding of soil-landscape relations act as a mental model, which 
can predict both soil classes and properties (Ashtekar and Owens, 2013). Normally, the 
soil-landscape relationships are obtained by terrain attributes derived from the DEM. 
The main terrain attributes used in the DSM are slope, plan and profile of the curvature, 
topographical wetness index, and others derived from the DEM by differential geometry. 
Many studies have shown good performance of models which use those derivatives of 
the terrain in the correlations for prediction of soil attributes (Moore et al., 1993; Odeh 
et al., 1995; Boer et al., 1996; Winzeler et al., 2008; Motaghian and Mohammadi, 2011). 
Nevertheless, the terrain attributes derived from differential geometry do not define 
the relief classes which are fundamental to map soils, for, in a great deal of regions, 
where there is strong soil-landscape relation, the occurrence of soil class is closely 
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related to their position in the landscape. In addition to these derivation methods of the 
topographical attributes, Jasiewicz and Stepinski (2013) developed a new procedure to 
classify the landscape based on pattern recognition, instead of differential geometry 
named geomorphons. Geomorphons use the concept of local ternary patterns (LTP) (Liao, 
2010) to classify the relief into landforms such as summit, shoulder, valley, lowland, 
depressions, plan, etc. from the DEM and with reduced computational cost (Jasiewicz 
and Stepinski, 2013).

The hypothesis that the DSM, along with the relief classification through the geomorphons, 
can be applied to predict vulnerability of soil to surface runoff was established. The 
objectives were to compare the performance of models which use geomorphons and 
models which do not use geormorphons in the prediction of soil attributes to apply in the 
calculation of a Wetness Index and define the areas that are most vulnerable to runoff.

MATERIALS AND METHODS
The study was developed in the Posses watershed, Extrema, Minas Gerais, Brazil, with 
an area of 1,196.7 ha and located between the coordinates 46° 14’ W and 22° 51’ S and 
ranging altitudes from 968 to 1,420 m (Figure 1). This region is located in the southern 
portion of the Mantiqueira range, with steep and very undulated relief. The main land use 
in the watershed is extensive grazing without conservation practices. This watershed is 
a pilot study area of the Water Producer Program of the National Water Agency (ANA), 
which aims to restore watersheds focusing on water resources (ANA, 2008), as this is 
the first sub-basin to have the Conservative Waters project implanted in the municipality 
of Extrema according to the Municipal Law No. 2,100/05. Among the actions of the 
Conservative Waters is the reduction of water erosion and revegetation of the permanent 
preservation areas (PPA). According to the Forest Act (ACT 12,651/2012), PPAs are protected 
areas, located along the waterways, on top of hills and on slopes greater than 45°, either 
covered by native vegetation or not, with the environmental function of preserving water 
resources, soil protection and ensuring the well-being of human populations. The PPAs 
surrounding the drainage network and the springs were restored and replanted in the 
watershed in 2007 (Figure 1). The climate of the region is Cwb type (mesothermal of 
mild and soft summers and winter drought), according to Köppen classification system. 
The average annual temperature is 18 °C, the hottest month and the coldest month 
having average temperatures of 25.6 °C and 13.1 °C, respectively, with the occurrence 
of frosts annually and average annual rainfall of 1,652 mm.

Using 21 soil profiles described during the soil survey, five soil classes in the Posses 
watershed were classified according to the Brazilian system of soil classification (Santos 
et al., 2013) and correlated with Soil Taxonomy (USDA, 2014): Argissolo Vermelho-Amarelo 
(Red-Yellow Ultisol), Cambissolo Háplico (Ochrept), Cambissolo Húmico (Inceptisol), 
Neossolo Litólico (Udorthent) and Neossolo Flúvico (Fluvent).

Soil properties used for this study were solum depth (A horizon + B horizon) and saturated 
hydraulic conductivity determined in laboratory using undisturbed soil samples and 
constant head permeameter according to Lima et al. (1990). Solum depth (PROF) 
information was obtained from 21 soil profiles measured during the soil survey and 
saturated hydraulic conductivity (Ksat) was sampled randomly in the whole watershed 
totalizing 141 undisturbed samples (Figure 1).

