

ANITA FERNANDA DOS SANTOS TEIXEIRA

RELATIONSHIPS AMONG SOIL MICROBIOLOGICAL ATTRIBUTES AND ABIOTIC FACTORS IN PHYTOPHYSIOGNOMIES INFLUENCED BY IRON MINING

LAVRAS - MG 2019

ANITA FERNANDA DOS SANTOS TEIXEIRA

RELATIONSHIPS AMONG SOIL MICROBIOLOGICAL ATTRIBUTES AND ABIOTIC FACTORS IN PHYTOPHYSIOGNOMIES INFLUENCED BY IRON MINING

Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Ciência do Solo, área de concentração em Microbiologia e Bioquímica do Solo, para a obtenção do título de Doutor.

Prof^a. Dr^a. Fatima Maria de Souza Moreira Orientadora Prof. Dr. Sérgio Henrique Godinho Silva Coorientador Dr^a. Amanda Azarias Guimarães Coorientadora

LAVRAS - MG 2019

Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a).

Teixeira, Anita Fernanda dos Santos.

Relationships among soil microbiological attributes and abiotic factors in phytophysiognomies influenced by iron mining / Anita Fernanda dos Santos Teixeira. - 2019.

123 p. : il.

Orientador(a): Fatima Maria de Souza Moreira. Coorientador(a): Sérgio Henrique Godinho Silva, Amanda Azarias Guimarães. Tese (doutorado) - Universidade Federal de Lavras, 2019. Bibliografia.

1. Iron Mining. 2. Microbiological Indicators. 3. Prediction Models. I. Moreira, Fatima Maria de Souza. II. Silva, Sérgio Henrique Godinho. III. Guimarães, Amanda Azarias. IV. Título.

ANITA FERNANDA DOS SANTOS TEIXEIRA

RELATIONSHIPS AMONG SOIL MICROBIOLOGICAL ATTRIBUTES AND ABIOTIC FACTORS IN PHYTOPHYSIOGNOMIES INFLUENCED BY IRON MINING

Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Ciência do Solo, área de concentração em Microbiologia e Bioquímica do Solo, para a obtenção do título de Doutor.

APROVADA em 21 de fevereiro de 2019.	
Dr ^a . Fatima Maria de Souza Moreira	DCS/UFLA
Dr. Teotonio Soares de Carvalho	DCS/UFLA
Dr. Leônidas Carrijo Azevedo Melo	DCS/UFLA
Dr. Fausto Weimar Acerbi Junior	DCF/UFLA
Dr ^a . Maria Catarina Megumi Kasuya	UFV

Dr^a. Fatima Maria de Souza Moreira Orientadora Dr. Sérgio Henrique Godinho Silva Coorientador Dr^a. Amanda Azarias Guimarães Coorientadora

LAVRAS - MG 2019

Aos meus amores: meus pais, Maria Dalva e Luiz, meus irmãos, Aline e Anderson, meu afilhado Miguel, e meu namorado Sérgio, por me fazerem acreditar que eu sou capaz. DEDICO

> A Deus, por todas as bênçãos que recebi e por ter me dado forças para chegar até aqui. OFEREÇO

AGRADECIMENTOS

Na conclusão de mais essa etapa, quero expressar minha imensa gratidão:

A Deus, por guiar meus passos, pela família maravilhosa em que nasci, pela oportunidade de estudar e pelas inúmeras bênçãos recebidas;

À minha mãe, Maria Dalva, meu pai, Luiz, meus irmãos, Aline e Anderson, pelo exemplo, amor, apoio, incentivo, dedicação e por tudo o que fazem por mim; ao meu afilhado Miguel pela alegria e inspiração; aos meus cunhados Guilherme e Daniela por sempre torcerem por mim; aos meus avós (*in memoriam*), Antônio, Geralda e Almezinda, por olharem por mim e por terem me ensinado que não importa "o que" você tem na vida, mas "quem" você tem na vida;

Ao meu namorado Sérgio, pela inspiração, apoio, incentivo, carinho e força, fundamentais para que eu conseguisse concluir esse trabalho; à Taísa, Tânia, ao Sr. Danilo (*in memoriam*), D. Zezé, e Sérgio Curi por todo o carinho;

À minha orientadora, Professora Fatima pela oportunidade de desenvolver esse trabalho, pelos ensinamentos repassados, a prontidão em me atender e auxiliar sempre, e pelo exemplo de mulher batalhadora; aos meus coorientadores Dr^a Amanda Azarias e Professor Sérgio, por todos os ensinamentos e por me ajudarem a ver a luz no fim do túnel quando eu achava que tudo estava dando errado; aos membros da banca, por disporem do seu tempo para me auxiliar;

Aos todos aqueles que foram meus professores, por terem compartilhado seus conhecimentos de forma única, sempre pensando no crescimento dos seus alunos e, em especial, expresso minha gratidão ao Professor Nilton Curi, que além de ensinar sobre solos, sempre me incentiva a melhorar e me passa preciosos conselhos sobre a vida;

Aos Professores Marco Carbone e Teotônio, aos técnicos do Laboratório Manoel, Marlene e Paulo, e às secretárias do Programa de Pós-Graduação e do DCS, Dirce e Maria Alice, pelos ensinamentos, auxílios, paciência, e todos os conselhos que me auxiliaram muito na execução e conclusão desse trabalho; ao Professor Alfredo Scheid Lopes, por sua dedicação, ensinamentos, e por compartilhar seu conhecimento e suas histórias de superação que tanto me inspiram;

Ao Professor Marlon (UFV – CRP), por ser um grande exemplo, ter incentivado meu interesse em microbiologia do solo e na pesquisa, e por ter me apoiado a buscar novos rumos quando foi necessário;

Às minhas queridas amigas e companheiras de trabalho Bruna Daniela, Aline Oliveira, Júlia Colombo, Mariana Fukuda, Marcela Pereira e Bárbara Luyse, por todo trabalho, dedicação e por tudo o que fizeram para me ajudar; ao Núcleo de Estudos em Ciência do Solo (NECS), por todos os ensinamentos que comigo foram compartilhados;

À Priscila, minha irmã de coração, por torcer por mim, me entender nas horas difíceis, e por sempre me mandar forças de onde quer que estivesse; aos amigos Andrêssa, Bruna, Eveliny, Fabrício, Flávia Louzeiro, Flávia Roman, Flávia Sales, Flávio, Gina, Jessé, Laíze, Luciane, Márcia, Marisângela, Osnar, Alexandre, Aline, Ana, André, Celso, Cesar, Damiany, Daniele Cabral, Jacqueline, Joana, Jordana, Ju Volpi, Karl, Maria Vitória, Olavo, Pedro, Poly, Rafael, Raquel, Silvia, Soraya, Tainara, e todos os que me auxiliaram de alguma forma com companheirismo e ensinamentos, aprendi muito com vocês;

À nossa equipe de coleta de solo nas áreas de estudo, Aline, Caroline, Diego Tassinari, Jessé, Jordana, Márcia, Maurício Coelho, Paula Rose, Prof. Warley e Zélio, que além de ter trabalhado muito, não perdeu o bom humor e companheirismo;

À Aryane, Soraya e Jéssica minhas amigas e irmãs nessa jornada e pelos ensinamentos, amizade, força e carinho; Aos amigos do DCS/UFLA, Ana Paula's, Babi, Bombinha, Bruno Montoani, Cris, Cristiano, Cynthia, Damiany, Diego, Eduardo, Érika Andressa, Fabrício Andrade, Franklin, Geanderson, Geila, Giovanna, Jeani, Jefferson, José Ferreira, Júnior César, Luana, Márcio, Maria Jéssica, Mariana, Raphael Siqueira, Rimena, Samara, Sara, Vanuze, Yasmin, Zélio, e a todos os que de alguma forma me acompanharam nessa jornada, pelos momentos de felicidade, ensinamentos, e por me incentivarem de alguma forma, trazendo alegria para o meu caminho e me ajudando nas horas difíceis;

À Universidade Federal de Lavras, ao Departamento de Ciência do Solo e ao Programa de Pós-Graduação em Ciência do Solo, pela oportunidade concedida para realização do mestrado; ao projeto CRA – RDP – 00136 – 10 (FAPEMIG/ FAPESP/ FAPESPA/ VALE S. A.), "Diversidade de plantas e de organismos do solo com potencial biotecnológico e indicadores de recuperação ambiental em Minas Gerais"; à FAPEMIG, CAPES, CNPq e Vale pelos auxílios financeiros; O presente trabalho foi realizado com apoio da Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG);

A todas as dificuldades, desafios e medos enfrentados, sem eles não teria a oportunidade de aprender, superar e crescer;

Enfim, a todos os que de algum modo me ajudaram a conquistar meus objetivos, apenas muito obrigada não é capaz de expressar toda a gratidão em meu coração.

O Cio da Terra

"Debulhar o trigo Recolher cada bago do trigo Forjar no trigo o milagre do pão E se fartar de pão

Decepar a cana Recolher a garapa da cana Roubar da cana a doçura do mel Se lambuzar de mel

Afagar a terra Conhecer os desejos da terra Cio da terra, a propícia estação E fecundar o chão"

(Milton Nascimento e Chico Buarque)

RESUMO

O Quadrilátero Ferrífero é uma área conhecida mundialmente por seus depósitos de minério de ferro. Nessa região se encontram Cerrado e Mata Atlântica, dois grandes biomas do Brasil, além de diversas áreas modificadas pela mineração e áreas de bancadas lateríticas, conhecidas como canga. Assim, além da importância econômica, a área é um hot spot de diversidade. O solo é um sistema onde ocorrem diversos serviços ecossistêmicos que garantem a manutenção da vida no planeta. Desta forma, a manutenção da qualidade do solo é importante para a manutenção desses serviços. Este trabalho objetivou avaliar a influência de fatores abióticos em atributos microbiológicos do solo e espacializar alguns desses em fitofisionomias do Quadrilátero Ferrífero. Solo foi amostrado em fitofisionomias de Mata Atlântica, Cerrado, Canga, Eucalipto e em áreas em reabilitação alteradas pela mineração de ferro. Neste trabalho foram avaliadas a diversidade de fungos micorrízicos arbusculares (FMA) em culturas armadilha e o potencial de inóculo micorrízico. Também foram realizadas predições e espacializações dos indicadores microbiológicos de qualidade do solo carbono da biomassa microbiana, respiração basal do solo, quociente metabólico (qCO₂), quociente microbiano (qMic), atividade de hidrólise do diacetato de fluoresceína (FDA), urease, fosfatase ácida, fosfatase alcalina e β-glicosidase. Para predição desses últimos indicadores citados foram utilizados dados de fertilidade e textura do solo, teores de elementos obtidos por equipamento portátil de fluorescência de raios-X (pXRF) e dados de atributos de terreno. O maior potencial do inóculo micorrízico foi encontrado em canga. O uso de culturas armadilhas aumenta a diversidade de espécies de FMA capturadas. Considerar fitofisionomia e estação no modelo melhora a predição de indicadores microbiológicos de qualidade do solo. A fertilidade do solo e textura podem predizer carbono da biomassa microbiana, respiração microbiana, qCO₂ e qMic. Atributos do terreno são os melhores preditores de respiração basal do solo. Elementos obtidos por pXRF, propriedades físico-químicas do solo e atributos do terreno fornecem bons modelos preditivos de atividade de enzimas do solo. A espacialização da atividade das enzimas e dos atributos microbiológicos permite uma melhor visão geral da variabilidade desses em cada fitofisionomia e estação.

Palavras-chave: Indicadores microbiológicos de qualidade do solo. Fungos micorrízicos arbusculares. Modelos de predição. Espacialização de dados microbiológicos.

ABSTRACT

The *Quadrilátero Ferrífero* is an area known worldwide for its iron ore deposits. In this region two large biomes of Brazil meet, Cerrado and Atlantic Forest, in addition to being found several areas modified by mining and areas of ironstone outcrops, known as canga. Thus, in addition to the economic importance, the area is a hot spot of diversity. Soil is a system where there are many ecosystem services that guarantee the maintenance of life on the planet. In this way, the maintenance of soil quality is important for the maintenance of these services. This work aimed to evaluate the influence of abiotic factors on soil microbiological attributes and to spatialize some of these in phytophysiognomies of the *Quadrilátero Ferrífero*. Soil was sampled in phytophysiognomies of Atlantic Forest, Cerrado, Canga, Eucalyptus, and in areas in rehabilitation altered by iron mining. In this work the diversity of arbuscular mycorrhizal fungi (AMF) in trap cultures and the potential of mycorrhizal inoculum were evaluated. Soil microbiological indicators biomass microbial carbon, basal soil respiration, metabolic quotient (qCO₂), microbial quotient (qMic), hydrolysis activity of fluorescein diacetate (FDA), urease, acid phosphatase, alkaline phosphatase and β -glycosidase were also predicted and spatialized. In order to predict these last mentioned indicators, soil fertility and texture data, element contents obtained by portable X-ray fluorescence equipment (pXRF) and terrain attribute data were used. The highest potential of the mycorrhizal inoculum was found in canga. The use of trap cultures increases the diversity of AMF species captured. To Consider phytophysiognomy and season in the model improves the prediction of microbiological indicators of soil quality. Soil fertility and texture can predict biomass microbial carbon, basal soil respiration, qCO₂ and *q*Mic. Terrain attributes are the best predictors of basal soil respiration. Elements obtained by pXRF, soil physicochemical properties and terrain attributes provide good predictive models for soil enzymes activity. The spatialization of the enzymes activity and of the other microbiological attributes allows a better overview of the variability of these in each phytophysiognomy and season.

Keywords: Microbiological indicators of soil quality. Arbuscular mycorrhizal fungi. Predictive models. Spatialization of microbiological data.

SUMÁRIO

1.	INTRODUÇÃO11
2.	PRIMEIRA PARTE – REFERENCIAL TEÓRICO14
2.1	O Quadrilátero Ferrífero15
2.2	O ecossistema solo16
2.3	Indicadores microbiológicos de qualidade do solo17
2.4	Modelagem e espacialização de dados na Ciência do Solo19
	REFERÊNCIAS21
	SEGUNDA PARTE – ARTIGOS
	ARTIGO 1 – Arbuscular mycorrhizal fungal community in an iron mining area and
	its surroundings: inoculation potential and diversity of spores in trap culture related
	to soil properties
	ARTIGO 2 – Prediction of microbiological indicators of soil quality: A proximal and
	remotely sensed data approach50
	ARTIGO 3 – Soil physicochemical properties and terrain information predict soil
	enzymes activity
	TERCEIRA PARTE – CONSIDERAÇÕES FINAIS119

1. INTRODUÇÃO

O Brasil se destaca no cenário mundial pela mineração e exportação de Ferro. Apesar da importância econômica, a mineração causa mudanças que impactam o ambiente. No processo de mineração, a abertura da cava consiste em remover a camada que recobre o minério. Essa camada é depositada em forma de pilhas (taludes) que também podem ser formadas por rejeitos da mineração. Desta forma, diversas perturbações são causadas em áreas sub influência de mineração, principalmente no solo, sendo necessárias intervenções para revegetação e reabilitação desses locais.

O solo é um sistema complexo onde a fase sólida forma agregados, e as fases líquida e gasosa se encontram constantemente em dinâmica nos poros presentes na estrutura do solo. A heterogeneidade do solo faz com que ele apresente diversos tipos de habitats, que podem abrigar diferentes organismos. Desta forma, o solo apresenta variedade de condições que permite que organismos metabolicamente distintos possam conviver lado a lado (CARDOSO; ANDREOTE, 2016; MOREIRA; SIQUEIRA, 2006; RESENDE et al., 2014). Entre os diversos organismos que habitam o solo, os microrganismos desempenham papel fundamental para a formação do solo e a manutenção de processos biológicos. Eles são responsáveis pela excreção de compostos diversos que auxiliam no intemperismo do material de origem, além de terem papel na agregação das partículas do solo (SCHULZ et al., 2013). Entre os diversos processos biológicos intermediados pelos microrganismos do solo, podemos destacar a formação da matéria orgânica do solo, o processo de ciclagem de nutrientes, como carbono, nitrogênio, fósforo e enxofre, além de outros processos que garantem a manutenção da vida no planeta (BENDER; WAGG; VAN DER HEIJDEN, 2016).

Apesar de os microrganismos do solo influenciarem diretamente no funcionamento do ecossistema solo, eles também são influenciados por fatores bióticos e abióticos do solo. Diversos fatores abióticos como pH, teores de nutrientes, temperatura, água, mineralogia/estrutura, entre outros, refletem na composição e atividade da microbiota de diferentes formas, provocando diferentes respostas da microbiota. Essa resposta é geralmente refletida rapidamente pelos microrganismos do solo, que são componentes bastante sensíveis no sistema solo.

Nesta complexa rede de interações, há necessidade de compreensão de como os fatores abióticos podem afetar os microrganismos do solo sob uma mesma fitofisionomia. Diversos estudos apontam que alguns fatores abióticos são mais determinantes que outros na atividade e composição da comunidade microbiana e, em grande parte dos estudos, apenas fatores relacionados à fertilidade do solo são considerados (DE CARVALHO et al., 2016; TEIXEIRA et al., 2017; SILVA et al., 2018a), ficando os outros fatores, como relevo e composição química do solo em segundo plano. O entendimento das diferentes relações dos fatores abióticos com os atributos microbiológicos do solo é um fator chave para melhor compreensão do comportamento desses que, por responderem rapidamente a variações no ambiente, são bons indicadores de qualidade do solo.

A qualidade do solo é a capacidade do solo de funcionar nos limites do ecossistema sustentando plantas, animais e seres humanos (DORAN; PARKIN, 1994). Existem diversos indicadores de qualidade do solo, estando esses relacionados com a física, química ou a biologia do mesmo. Entre esses, os indicadores microbiológicos apresentam vantagens em relação aos demais pela rapidez com que respondem a mudanças no ambiente (DORAN; PARKIN, 1994). Como a diversidade e a atividade dos microrganismos do solo é influenciada por diversos fatores, mudanças que ocorrem no meio levam o ecossistema solo a se reajustar, reflexo da resiliência do mesmo. Os microrganismos do solo, por sua grande sensibilidade às variações no meio em que estão inseridos, são os primeiros a reagirem às novas condições em seu habitat. Essa readaptação faz com que eles variem sua diversidade, reprodução, taxa de respiração, e até mesmo a quantidade de substâncias excretadas.

A diversidade de microrganismos encontrada em um solo também é um indicador de sua qualidade. Em ecossistemas estáveis, os organismos que ali habitam se encontram em condição de relativo equilíbrio. Os organismos do solo apresentam grande diversidade funcional, podendo um mesmo organismo executar diferentes funções em um mesmo sistema. Diferentes microrganismos podem desempenhar a mesma função, garantindo a redundância funcional necessária à resiliência do ecossistema (ZHANG et al., 2016). A resiliência do ecossistema é determinada por um conjunto de fatores físicos e químicos do solo e do seu efeito na comunidade microbiana (GRIFFITHS; PHILIPPOT, 2013).

Entre os microrganismos que apresentam grande diversidade funcional, os fungos micorrízicos arbusculares (FMA) se destacam. Esses fungos apresentam capacidade de auxiliar a agregação do solo pela produção de enzimas ou efeitos físicos, além de serem simbiontes da maioria das espécies de plantas, auxiliando-as na obtenção de água e nutrientes, além de facilitar o desenvolvimento dessas em ambientes sob estresse (JEFFRIES et al., 2003; KLIRONOMOS et al., 2000; VILELA et al., 2014). Os FMA são biotróficos obrigatórios que só completam seu ciclo de vida na presença de uma planta hospedeira. Os esporos desses fungos, além de serem

sua estrutura de propagação e resistência, são muito úteis para identificação das espécies de FMA. Apesar de não haver especificidade entre planta e FMA, existe preferencialidade, podendo uma mesma espécie de FMA beneficiar ou não diferentes espécies de plantas (BEVER et al., 2009; DE SOUZA et al., 2008). Desta forma, a diversidade desses fungos também é relacionada à qualidade do solo, por sua diversidade ser importante para garantir o equilíbrio do ecossistema.