In order to calibrate and validate the models, the dataset for both soil properties studied 
were split into two datasets: training or model calibration and model validation. The 
training data was applied to calibrate the DSM models of soil properties while the validation 
data were used only to verify model performance. Given the small amount of points to 
evaluate the solum depth in relation to the amount of sampling points used for Ksat 
distribution, the number of points used to validate the models was different. For PROF, 
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30 % were used to validate the models while 20 % of the data was used to validate Ksat. 
All sampling points for both soil properties studied, had their geographical coordinates 
collected using a global positioning system (GPS) GARMIN eTrex Vista.

The soil classes and properties maps for PROF and Ks in Posses watershed were developed 
based on a digital soil mapping approach that combines expert knowledge and fuzzy 
logic. For that purpose, the Soil Land Inference Model (SoLIM) was utilized to formalize 
the relations between soils and the covariates (soil-landscape relationships) and create 
the similarity maps (Zhu and Band, 1994; Zhu, 1997; Zhu et al., 1996, 1997, 2001). 
SoLIM is a similarity model based on fuzzy logic that generates continuous maps in a 
raster format. In this methodology, each pixel is designated by a vector of similarity 
that describe the degree of similarity between the local soil and the taxonomic unit (soil 
classes) (Zhu, 1997). In this sense, co-variables that represent soil variability in the 
landscape as well as their relationships were used.

For this study, only variables related to relief were considered, taking into consideration 
that the other soil forming factors (climate, organisms, parent material and time) are the 
same for the entire watershed. The co-variables utilized were obtained from a DEM with 
a resolution of 10 m developed from topographic map (counter lines with 20 m distance 
from each other) at scale of 1:50,000 (IBGE, 1973). The similarity maps were generated 
in two ways according to the covariates used: 1) AT: elevation, slope, plan curvature and 
SAGA topographic wetness index; and 2) GEOM: geomorphons landforms combined with 
elevation, slope, plan curvature and SAGA topographic wetness index. SoLIM creates 
similarity maps in a geographic information system (GIS) using fuzzy logics defining for 
each pixel a similarity value ranging from 0 (no similarity) to 1 (high similarity). Using 
the procedure known as hardening, each pixel was assigned the highest similarity value 
generating the soil class map (Zhu et al., 1996; Zhu et al., 2010).

Figure 1. Location of the study area (a), soil profiles, sampling points of the saturated hydraulic conductivity (Ksat), pluviometric 
stations of the National Water Agency (ANA), digital elevation model (DEM) with resolution of 10 m (b) and current land use including 
the permanent preservation areas (PPA) (c).
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From the similarity maps, soil properties PROF and Ksat using both AT and GEOM were 
performed according to the following equation (Zhu et al., 1997):

Σn
k = 1 S

k
ij

Vij =
Σn

k = 1 S
k
ij × Vk

           Eq. 1

where Vij is the soil property at location i, j, Sk
ij  is the similarity value in location i, j for 

class soil k, n is the total number of soil classes and Vk is the typical value of the soil 
property for the soil class k. The typical values for each property were defined by the 
average value of the properties, per soil class, contained in the training group of the model.

The two methods used to predict classes and soil properties (AT and GEOM) were compared 
using the root mean square error (RMSE) which provides accuracy of the prediction; 
lower values indicate better accuracy.

nRMSE =
Σn

i = 1 (z
* – z)2

           Eq. 2

where z* is the estimated soil property value, z is the observed (field data) soil property 
value that has not been used in the model and n is the number of samples.

After choosing the best method for the prediction of PROF and Ksat attributes, the 
vulnerability to runoff for the Posses watershed was determined. Vulnerability to 
runoff was obtained through the soil wetness index (W) developed by O’Loughlin 
(1986). For values of W greater than 1, it was considered that there are sufficient 
conditions to saturate the soil, so that surface flow occurs. For values smaller than or 
equal to 1, it was defined that all rainwater infiltrated into the soil, so there was no 
water available for runoff, which reduced the chances of soil erosion and sediment 
transportation occurring. The monthly W index was calculated for the whole watershed 
according to the equation:

W = (Q/T)[a/b × sen θ]           Eq. 3

where W is the soil wetness index (dimensionless), Q is the monthly rainfall (m s-1), 
T is the value of soil transmissivity (m2 s-1), a corresponds to the upstream contribution 
area (m2), b is the pixel size (m) and senθ is the sine of slope (radians). The ratio Q/T 
corresponds to the hydrological control, while the ratio (a/b×senθ) corresponds to the 
morphological control (Dietrich and Wilson, 1993).