Entre as substâncias excretadas, não apenas por FMA, como por diferentes microrganismos do solo, as enzimas apresentam papel funcional nos ecossistemas. As enzimas do solo aceleram reações em diversos ciclos como do carbono, nitrogênio e fósforo. A depender das condições encontradas no habitat, os microrganismos podem excretar diferentes enzimas e as mesmas podem estar mais ou menos ativas (BURNS et al., 2013; GIANFREDA et al., 2002).

O Quadrilátero Ferrífero é reconhecido mundialmente por seus grandes depósitos de Ferro. Além disso, essa região é considerada "hot spot" de diversidade, por sua grande diversidade de ambientes diferentes em curtas distâncias. Por sua heterogeneidade de habitats, essa é uma região bastante atrativa para estudos relacionados à ecologia. Lado a lado com áreas de preservação, há diversas áreas alteradas pela mineração que estão em fase de recuperação ou que precisam ou precisarão ser recuperadas, sendo conhecidos dois grandes desastres humanos e ambientais que foram o rompimento das barragens de rejeitos da mina Fundão (Mariana) e da mina Córrego do Feijão (Brumadinho), aumentando o apelo ecológico e ambiental para estudos nessas áreas.

O ecossistema solo encontra-se, portanto, em equilíbrio dinâmico com as condições do ambiente, e os indicadores microbiológicos de qualidade do solo, por refletirem rapidamente mudanças externas que rompam este equilíbrio, são de extrema importância para avaliações de impacto e degradação do solo, como ocorre em áreas de mineração. Desta forma, estudos de fatores abióticos que variam ao longo de ambientes interferindo nesses indicadores podem auxiliar no manejo adequado para retorno de sua resiliência. Este trabalho objetivou, portanto, avaliar as relações entre atributos microbiológicos do solo e fatores abióticos em áreas sob influência da mineração de ferro. 2. PRIMEIRA PARTE – REFERENCIAL TEÓRICO

2.1 O Quadrilátero Ferrífero

O Quadrilátero Ferrífero é uma região reconhecida mundialmente por seu grande depósito de minério de ferro. Localizada no estado de Minas Gerais, no sudeste do Brasil, a região abrange 25 municípios (Barão de Cocais, Belo Horizonte, Belo Vale, Bonfim, Brumadinho, Caeté, Catas Altas, Congonhas, Contagem, Esmeraldas, Ibirité, Igarapé, Itabira, Itabirito, Mariana, Moeda, Nova Lima, Ouro Branco, Ouro Preto, Raposos, Rio Acima, Rio Piracicaba, Sabará, Santa Bárbara e Santa Luzia) correspondendo a uma área de aproximadamente 7200 km² (DO CARMO; JACOBI, 2016).

Localizado no Cráton São Francisco, a região passou por um processo de soerguimento, e o nome de quadrilátero provém da forma relativamente quadrangular que a região apresenta. O termo ferrífero é devido à alta concentração de ferro nas formações geológicas da região, composta por itabiritos, dolomitos ferruginosos e rochas básicas a ultrabásicas (CARVALHO FILHO; CURI; SHINZATO, 2010; FARINA et al., 2016; VARAJÃO; SALGADO; VARAJÃO; BRAUCHER; COLIN; NALINI JUNIOR et al., 2009)

Os solos da região apresentam diversas características que refletem a composição de seus materiais de origem. A depender do relevo e material de origem, os solos da região variam desde ilhas de solo em Plintossolo Pétricos a Latossolos profundos. Assim, as fitofisionomias da região refletem as características do solo em que as plantas estão se desenvolvendo. Por essa grande diversidade de ambientes, o Quadrilátero Ferrífero é reconhecido como um *hot spot* de diversidade (CARVALHO FILHO; CURI; SHINZATO, 2010; CASTRO et al., 2017; TEIXEIRA et al., 2017; VARAJÃO et al., 2009).

Mata Atlântica e Cerrado, dois grandes biomas do Brasil, se encontram no Quadrilátero Ferrífero. Também são observadas áreas de canga, com bancadas lateríticas que apresentam ilhas de solo com grande concentração de diversidade. Além de fitofisionomias naturais, diversas localidades apresentam paisagens alteradas pela mineração de ferro, apresentando pilhas de estéril e / ou taludes de estabilização de solo que tenha sofrido alguma alteração e barragens de rejeitos.

Dois grandes acidentes com barragens de rejeitos conhecidos mundialmente ocorreram no Quadrilátero Ferrífero. O primeiro ocorreu em 15 de novembro de 2015, no município de Mariana. A barragem de rejeitos Fundão se rompeu, derramando aproximadamente 62 milhões de metros cúbicos de lama que destruiu o subdistrito de Bento Rodrigues, afetou cerca de 1.400 hectares e matou 19 pessoas (IBAMA, 2015). O segundo acidente ocorreu em 25 de janeiro de 2019, em Brumadinho. A barragem 1 da mina Córrego do Feijão se rompeu e derramou cerca de 12 milhões de metros cúbicos de rejeito no ambiente. Dados preliminares estimam 315 vítimas (mortos e desaparecidos) e que cerca de 200 hectares tenham sido afetados pela lama.

A mineração provoca mudanças drásticas na paisagem e no solo, podendo gerar graves consequências à sua sustentabilidade. Desta forma, o Quadrilátero Ferrífero apresenta grande diversidade de fitofisionomias com características particulares, sendo uma importante área para estudos de diversidade, ecossistemas e de grande apelo ecológico e ambiental.

2.2 O ecossistema solo

O solo é a parte superficial da crosta terrestre que resulta da ação dos fatores de formação como clima e organismos agindo sobre um material de origem em um dado relevo ao longo do tempo. Esse sistema heterogêneo, complexo e dinâmico apresenta uma ampla gama de habitats, proporcionando variabilidade de ambientes, proporcionando condições para que organismos metabolicamente distintos possam conviver lado a lado em equilíbrio dinâmico (KER et al., 2012; MOREIRA et al., 2013; RESENDE et al., 2014).

A estrutura do ecossistema solo compreende a comunidade biológica em riqueza, distribuição e densidade de espécies que nele habitam, além da quantidade e distribuição de componentes abióticos. Já as funções do ecossistema solo, envolvem os processos que nele ocorrem, como fluxo de energia, ciclos biogeoquímicos, formação da matéria orgânica, e a regulação mútua entre organismos e ambientes (TOWNSEND; BEGON; HARPER, 2010). Para compreensão do ecossistema solo, primeiramente deve-se entender a gama de habitats que o compõem. O solo é trifásico, contendo partículas sólidas além das fases líquida e gasosa. A parte sólida é composta por partículas minerais, matéria orgânica, organismos e raízes nele presente. Os principais constituintes da fase sólida do solo são, geralmente, partículas minerais de tamanho areia, silte ou argila. Juntamente com os outros constituintes sólidos, essas partículas se arranjam formando os agregados, e os espaços vazios entre as partículas e agregados formam os poros. A fase sólida do solo geralmente representa, aproximadamente 50 % do volume do solo (~45% de partículas minerais e ~5% de matéria orgânica). Os outros 50% do volume do solo encontram-se em equilíbrio dinâmico entre água e ar (CARDOSO; ANDREOTE, 2016; FERREIRA, 2010; MOREIRA; SIQUEIRA, 2006).

Os microrganismos do solo influenciam e são influenciados pelo seu habitat. Apesar de representarem uma pequena parcela do ecossistema que habitam, os microrganismos atuam

colonizando os materiais de origem e sedimentos nos primórdios da formação do solo; na sua agregação e nos ciclos biogeoquímicos que nele ocorrem (PAUL, 2007; SCHULZ et al., 2013).

A composição do material de origem do solo, as cargas das argilas (predominantemente negativas), a capacidade de troca de cátions, a superfície específica das partículas entre outras, são características que influenciam os microrganismos. Os microrganismos têm suas propriedades superficiais específicas, como carga, característica dos compostos excretados, entre outras e, essas propriedades são determinantes para a sua sobrevivência, sucessão, interações e atividade. Uma vez aderidos às partículas, os microrganismos ficam menos sujeitos a serem removidos do sistema e mais aptos a explorar os nutrientes e substâncias no seu microhabitat. Por sua vez, as cargas positivas de células microbianas e hifas de fungos do solo aumentam a estabilidade do agregado ou do complexo argila-bactéria em argilas que apresentam carga líquida negativa (CARDOSO; ANDREOTE, 2016; MOREIRA; SIQUEIRA, 2006; ŠTURSOVÁ et al., 2016).

Os fatores que influenciam os microrganismos do solo são diversos. Entre esses, podemos citar características da fase sólida do solo, presença de substrato, fatores de crescimento, nutrientes, gases, temperatura, radiação solar (nos primeiros centímetros) e fatores relacionados à umidade e solução do solo como composição, pH, potencial redox, força iônica, entre outros (AGUILERA et al., 2016; SANTOYO et al., 2017). Mudanças em algum fator ou perturbações externas, refletem na atividade e até mesmo na diversidade de organismos do ecossistema, os quais buscarão um novo estado de equilíbrio para a comunidade. A rapidez dessa resposta faz com que os atributos microbiológicos do solo sejam considerados os bons indicadores de qualidade do solo.

2.3 Indicadores microbiológicos de qualidade do solo

Sustentar a qualidade do solo é essencial para a manutenção da vida na terra. O solo é responsável pela produção de alimentos para sustentar os mais de sete bilhões de habitantes do planeta Terra. Além desse serviço de provimento, outros serviços ecossistêmicos de regulação e de suporte ocorrem no solo e, sem os quais, a vida no planeta estaria ameaçada (PULLEMAN et al., 2012).

A "qualidade do solo" é "a capacidade de um solo funcionar dentro dos limites de um ecossistema natural ou manejado, para sustentar a produtividade de plantas e animais, manter ou aumentar a qualidade do ar e da água e promover a saúde das plantas, dos animais e dos

homens"(DORAN, 1997; DORAN; PARKIN, 1994). Os indicadores de qualidade do solo são parâmetros químicos, físicos e biológicos que refletem a condição de sustentabilidade do ecossistema. Características importantes para um atributo ser considerado um bom indicador de qualidade do solo são sua relação com processos ecossistêmicos, capacidade de refletir características físicas, químicas e biológicas e sensibilidade a variações (ARSHAD; MARTIN, 2002). Desta forma, atributos microbiológicos do solo são bons indicadores de qualidade pois são sensíveis a variações no ecossistema, apresentam estreita correlação com funções benéficas do solo, podem elucidar processos ecossistêmicos, são úteis para interpretação por gestores e relativamente fáceis de serem mensurados (SCHLOTER; DILLY; MUNCH, 2003).

A diversidade de microrganismos no solo é responsável por garantir serviços e funções ecossistêmicos. Entre os grupos de microrganismos que desempenham funções no ecossistema estão os FMA. Os FMA são simbiontes biotróficos obrigatórios que interagem com mais de 80% das espécies vegetais (SMITH; SMITH; JAKOBSEN, 2003). As hifas desses fungos penetram nas células do córtex tanto inter como intracelularmente formando arbúsculos e desenvolvendo hifas extra-radiculares que apresentam importância significativa para a captação de água e nutrientes em solos, principalmente os nutrientes de baixa mobilidade como o fósforo. Uma vez estabelecida a simbiose, suas hifas funcionam como um prolongamento das raízes do vegetal, podendo também melhorar os aspectos físicos do solo em que se encontram, além de melhorarem a absorção de água e nutrientes pelas plantas (MOREIRA; SIQUEIRA, 2006).

Os benefícios dos FMA e a importância da diversidade desses microrganismos não se limita apenas a melhorias dos aspectos nutricionais das plantas e à melhor agregação do solo. Diversos estudos com esses microrganismos interagindo com plantas tem relatado a minimização da toxicidade às plantas micorrizadas em solos com altos teores de elementos tóxicos (KHAN et al., 2000). Desta forma, como há preferencialidade entre as plantas e os FMA, quanto maior a diversidade presente no solo, maior a chance de a planta estabelecer associação com espécie de FMA mais benéfica. Assim, a diversidade desses microrganismos é especialmente importante como indicadora da qualidade do solo, principalmente pela sua aplicação na recuperação de solos (MATIAS et al., 2009). Uma vez que os FMA possibilitam o estabelecimento de plantas em locais em reabilitação, eles facilitam o reestabelecimento do equilíbrio ambiental pela retomada dos ciclos biogeoquímicos pela adição de carbono orgânico pela planta no sistema.

Além da diversidade de microrganismos, toda a comunidade microbiana, sua atividade e alguns metabólitos são também indicadores de qualidade essenciais para a avaliação da qualidade do solo. A biomassa microbiana do solo, além de apresentar funções-chave já mencionadas, também é funciona como reserva de nutrientes no solo (SCHLOTER; DILLY; MUNCH, 2003). Desta forma, a biomassa microbiana, além de ser responsável por ciclar os nutrientes, também é fonte desses para o ecossistema. Sendo assim, solos com maior biomassa microbiana estocam e ciclam mais nutrientes no solo.

A respiração do solo é a medida da atividade da biomassa microbiana. O CO₂ é proveniente da oxidação da matéria orgânica do solo pelos microrganismos, sendo a respiração uma função chave no ciclo do carbono. A respiração do solo reflete diversas variações no solo que vão desde os ciclos de umedecimento, adição de substrato até a condições de estresse causadas por fatores externos como contaminantes no solo (CARDOSO; ANDREOTE, 2016; MOREIRA; SIQUEIRA, 2006).

As enzimas do solo são essenciais para o ciclo dos elementos. Os microrganismos do solo são os principais produtores de enzimas no solo. Assim, a atividade enzimática varia de acordo com a atividade microbiana. Por serem fundamentais para os ciclos dos elementos, a atividade das enzimas revela informações sobre funções chave no solo, sendo assim, elas também são boas indicadoras da qualidade do solo (BURNS et al., 2013; GIANFREDA et al., 2002). Entre as principais enzimas indicadoras de qualidade do solo, temos a β -glicosidase, que participa do ciclo do carbono (celobiose), fosfatases ácida e alcalina que atuam no ciclo do fósforo, urease que atua na quebra da ureia no clico do nitrogênio além da atividade no geral.

Cabe ressaltar que nenhum indicador de qualidade do solo deve ser usado sozinho. A escolha dos indicadores a serem usados deve levar em consideração variações locais, heterogeneidade de habitats e diferentes micro-sítios de atividade (ocasionados por exemplo, por diferenças de fitofisionomias). Desta forma, o quociente metabólico (razão entre respiração basal do solo e carbono da biomassa microbiana) (ANDERSON; DOMSCH, 1993), e o quociente microbiano (razão entre carbono da biomassa microbiana e carbono orgânico) (SPARLING, 1992), em conjunto com outros indicadores biológicos, físicos e químicos, auxiliam na correta interpretação da qualidade do solo.

2.4 Modelagem e espacialização de dados na Ciência do Solo

A descoberta de novas tecnologias tem levado a avanços nos estudos relacionados a solos. Atualmente se busca não só o aumento da produtividade pelo uso eficiente dos insumos

agrícolas que possibilitam melhorar o manejo (LOPES; GUILHERME, 2016) como também da manutenção do equilíbrio ambiental nessas áreas e em áreas em reabilitação e de preservação ambiental. Desta forma, essas novas tecnologias proporcionam não somente o desenvolvimento da agricultura, como também a sustentabilidade da produção agrícola e a segurança ambiental.

Entre as diversas tecnologias que surgiram nos últimos anos, diversos sensores, que são equipamentos que respondem a um estímulo físico ou químico, podem ter seus dados usados para fins de medição de variáveis relacionadas a outras de mais difícil acesso, possibilitando assim, sua aplicação na agricultura (MANCINI et al., 2019; SILVA et al., 2018b). Sensores que auxiliam na obtenção de dados de solos são de grande importância em estudos ambientais, uma vez que o desenvolvimento de plantas se dá diretamente no solo estando relacionado com a posição na paisagem, localização geográfica e com as características físicas, químicas e biológicas do solo.

Para facilitar a interpretação dos dados, sejam eles de sensores próximos, remotos ou de outros tipos de análises, e diminuir os custos com grande quantidade de amostras para análises, ferramentas de geoprocessamento podem ser utilizadas. As ferramentas de geoprocessamento permitem que os dados coletados em pontos georreferenciados, ou seja, com coordenadas geográficas conhecidas, nas áreas sejam correlacionados com dados obtidos por sensores remotos no local de coleta de amostras de solos e, utilizando as correlações entre informações de dados de sensores espacializados e os dados pontuais, esses últimos podem ser preditos e espacializados para toda a área de estudo. A geoestatística é uma ferramenta aliada do geoprocessamento, utilizada para determinação da distribuição espacial de atributos do solo e outros fatores em função da distância entre os locais de amostras coletadas, permitindo melhor compreensão dos atributos de solo de forma espacial (SILVA et al., 2003).

Para viabilizar o uso das informações obtidas por sensores, os softwares de análises de dados topográficos e geoprocessamento são essenciais. Esses softwares apresentam diversas ferramentas essenciais para a predição e espacialização de dados de solos. Entre eles, temos softwares gratuitos como SAGA GIS (CONRAD et al., 2015), QGIS (www.qgis.org), e pagos como ArcGIS (ESRI). O uso de ferramentas de geoprocessamento facilita a análise de informações obtidas por sensores. Essas ferramentas utilizam modelos matemáticos, estatísticos e geoestatísticos para espacializar informações pontuais obtidas do solo, tendo como base informações já espacializadas obtidas dos sensores. Entre as diversas técnicas utilizadas para espacialização pode-se citar a krigagem, lógica fuzzy, árvores de decisão, random forest, support vector machine, entre outras.

O uso de ferramentas de geoprocessamento e geoestatísticas, além de auxiliar a predição de classes de solo, também pode levar a um ganho significativo de área mapeada (SILVA et al., 2016b), diminuindo os custos com as análises necessárias para o mapeamento e auxiliando a interpretação sobre a aptidão de determinada classe de solo em área não previamente amostrada. O geoprocessamento de dados também facilita a pesquisa em diversas áreas do conhecimento, desde o estudo de bacias hidrográficas e hidropedologia (PINTO et al., 2017) a estudos de florestas (DOS REIS et al., 2018).

Entre os sensores mais utilizados em solos, temos os receptores dos sensores remotos do sistema de posicionamento global (GPS). Os dados obtidos de satélites são de grande utilidade na predição de atributos de solos (SILVA et al., 2016a). A correlação da heterogeneidade do solo com os atributos topográficos obtidos por sensores remotos (satélites) tem sido explorada para auxiliar de diversas formas estudos relacionados a solos. A partir de imagens de satélites, podemos obter uma gama de informações muito úteis e frequentemente utilizadas para mapeamento digital de solos, como geomorfologia, sombreamento, altitude, altitude acima da rede de drenagem, índice de umidade, entre outras (SILVA et al., 2014; MENEZES et al., 2014; SILVA et al., 2016b)

Além dos sensores remotos, diversos sensores próximos têm auxiliado estudos sobre solos. Dentre os sensores próximos utilizados atualmente, o aparelho portátil de fluorescência de raios-X (pXRF) detecta teores totais de elementos em segundos e sem produção de resíduos (WEINDORF; BAKR; ZHU, 2014), sendo capaz de detectar teores totais dos elementos entre o Mg e o U da Tabela Periódica em amostras de solo (RIBEIRO et al., 2017).