The monthly rainfall data used are from January 2009 to December 2011, obtained in 
five ANA rainfall stations distributed along the watershed (Figure 1).

The soil transmissivity was calculated by multiplying saturated hydraulic conductivity 
maps (Ksat) by solum depth (PROF) predicted using DSM method, which had increased 
accuracy, according to the adapted equation of Montgomery and Dietrich (1994):

T = Ksat × PROF           Eq. 4

where T is the soil transmissivity (m2 s-1); Ksat is the saturated hydraulic conductivity 
(m s-1) and PROF is the solum depth (m).

The contribution area of each cell (pixel) of the DEM was obtained by multiplying the 
accumulated flow defined by the D∞ method (Tarboton, 1997; Oliveira et al., 2012) by 
the area of each cell (100 m2), according to Moore et al. (1993):

A = λη             Eq. 5

where A corresponds to the contribution area (m2), λ is the cumulative flow (pixel) and 
η is the pixel area (m2).
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RESULTS AND DISCUSSION
The soil properties Ksat and PROF had better performance when terrain attributes 
(Figure 1), slope, curvature plan, SAGA, topographic wetness index and geomorphons 
(Figure 2) were combined (GEOM method) (Figure 3). For Ksat, the difference in accuracy 
between the two applied methodological models was not as evident as for the PROF 
attribute. This shows that PROF was more influenced by the position in the landscape 
than the Ksat. Ksat is a soil dynamic soil property, which is affected by anthropic factors 
in addition to the factors that lead to soil formation; while PROF is closely related to 
soil-forming factors and thus strongly affected by its position in the landscape. The 
Posses watershed has a very undulated and steep relief, driven by natural processes of 
erosion that occur in this area due to its location on the edge of the Mantiqueira Range. 
With the movement of water over the landscape since the uplift of the Mantiqueira, the 
well-developed and deeper soils, like Latosols that were formed previously, gave way 
to less developed and shallow soils. This causes the soil-landscape relationship to be 
most striking for Ksat attribute that undergoes influence by the current land use, which 
is basically pasture (>70 %) in this watershed.

Due to the higher accuracy of the GEOM method for predicting soil properties in 
the studied soils, this was also the chosen method to generate a soil map for the 
watershed (Figure 4). According to the results, most of the watershed (55 %) consists 
of Cambisols, which have an occurrence linked to the areas of steep slopes that 
provide severe river discharge and mechanization difficulties. Thus, they become 
vulnerable to the process of erosion, being restricted to annual crops that require more 
interventions and are preferable to use with pastures, reforestation and some soil 
protective permanent crops when properly managed, using special soil conservation 
practices, since, even under this type of vegetation, such soils are susceptible to the 
process of erosion (Silva et al., 2013).

The second most-occurring soil in the watershed is the Argissolo Vermelho-Amarelo, 
which is more developed, deeper and more resistant to erosion than the Cambisols. 
However, in spite of being more resistant to erosion, Argissolo Vermelho-Amarelo 
is still very susceptible to soil losses due to the textural gradient between the 
horizon A and B.

Associated with Argissolo Vermelho-Amarelo and Cambisols occurs Neossolo Litólico 
containing rocky outcroppings making it impossible to be cultivated. This soil is found 
in 8 % of the watershed and must be used only for protection and shelter of wild fauna 
and flora, recreation and tourism or water storage in dams (Lepsch et al., 1991).

The occurrence of Neossolo Flúvico associated with the drainage network (areas of gentle 
slope) of the subs-basin was observed. This soil occupies 11 % of the watershed and 
receives all of the eroded sediments from the upstream area, continuously renewing 
the soil and then slowing down its evolution process and resulting of no presence of 
structure, making it very susceptible to erosion by mass displacement.

The monthly soil vulnerability evaluation of surface runoff revealed that the most critical 
months are between November and March (Figure 5). According to the index used in 
this study to estimate runoff, when the degree of soil saturation is significant, the risk 
of soil erosion and sediment transportation is also high (Oliveira, 2011). For the months 
of December and January, practically, all the watershed is at risk of erosion, except the 
summits. Nevertheless, the summits are not vulnerable to runoff and erosion risks in 
any of the months analyzed, indicating that these areas are important in the infiltration 
of water and supply of water tables.