Alguns trabalhos têm mostrado bons resultados para predição de atributos químicos do solo, como pH (SHARMA et al., 2014) e capacidade de troca de cátions (SHARMA et al., 2015), mas poucos tentaram associar esses dados a dados de Sistemas de Informação Geográfica (SIG) para geoprocessamento e espacialização dos dados (DUDA et al., 2017), em especial quando se trata do uso de dados de pXRF junto a dados microbiológicos.

REFERÊNCIAS

AGUILERA, L.; ARMAS, C.; CEA, A.; GUTIÉRREZ, J.; MESERVE, P.; KELT, D. **Rainfall, microhabitat, and small mammals influence the abundance and distribution of soil microorganisms in a Chilean semi-arid shrubland**, 2016. Disponível em: <http://sfx.bibliotecas.csic.es/sfx_local?sid=Elsevier%3AScopus&_service_type=getFullTxt &issn=01401963&isbn=&volume=126&issue=&spage=37&epage=46&pages=37-46&artnum=&date=2016&id=doi%3A10.1016%2Fj.jaridenv.2015.11.013&title=Journal of Arid Environments&atit>

ANDERSON, T. H.; DOMSCH, K. H. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as ph, on the microbial biomass of forest soils. **Soil Biology and Biochemistry**, v. 25, n. 3, p. 393–395, 1993.

ARSHAD, M. A.; MARTIN, S. Identifying critical limits for soil quality indicators in agro-ecosystems. **Agriculture, Ecosystems & Environment**, v. 88, n. 2, p. 153–160, 2002. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0167880901002523

BENDER, S. F.; WAGG, C.; VAN DER HEIJDEN, M. G. A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. **Trends in Ecology & Evolution**, v. 31, n. 6, p. 440–452, 2016. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0169534716000616

BEVER, J. D.; RICHARDSON, S. C.; LAWRENCE, B. M.; HOLMES, J.; WATSON, M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. **Ecology Letters**, v. 12, n. 1, p. 13–21, 2009. Disponível em: ">http://doi.wiley.com/10.1111/j.1461-0248.2008.01254.x>

BURNS, R. G.; DEFOREST, J. L.; MARXSEN, J.; SINSABAUGH, R. L.; STROMBERGER, M. E.; WALLENSTEIN, M. D.; WEINTRAUB, M. N.; ZOPPINI, A. Soil enzymes in a changing environment: Current knowledge and future directions. **Soil Biology and Biochemistry**, v. 58, p. 216–234, 2013. Disponível em: http://dx.doi.org/10.1016/j.soilbio.2012.11.009>

CARDOSO, E. J. B. N.; ANDREOTE, F. D. **Microbiologia do solo**. 2. ed. Piracicaba: Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz, 2016. Disponível em: http://www.livrosabertos.sibi.usp.br/portaldelivrosUSP/catalog/book/109

CARVALHO FILHO, A. De; CURI, N.; SHINZATO, E. Relações solo-paisagem no Quadrilátero Ferrífero em Minas Gerais. **Pesquisa Agropecuária Brasileira**, v. 45, n. 8, p. 903–916, 2010. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2010000800017&lng=pt&nrm=iso&tlng=pt>

CASTRO, J. L. De; SOUZA, M. G.; RUFINI, M.; GUIMARÃES, A. A.; RODRIGUES, T. L.; MOREIRA, F. M. de S. Diversity and efficiency of rhizobia communities from iron mining areas using cowpea as a trap plant. **Revista Brasileira de Ciencia do Solo**, v. 41, p. 1–20, 2017.

CONRAD, O.; BECHTEL, B.; BOCK, M.; DIETRICH, H.; FISCHER, E.; GERLITZ, L.; WEHBERG, J.; WICHMANN, V.; BÖHNER, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. **Geoscientific Model Development**, v. 8, n. 7, p. 1991–2007, 2015. Disponível em: https://www.geosci-model-dev.net/8/1991/2015/

DE SOUZA, F. A.; SILVA, I. C. L.; BERBARA, R. L. L.; DA SILVA, I. C. L.; BERBARA, R. L. L. Fungos Micorrízicos Arbusculares: muito mais Diversos do que se Imaginava. In: MOREIRA, F. M. S.; SIQUEIRA, J. O.; BRUSSAARD, L. (Eds.). **Biodiversidade do solo em ecossistemas brasileiros**. Lavras: Editora UFLA, 2008. p. 768.

DO CARMO, F. F.; JACOBI, C. M. Diversity and plant trait-soil relationships among rock outcrops in the Brazilian Atlantic rainforest. **Plant and Soil**, [s. l.], v. 403, n. 1–2, p. 7–20, 2016. Disponível em: http://dx.doi.org/10.1007/s11104-015-2735-7

DORAN, J. W. Soil quality and sustainability. In: **CD ROM - Anais XXVI CBCS**. Rio de Janeiro: Sociedade Brasileira de Ciência do Solo, 1997.

DORAN, W.; PARKIN, T. . Defining and assessing soil quality. In: DORAN, J. W.; COLEMAN, D. C.; BEZDICEK, D. F.; STEWART, B. A. (Eds.). **Defining soil quality for a sustainable environment**. Madison: Soil Science Society of America Proceedings, 1994. p. 3–21.

DOS REIS, A. A.; CARVALHO, M. C.; DE MELLO, J. M.; GOMIDE, L. R.; FERRAZ FILHO, A. C.; ACERBI JUNIOR, F. W. Spatial prediction of basal area and volume in *Eucalyptus* stands using Landsat TM data: an assessment of prediction methods. **New Zealand Journal of Forestry Science**, v. 48, n. 1, p. 1, 2018.

DUDA, B. M.; WEINDORF, D. C.; CHAKRABORTY, S.; LI, B.; MAN, T.; PAULETTE, L.; DEB, S. Soil characterization across catenas via advanced proximal sensors. **Geoderma**, v. 298, p. 78–91, 2017.

FARINA, F.; ALBERT, C.; MARTÍNEZ DOPICO, C.; AGUILAR GIL, C.; MOREIRA, H.; HIPPERTT, J. P.; CUTTS, K.; ALKMIM, F. F.; LANA, C. The Archean– Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil): Current models and open questions. **Journal of South American Earth Sciences**, v. 68, n. 10, p. 4–21, 2016. Disponível em: http://ieeexplore.ieee.org/document/5153295/>

FERREIRA, M. M. Caracterização física do solo. In: VAN LIER, Q. J. (Ed.). Física do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, 2010. p. 1–27.

GIANFREDA, L.; RAO, M. A.; SANNINO, F.; SACCOMANDI, F.; VIOLANTE, A. Enzymes in soil: Properties, behavior and potential applications. In: **Developments in Soil Science**. v. 28, p. 301–327.

GRIFFITHS, B. S.; PHILIPPOT, L. Insights into the resistance and resilience of the soil microbial community. **FEMS Microbiology Reviews**, v. 37, n. 2, p. 112–129, 2013. Disponível em: ">https://academic.oup.com/femsre/article-lookup/doi/10.1111/j.1574-6976.2012.00343.x>

INSTITUTO BRASILEIRO DO MEIO AMBIENTE E RECURSOS NATURAIS RENOVÁVEIS – IBAMA. Laudo Técnico Preliminar – Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. Diretoria de Proteção Ambiental – DIPRO & Coordenação Geral de Emergências Ambientais – CGEMA. Brasilia, Novembro de 2015. 38 p. 2015

JEFFRIES, P.; GIANINAZZI, S.; PEROTTO, S.; TURNAU, K.; BAREA, J. M. The

contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. **Biology and Fertility of Soils**, v. 37, p. 1–16, 2003.

KER, J. C.; CURI, N.; SCHAEFER, C. E. G. R.; VIDAL-TORRADO, P. **Pedologia: fundamentos**. Viçosa: Sociedade Brasileira de Ciência do Solo, 2012.

KHAN, A. G.; KUEK, C.; CHAUDHRY, T. M.; KHOO, C. S.; HAYES, W. J. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. **Chemosphere**, v. 41, n. 1–2, p. 197–207, 2000.

KLIRONOMOS, J. N.; MCCUNE, J.; HART, M.; NEVILLE, J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. **Ecology Letters**, v. 3, n. 2, p. 137–141, 2000. Disponível em: http://doi.wiley.com/10.1046/j.1461-0248.2000.00131.x>. Acesso em: 21 jan. 2014.

LOPES, A. S.; GUILHERME, L. R. G. A Career Perspective on Soil Management in the Cerrado Region of Brazil. Advances in Agronomy, v. 137, p. 1–72, 2016. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0065211315300043

MANCINI, M.; WEINDORF, D. C.; CHAKRABORTY, S.; SILVA, S. H. G.; DOS SANTOS TEIXEIRA, A. F.; GUILHERME, L. R. G.; CURI, N. Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado. **Geoderma**, v. 337, n. August 2018, p. 718–728, 2019. Disponível em: https://doi.org/10.1016/j.geoderma.2018.10.026>

MATIAS, S. R.; PAGANO, M. C.; MUZZI, F. C.; OLIVEIRA, C. a.; CARNEIRO, A. A.; HORTA, S. N.; SCOTTI, M. R. Effect of rhizobia, mycorrhizal fungi and phosphatesolubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. **European Journal of Soil Biology**, v. 45, p. 259–266, 2009.

MENEZES, M. D. De; SILVA, S. H. G.; MELLO, C. R. De; OWENS, P. R.; CURI, N. Solum depth spatial prediction comparing conventional with knowledge-based digital soil mapping approaches. **Scientia Agricola**, v. 71, n. 4, p. 316–323, 2014.

MOREIRA, F. M. de S.; CARES, J. E.; ZANETTI, R.; STÜRMER, S. L. O ecossistema solo: componentes, relações ecológicas e efeitos na produção vegetal. In: MOREIRA, F. M. de S.; CARES, J. E.; ZANETTI, R.; STÜRMER, S. L. (Eds.). **O** ecossistema solo: componentes, relações ecológicas e efeitos na produção vegetal. Lavras -MG: Editora UFLA, 2013. p. 13–30.

MOREIRA, F. M. de S.; SIQUEIRA, J. O. **Microbiologia e Bioquímica do solo**. 2. ed.: Universidade Federal de Lavras, 2006. Disponível em: http://www.prpg.ufla.br/solos/wp-content/uploads/2012/09/MoreiraSiqueira2006.pdf

PAUL, E. A. **Soil Microbiology, Ecology and Biochemistry**. 3. ed. Chennai, India: Academic Press, 2007.

PINTO, L. C.; DE MELLO, C. R.; NORTON, L. D.; SILVA, S. H. G.; TAVEIRA, L. R. S.; CURI, N. Land-use effect on hydropedology in a mountainous region of Southeastern

Brazil. Ciencia e Agrotecnologia, v. 41, n. 4, 2017.

PULLEMAN, M.; CREAMER, R.; HAMER, U.; HELDER, J.; PELOSI, C.; PÉRÈS, G.; RUTGERS, M. Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Current Opinion in Environmental Sustainability, v. 4, n. 5, p. 529–538, 2012. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1877343512001455

RESENDE, M.; CURI, N.; REZENDE, S. B. de S. B.; CORRÊA, G. F. G. F.; KER, J. C. J. C. Pedologia: Base para distinção de ambientes. 6ª edição ed. Lavras: Editora UFLA, 2014.

RIBEIRO, B. T.; SILVA, S. H. G.; SILVA, E. A.; GUILHERME, L. R. G. Portable X-ray fluorescence (pXRF) applications in tropical Soil Science. Ciência e Agrotecnologia, v. 41, n. 3, p. 245–254, 2017. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542017000300245&lng=en&tlng=en>

SANTOYO, G.; HERNÁNDEZ-PACHECO, C.; HERNÁNDEZ-SALMERÓN, J.; HERNÁNDEZ-LEÓN, R. The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Spanish Journal of Agricultural **Research**, v. 15, n. 1, p. e03R01, 2017. Disponível em: <http://revistas.inia.es/index.php/sjar/article/view/9990>

SCHLOTER, M.; DILLY, O.; MUNCH, J. . Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment, v. 98, n. 1–3, p. 255–262, 2003. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0167880903000859

SCHULZ, S.; BRANKATSCHK, R.; DÜMIG, A.; KÖGEL-KNABNER, I.; SCHLOTER, M.; ZEYER, J. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences, v. 10, n. 6, p. 3983–3996, 2013. Disponível em: <https://www.biogeosciences.net/10/3983/2013/>

SHARMA, A.; WEINDORF, D. C.; MAN, T.; ALDABAA, A. A. A.; CHAKRABORTY, S. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma, v. 232–234, p. 141–147, 2014.

SHARMA, A.; WEINDORF, D. C.; WANG, D.; CHAKRABORTY, S. Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma, v. 239, p. 130-134, 2015.

SILVA, A. de S.; BERNARDI, A. C. de C.; ANDRADE, A. G. De; ANDRADE, A. G. De; MADARI, B. E.; SILVA, C. A.; MANZATTO, C. V.; CARMO, C. A. F. de S. Do; BUSCHINELLI, C. C. de A.; BETTLNL, C.; COELHO, F. B. N.; BOGNOLA, I. A.; SHEPERS, J. S.; SHANAHAN, J. F.; MOLIN, J. P.; CARVALHO, J. R. P. De; GIMENEZ, L. M. Agricultura e Precisão para o Manejo da Fertilidade do Solo em Sistema Plantio Direto. Rio de Janeiro: Embrapa Solos, 2003.

SILVA, A. O.; A COSTA, A. M.; TEIXEIRA, A. F. dos S.; GUIMARÂES, A. A.;

SANTOS, J. V.; MOREIRA, F. M. de S. Soil microbiological attributes indicate recovery of an iron mining area and of the biological quality of adjacent phytophysiognomies. Ecological Indicators, v. 93, n. April, p. 142–151, 2018a. Disponível em: https://doi.org/10.1016/j.ecolind.2018.04.073>

SILVA, S. H.G.; OWENS, P. R.; DUARTE DE MENEZES, M.; REIS SANTOS, W. J.; CURI, N. A Technique for Low Cost Soil Mapping and Validation Using Expert Knowledge on a Watershed in Minas Gerais, Brazil. **Soil Science Society of America Journal**, v. 78, n. 4, p. 1310–1319, 2014. Disponível em: https://dl.sciencesocieties.org/publications/sssaj/abstracts/78/4/1310>

SILVA, S. H. G.; MENEZES, M. D. De; MELLO, C. R. De; GÓES, H. T. P. De; OWENS, P. R.; CURI, N. Geomorphometric tool associated with soil types and properties spatial variability at watersheds under tropical conditions. **Scientia Agricola**, v. 73, n. 4, p. 363–370, 2016. a. Disponível em:

<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000400363&lng=en&tlng=en>

SILVA, S. H. G.; MENEZES, M. D. De; OWENS, P. R.; CURI, N. Retrieving pedologist's mental model from existing soil map and comparing data mining tools for refining a larger area map under similar environmental conditions in Southeastern Brazil. **Geoderma**, [s. l.], v. 267, p. 65–77, 2016. b. Disponível em: http://dx.doi.org/10.1016/j.geoderma.2015.12.025>

SILVA, S. H. G.; SILVA, E. A.; POGGERE, G. C.; GUILHERME, L. R. G.; CURI, N. Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): Effects of different sample preparation methods. **Ciência e Agrotecnologia**, v. 42, n. 1, p. 80–92, 2018b.

SMITH, S. E.; SMITH, F. A.; JAKOBSEN, I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. **Plant physiology**, v. 133, n. 1, p. 16–20, 2003.

SPARLING, G. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. **Australian Journal of Soil Research**, v. 30, n. 2, p. 195, 1992. Disponível em: http://www.publish.csiro.au/?paper=SR9920195>

ŠTURSOVÁ, M.; BÁRTA, J.; ŠANTRŮČKOVÁ, H.; BALDRIAN, P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. **FEMS Microbiology Ecology**, v. 92, n. 12, p. fiw185, 2016. Disponível em: https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiw185>

TEIXEIRA, A. F. dos S.; KEMMELMEIER, K.; MARASCALCHI, M. N.; STÜRMER, S. L.; CARNEIRO, M. A. C.; MOREIRA, F. M. de S. Arbuscular mycorrhizal fungal communities in an iron mining area and its surroundings: Inoculum potential, density, and diversity of spores related to soil properties. **Ciência e Agrotecnologia**, v. 41, n. 5, p. 511–525, 2017. Disponível em:

<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-

70542017000500511&lng=en&tlng=en>

TOWNSEND, C. R.; BEGON, M.; HARPER, J. L. **Fundamentos em ecologia**. 3. ed. Porto Alegre: Artmed, 2010.

VARAJÃO, C. A. C.; SALGADO, A. A. R.; VARAJÃO, A. F. D. C.; BRAUCHER, R.; COLIN, F.; NALINI JR., H. Á. Estudo da evolução da paisagem do quadrilátero ferrífero (Minas Gerais, Brasil) por meio da mensuração das taxas de erosão (10be) e da pedogênese. **Revista Brasileira de Ciência do Solo**, v. 33, n. 5, p. 1409–1425, 2009. Disponível em: http://www.scielo.br/pdf/rbcs/v33n5/v33n5a32.pdf>

VILELA, L. A. F.; SAGGIN JÚNIOR, O. J.; PAULINO, H. B.; SIQUEIRA, J. O.; SANTOS, V. L. da S.; CARNEIRO, M. A. C. Arbuscular mycorrhizal fungus in microbial activity and aggregation of a Cerrado Oxisol in crop sequence. **Ciência e Agrotecnologia**, v. 38, n. 1, p. 34–42, 2014. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-

70542014000100004&lng=en&nrm=iso&tlng=en>

WEINDORF, D. C.; BAKR, N.; ZHU, Y. Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications. In: Advances in Agronomy.: Elsevier, 2014. v. 128p. 1–45.

ZHANG, Y.; CONG, J.; LU, H.; DENG, Y.; LIU, X.; ZHOU, J.; LI, D. Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient. **Scientific Reports**v. 6, n. June, p. 1–8, 2016.

SEGUNDA PARTE – ARTIGOS

ARTIGO 1 – Arbuscular mycorrhizal fungal community in an iron mining area and its surroundings: inoculation potential and diversity of spores in trap culture related to soil properties

Artigo formatado nas normas da revista Ciência e Agrotecnologia. Maior parte dos dados do capítulo foram publicados na revista Ciência e Agrotecnologia: doi: http://dx.doi.org/10.1590/1413-70542017415014617

ARBUSCULAR MYCORRHIZAL FUNGAL COMMUNITY IN AN IRON MINING AREA AND ITS SURROUNDINGS: INOCULATION POTENTIAL AND DIVERSITY OF SPORES IN TRAP CULTURE

Anita Fernanda dos Santos Teixeira¹

Karl Kemmelmeier²

Matheus Nicoletti Marascalchi³

Sidney Luiz Stürmer⁴

Marco Aurélio Carbone Carneiro⁵

Fatima Maria de Souza Moreira⁵

¹Doctoral student - Dept. de Ciência do Solo - Universidade Federal de Lavras - P.O. Box 3037 - Zip Code: 37200-000 - Lavras - Minas Gerais – Brazil

²Master's degree student - Dept. de Ciência do Solo - Universidade Federal de Lavras - P.O. Box 3037 - Zip Code: 37200-000 - Lavras - Minas Gerais – Brazil

³ Undergraduate student - Dept. de Ciências Naturais, Universidade Regional de Blumenau - P.O. Box 1507 – Zip Code: 89030-903 Blumenau - Santa Catarina, Brazil

⁴ Ph.D. Professor - Dept. de Ciências Naturais, Universidade Regional de Blumenau - P.O. Box 1507 – Zip Code: 89030-903 Blumenau - Santa Catarina, Brazil

⁵ Ph.D. Professor - Dept. de Ciência do Solo - Universidade Federal de Lavras - P.O. Box 3037
- Zip Code: 37200-000 - Lavras - Minas Gerais – Brazil, e-mail: fmoreira@dcs.ufla.br

1 ABSTRACT: Arbuscular mycorrhizal fungi (AMF) interact symbiotically with most plant 2 species, facilitating revegetation of areas under rehabilitation. The aim of this study was to 3 evaluate the inoculum potential and diversity of AMF spores obtained by trap culture from five 4 phytophysiognomies. Soil samples were collected in a mining area and its surroundings in the Quadrilátero Ferrífero, Minas Gerais (Brazil): tailings piles in rehabilitation with grass, canga, 5 6 Cerrado, native forest, and eucalyptus plantation. Spores were directly extracted from trap 7 cultures (TCs) established in two locations in the Southeast and South regions of Brazil for 8 taxonomic identification of the species. Mycorrhizal inoculum potential was determined thirty 9 days after inoculation. A total of 49 species were captured. Among them, 28 were not captured 10 in field samples. Canga showed higher inoculum potential. The development of TCs in two 11 locations allowed a wider diversity of AMF species to be captured.