During the months from May to August, which is the dry season in the region with an 
average monthly rainfall lower than 50 mm, it can be seen that the soil saturation is 



Silva et al.  Predicting Runoff Risks by Digital Soil Mapping

7Rev Bras Cienc Solo 2016;40:e0150353

significant only close to the drainage network. This highlights the importance of vegetation 
in PPAs as a buffer area for the Posses River. The risk of erosion in these areas is evident 
during every month of the year, even in the dry season, requiring permanently cover 
protection of soil, preventing erosion on the river edges from increasing the silting of 
water sources that will interfere with the water supply.

Figure 2. Terrain attributes slope (a), SAGA topographic wetness index (TWI) (b), geomorphons 
(c) and plan curvature (d) in the Posses watershed, Extrema, MG.
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April and September are the months on the transition between the dry season and the 
rainy season in the watershed and are more vulnerable in the areas of steepest slopes, 
mainly in the headwaters areas.

The most critical month to runoff is January due to the occurrence of heavy rains (Table 1). 
In this month, most of the agricultural areas have insignificant risk of occurring runoff, 

Figure 3. Saturated hydraulic conductivity (Ksat) determined by the GEOM method (a), Ksat 
determined by the AT method (b), solum depth (PROF) determined by the GEOM method (c) and 
PROF determined by the TA method (d) in the Posses watershed, Extrema, MG.
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Figure 4. Soil class map (a) and percentage of the area occupied by each soil class (b) in the 
Posses watershed, Extrema, MG. Soil classes according to Soil Taxonomy (USDA, 2014): Cambissolo 
Húmico (Inceptisol), Cambissolo Háplico (Ochrept), Argissolo Vermelho-Amarelo (Red-Yellow Ultisol), 
Neossolo Litólico (Udorthent) and Neossolo Flúvico (Fluvent).
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approximately a half of the areas of eucalyptus, pasture, native forest presents significant 
risk, the other half has insignificant risk, and about 70 % of PPA presents significant risk 
of runoff. These areas of greatest risk become more susceptible to erosion. This shows 
that the restoring PPAs by Conservative Waters was a very important action to soil 
conservation and protection of water resources, as they are allocated in critical areas to 
erosion in the watershed and not just in January but throughout the whole year.

In general, the months of greatest vulnerability to runoff and erosion (November to March), 
the land uses with pasture and PPA are the ones which lie in the areas of greatest risk. 
Pastures, when well-managed, help reduce water erosion. However, according to Oliveira 
et al. (2008), pastures in the Posses watershed lie in an advanced stage of degradation, 
requiring adequate management plans to ensure the sustainable use of these pastures, 
mainly for lying in the areas most susceptible to runoff and soil erosion.

Table 1. Percentage of vulnerable area to runoff according to the current land use in the 
Posses watershed

Month Runoff Agriculture Eucalyptus Pasture Native 
forest PPA(1)

%

January
Non-significant 73 55 48 50 32

Significant 27 45 52 50 68

February
Non-significant 92 81 75 77 58

Significant 8 19 25 23 42

March
Non-significant 89 77 70 71 51

Significant 11 23 30 29 49

April
Non-significant 96 86 83 83 67

Significant 4 14 17 17 33

May
Non-significant 100 94 96 95 87

Significant 0 6 4 5 13

June
Non-significant 100 91 91 90 79

Significant 0 9 9 10 21

July
Non-significant 100 91 93 91 81

Significant 0 9 7 9 19

August
Non-significant 100 93 95 94 85

Significant 0 7 5 6 15

September
Non-significant 98 89 87 86 72

Significant 2 11 13 14 28

October
Non-significant 94 84 80 80 64

Significant 6 16 20 20 36

November
Non-significant 90 78 71 73 53

Significant 10 22 29 27 47

December
Non-significant 85 70 63 65 45

Significant 15 30 37 35 55
(1) PPA: Permanent preservation areas.
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CONCLUSIONS
The landforms defined by geomorphons and used in the DSM approach are efficient to 
model processes that occur in watersheds, making them able to be used in predicting 
soil vulnerability to runoff.

The months of greatest vulnerability to runoff (September, November to March and 
April) had greater risk in the headwater area, while the months of lower rainfall (May 
to August) the risk of runoff and erosion were restricted to the neighborhood of the 
drainage network.

In the months of greatest vulnerability to both runoff and erosion (November to March), 
the uses grazing and PPA are found in areas of greatest risk, indicating that the PPAs 
should be maintained and pastures properly managed and preserved.
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