12

13 **Keywords**: tailings piles; glomeromycota; ironstone; rehabilitation.

14

15 RESUMO: Fungos micorrízicos arbusculares (AMF) interagem simbioticamente com a 16 maioria das espécies de plantas, facilitando a revegetação de áreas sob reabilitação. O objetivo 17 deste trabalho foi de avaliar o potencial de inóculo e a diversidade de esporos de AMF obtidos 18 por cultura armadilha em cinco ambientes. Amostras de solo foram coletadas em cinco 19 ambientes em área de mineração e seu entorno no Quadrilátero Ferrífero, Minas Gerais (Brasil): 20 pilha de rejeitos em reabilitação com capim, canga, Cerrado, mata nativa e plantação de 21 eucalipto. A extração de esporos de culturas armadilha (TCs), estabelecidas em dois locais nas 22 regiões Sul e Sudeste do Brasil, foi feita para identificação taxonômica das espécies. Foi 23 determinada a riqueza de espécies. Potencial de inóculo micorrízico foi determinado 30 dias 24 após inoculação. O total de 49 espécies foi capturada. Entre estas, 28 foram capturadas em 25 amostras de campo. Canga apresentou o maior potencial de inóculo. O desenvolvimento de TCs

26 em dois locais faz com que maior diversidade de espécies seja capturada.

27

28 **Palavras-chave**: pilhas de rejeitos; glomeromycota; canga; reabilitação.

29

30 INTRODUCTION

31 Brazil is the third largest producer of iron ore worldwide, and approximately 70% of 32 this ore is extracted in the state of Minas Gerais (Brasil, 2016), which has areas with high concentrations of iron (Fe). One of these areas in the central part of Minas Gerais is known as 33 34 the Quadrilátero Ferrífero, which is of great historical-cultural and economic importance due 35 to iron ore extraction (Carvalho Filho; Curi; Shinzato, 2010). However, although the extraction 36 of Fe is economically important, iron mining brings about changes in the landscape, with 37 impacts on plant cover, on soil biodiversity, and, consequently, on the biogeochemical cycles 38 of the elements (Siqueira et al., 2007; Xing et al., 2015) since the process of opening mining 39 pits involves removing soil over the ore (which is sterile) and depositing it in other locations, 40 forming piles.

41 Surrounding these mining areas in the Quadrilátero Ferrífero, there are diverse floristic 42 domains with vestiges of secondary forest that are characteristic of the Atlantic Forest and Cerrado (Brazilian tropical savanna) biomes, both considered as worldwide hotspots of 43 diversity (Hopper; Silveira; Fiedler, 2016). The Cerrado, particularly, is recognized as one of 44 45 the most ecologically important savannas of the world due to its high diversity of habitats, home 46 to an estimated 11,627 species of native plants (Brasil, 2015). Among the habitats of the 47 Cerrado, the *canga* is prominent through its association with ferruginous outcroppings and 48 underground hardpans, its scarcity of soil volume, and the intense daily variation in 49 temperature, which hinders establishment of plants and makes it one of the most endangered
50 ecosystems of Brazil (Matias et al., 2009; Skirycz et al., 2014).

51 The stability and resilience of the environment depends on the biodiversity that ensures 52 ecological services (Mori; Furukawa; Sasaki, 2013). Revegetation can provide the biodiversity necessary for recovery of areas impacted by mining. In this context, arbuscular mycorrhizal 53 54 fungi (AMF – Glomeromycota phylum) represent important components of the soil biota that 55 promote diverse services in the ecosystem (Pellegrino; Bedini, 2014), such as better plant 56 nutrition and growth (Thirkell; Cameron; Hodge, 2016), soil aggregation (Leifheit; 57 Verbruggen; Rillig, 2015), and an increase in plant tolerance to biotic stresses (e.g., pathogens) 58 (Liang et al., 2015) and abiotic stresses (e.g., potentially toxic elements in the soil) (Cabral et al., 2015), and assume an important role in the rehabilitation process of areas affected by 59 60 mining. However, since AMF are necessarily biotrophic, they are also affected by removal of 61 original vegetation and interventions in the soil of an area. Removal of the surface layer of the 62 soil for ore extraction and creation of tailings piles has a negative influence on soil structure 63 and can reduce its mycorrhizal inoculation potential since this breaks down the network of 64 infective hyphae in the soil (Siqueira et al., 2007; Soares; Carneiro, 2010).

Among the propagules of AMF able to begin mycorrhizal colonization, such as hyphae in the soil and colonized roots, spores are the most resistant fungal structures and hold the important morphological characteristics for determination of the species (Pagano et al., 2016). Analysis of the diversity of AMF species and of inoculum potential in areas affected by mining and their surroundings represents one step in identifying the fungal species with potential for use in revegetation processes for the purpose of recovering areas affected by mining. However, few studies have evaluated the diversity of AMF in Fe mining and deposition areas.

Rehabilitation of mining areas is normally performed through planting of grasses, which
assist in stabilization of the tailings piles. In dealing with soil with human intervention, studies

comparing the soil biota of these areas to less altered surrounding areas can indicate the effectiveness of the recovery process adopted. Thus, the aim of this study was to evaluate the potential of mycorrhizal inoculum, and diversity of AMF spores obtained by trap culture in an area in rehabilitation after Fe mining and its surroundings, consisting of five phytophysiognomies: tailings piles in rehabilitation, canga, Cerrado, forest, and planted eucalyptus forest.

80

81 MATERIAL AND METHODS

82 Study area

83 The study was carried out at the Córrego do Meio mine (19°51'41.23"S, 43°48'11.13'W), 84 totally deactivated in 2006, in the municipality of Sabará, MG, Brazil, in five different 85 phytophysiognomies: tailings piles in rehabilitation (TP), canga (CN), Cerrado (CE), forest 86 (FT), and planted eucalyptus (PE) (Table 1, Figure 1). The five phytophysiognomies evaluated 87 are located within the morphostructural unit of the Quadrilátero Ferrífero. Climate in the region 88 is highland tropical, Cwa according to Köppen, with warm and humid summers and cold and 89 dry winters. Mean annual rainfall is 1700 mm, with a short dry period in the winter, and mean 90 annual temperature is 22°C.

In each sampling phytophysiognomy, four soil samples were collected. Each sample was composed of 12 subsamples collected at the depth of zero to 20 cm, with four of them taken at three meters and eight taken at six meters from the georeferenced center point (Figure 2), according to the sampling arrangement proposed by Huising et al. (2008). Samples were subjected to analysis of chemical and physical properties (personal information from Patrícia de Freitas Costa)

97

Table 1 - Description and range of elevation of the phytophysiognomies

99 studied at the Córrego do Meio mine, state of Minas Gerais, Brazil.

Phytophysiognomy	Description	Range of Elevation (m)	Soil Class ¹
Tailings piles	Area in process of environmental recovery after iron mining, replanted with molasses grass (<i>Melinis minutiflora</i> P. Beauv.).	1041 to 1060	Anthrosol
Canga	Rocky environment well preserved over rocky outcroppings.	1196 to 1201	Litholic Neosol
Cerrado	Typical Cerrado vegetation with a low degree of anthropic influence.	992 to 1006	Haplic Cambisol
Planted eucalyptus forest	Reforested area planted predominantly with <i>Eucalyptus</i> spp.	926 to 971	Haplic Cambisol
Forest	Secondary vegetation at different stages of natural regeneration, originally belonging to the Atlantic Forest biome.	880 to 966	Haplic Cambisol

103

104 Figure 2- Soil sampling system

105

106 Composite soil samples that were used for microbiological analyses were homogenized 107 and arranged for transport to the Soil Biology, Microbiology, and Biological Processes 108 Laboratory of the Universidade Federal de Lavras (UFLA), where they were placed in cold 109 storage at 4°C until evaluation.

110

111 Trap cultures

112 Trap cultures (TCs), used to try to capture species that were not found sporulating on field soil, were set up in the Soil Science Department of the Universidade Federal de Lavras 113 114 (UFLA) in Lavras, Minas Gerais, in the Southeast region of Brazil, and in the Natural Sciences 115 Department of the Universidade Regional de Blumenau (FURB) in Blumenau, Santa Catarina, 116 in the South region of Brazil. The climate of Lavras, according to the Köppen climate 117 classification, is Cwa, rainy temperate (mesothermal), with a dry winter and rainy summer, 118 subtropical; and the mean temperature of the hottest month is greater than 22°C. Blumenau has 119 a Cfa climate, constantly humid, subtropical, without a dry season and with hot summers (mean 120 temperature of the hottest month is greater than 22°C). Mean annual temperature ranges from 121 19.1 to 20.0 °C; monthly maximum temperatures range from 26.0 to 27.6 °C and monthly minimum temperatures range from 15.4 to 16.8 °C (Thomé et al., 1999). The greenhouse at 122 123 FURB is made of alveolar polycarbonate and is shaded during part of the morning, whereas the
124 greenhouse at UFLA is made of glass and is not shaded.

125 To establish the trap cultures, 500 mL of inoculum soil of each sample were mixed with 126 500 mL of sterile sand. This mixture was placed between two layers (200 mL each one) of 127 sterile sand in 1.5 kg pots. Eighty seeds of palisade grass (Urochloa brizantha (Stapf) 128 R.D.Webster) were sown and the plants were kept in a greenhouse for five months with 129 application of Hoagland solution, with zero or 50% of the standard phosphorus (P) 130 concentration, according to the nutritional needs of the plants in the initial stage. After the 131 period of cultivation, the soil of each pot was homogenized and placed in cold storage at 4°C 132 until evaluation.

133 The AMF spores were extracted from 100 mL of each soil sample following the wet sieving and decanting technique (Gerdemann; Nicolson, 1963), combined with the water and 134 135 50% sucrose centrifuge technique (Jenkins, 1964). Spores were observed in a stereo microscope 136 and separated into morphotypes according to color, size, and shape and mounted on slides with 137 polyvinyl lactoglycerol (PVLG) and Melzer reagent for observation on a microscope and 138 taxonomic identification through spore morphology. AMF species were identified considering 139 the size, shape, color, presence of subcellular structures of the spores, and comparison with the 140 descriptions contained in the International Collection of Arbuscular and Vesicular-Arbuscular 141 Mycorrhizal Fungi (Morton, 2016) and in Błaszkowski (2012). In addition, the presence of 142 sporulating species was registered.

143

144 **Inoculum potential**

For evaluation of mycorrhizal inoculum potential, 20 mL of inoculum soil from each sample was placed in 90 mL of a mixture (1:1) of sterile soil and sand in plastic containers in duplicate for each composite field sample. Thirty seeds of *Urochloa brizantha* were added, maintaining from 5 to 10 plants. Thirty days after establishment, the roots were separated from the substrate and washed, and 1 g of them was placed in capsules to be clarified and stained with trypan blue (0.05%), according to the method of Koske and Gemma (1989). Determination of the mycorrhizal colonization percentage was estimated by the intersection method in a square laboratory dish (Giovannetti; Mosse, 1980) and used as an estimate of the mycorrhizal inoculum potential.

154

155 Analysis of the AMF Community and Statistical Analyses

Species richness (R) was calculated as the number of species present in each phytophysiognomies. In regard to capture in different locations, species found in trap cultures at FURB and at UFLA were classified as present (1) or absent (0) in each phytophysiognomy. The inoculum potential was evaluated through Analysis of Variance (ANOVA),

followed by the Scott-Knott test at the level of 5% significance. Analyses were carried out using
the Assistat statistical software (Silva; Azevedo, 2016). Principal component analysis was
performed using soil fertility, spore count and inoculum potential data in the R software (R
Development Core Team, 2017) with vegan package (Oksanen et al., 2017).

164

165 **RESULTS AND DISCUSSION**

166 **Diversity of Spores in Trap Cultures**

167 The data obtained in field extraction of spores can be observed in the original article 168 (TEIXEIRA et al., 2017) and, although it has been used to assist in the discussion of this chapter, 169 will not be mentioned here because they are part of the master's thesis. Considering both 170 locations (UFLA and FURB) used for carrying out TCs, a total of 49 species were captured 171 (Table 2). Among them, 28 were not captured in field samples, thus leading to an increase of 172 more than 90% in the total number of species in relation to direct extraction from the soil in the 173 field. The only species found both in the field and in the TCs considering all the phytophysiognomies was *Acaulospora morrowiae*. Fourteen species were captured in the
phytophysiognomies in addition to those found by direct extraction from the field.

176 The capture of species only in TCs and not from direct extractions in the field shows the 177 importance of this technique for studies of AMF diversity since some species may exhibit low 178 or no sporulation in the field (Stutz; Morton, 1996). Some species for which spores had not 179 previously been found in the field sporulated in TCs, showing that there were viable propagules 180 able to establish association with the trap species (U. brizantha). In contrast, some species 181 whose spores were found in the field were not captured in TCs. This may be explained by the 182 low density of spores of some AMF species found in the field, and may also be due to the 183 preferences of the trap species itself since the host plant is able to show preference for AMF 184 species that are more efficient in the association (Bever et al., 2009).

Table 2 - Arbuscular mycorrhizal fungi (AMF) species found in Trap Cultures (TCs), their occurrence at the Universidade Federal de Lavras (UFLA) and the Universidade Regional de Blumenau (FURB) (1 = presence; 0 = absence of species), and total species richness (R) in tailings piles (TP), Cerrado (CE), canga (CN), planted eucalyptus (PE), and Forest (FT), or species not found in direct extraction in the field (N).

AME anapian in TCa		UFLA						FURE	3	Site of direct		
AMF species in TCs	TP	CE	CN	PE	FT	TP	CE	CN	PE	FT	extraction	
Family Archaeosporaceae												
Archaeospora trappei		0	0	0	1	1	1	1	0	0	CE	
Family Ambisporaceae												
Ambispora leptoticha	0	1	1	1	1	1	1	0	1	1	CE PE FT	
Family Acaulosporaceae												
Acaulospora alpina		0	0	0	1	1	0	0	0	1	TP	
Acaulospora colombiana		1	0	0	0	1	1	0	0	1	TP CE PE	
Acaulospora delicata		0	0	0	0	1	1	0	1	0	Ν	
Acaulospora foveata		0	0	0	0	0	1	1	1	0	Ν	
Acaulospora lacunosa		0	0	0	1	0	1	1	0	1	CN FT	
Acaulospora mellea	1	1	0	1	1	1	1	1	1	1	TP CN PE FT	
Acaulospora morrowiae		1	1	1	1	1	1	1	1	1	TP CN PE FT	
						Continue						

	UFLA]	FURI	3	Site of direct				
AMF species in TCs		CE	CN	PE	FT	TP	CE	CN	PE	FT	extraction		
Acaulospora rehmii	1	0	0	0	1	1	0	0	0	1	N		
Acaulospora scrobiculata	1	0	1	0	1	1	0	0	0	1	TP		
Acaulospora sp1	0	0	0	0	0	1	0	0	0	1	Ν		
Acaulospora sp2	0	0	0	0	0	0	1	0	1	1	Ν		
Acaulospora spinosa	1	0	0	0	0	1	0	0	0	1	TP FT		
Acaulospora spinosissima	0	0	0	0	0	1	0	0	0	1	Ν		
Family Diversisporaceae													
Corymbiglomus tortuosum	0	0	0	0	0	0	1	0	0	0	Ν		
Diversispora sp.	1	0	1	1	0	1	0	1	1	1	TP CN PE FT		
Family Gigasporaceae													
Cetraspora pellucida	1	0	0	0	0	0	0	1	0	0	TP FT		
Dentiscutata biornata	0	0	1	0	0	0	1	1	0	0	CN		
Dentiscutata heterogama	0	0	1	1	0	1	0	0	0	0	CE		
Dentiscutata cf. scutata	1	0	0	0	0	1	1	1	0	1	Ν		
Gigaspora albida	0	0	0	0	0	1	0	0	1	1	Ν		
Gigaspora gigantea	0	0	0	0	0	0	0	1	0	0	Ν		
Gigaspora sp.	1	0	0	0	0	0	0	0	0	0	TP CN		
Scutellospora pernambucana	0	0	0	0	0	0	1	0	0	1	Ν		
Family Claroideoglomeraceae ¹													
Claroideoglomus etunicatum	0	0	0	0	0	1	0	0	0	0	Ν		
Family Glomeraceae													
Dominikia sp.	1	1	1	1	0	1	1	0	1	1	TP PE		
Glomus cf. aggregatum	1	0	0	0	0	0	0	0	0	1	Ν		
Glomus glomerulatum.	0	0	0	1	1	1	1	1	1	1	Ν		
Glomus cf. invermaium	1	0	0	0	0	0	0	0	0	0	Ν		
Glomus microaggregatum	0	0	0	0	0	1	0	1	1	1	TP ,CN, FT		
Glomus microcarpum	0	0	0	0	0	0	1	1	0	1	Ν		
Glomus sp2	1	1	1	1	1	0	0	0	0	0	Т		
Glomus sp3	0	1	0	1	1	0	0	0	0	0	Ν		
Glomus sp4	1	0	1	0	0	0	0	0	0	0	Ν		
Glomus sp5	0	0	1	0	0	0	0	0	0	0	Ν		
Glomus sp6	0	0	0	0	0	1	0	0	1	1	Ν		
Glomus sp7	0	0	0	0	0	0	0	0	0	1	Ν		
Glomus sp8	0	0	0	0	0	1	0	0	0	1	Ν		
Glomus spinuliferum	0	0	0	0	0	1	1	0	0	0	Ν		
Rhizophagus clarus	1	0	0	1	0	1	1	0	0	1	TP CE PE FT		
Rhizophagus fasciculatus	0	0	0	0	0	1	1	0	1	1	CE, PE		
Rhizophagus diaphanus	1	1	1	1	1	0	0	0	0	0	FT		
Sclerocystis coremioides	0	0	0	0	0	1	1	1	0	1	Ν		
Sclerocystis taiwanensis	0	0	0	0	0	0	0	0	0	1	Ν		
Sclerocystis sinuosa	0	0	0	0	0	0	0	0	0	1	Ν		
Septoglomus sp1	0	0	0	0	0	1	0	0	0	0	Ν		
Septoglomus viscosum	0	1	1	1	1	1	1	1	1	1	TP		
Incertae sedis													
Entrophospora infrequens	1	0	0	0	0	1	1	0	0	1	Ν		
R	17	9	12	12	13	29	22	15	14	31			

¹⁹⁴

It is believed that the species Glomus sp2 has greater capability of establishing 196 association with plants and sporulating under the climate conditions of the TCs at UFLA, since

197 it did not sporulate in TCs at FURB. Since this species was found in a higher number of spores 198 in all field areas, it may also have preferentially colonized the roots of the trap species in 199 detriment to other species present, as reported by Bever et al. (2009). Thus, the TCs at UFLA 200 captured a much lower number of species. However, the greater richness of species captured at 201 FURB may have been determined by the fact that the greenhouse was shaded part of the day 202 and that environmental conditions at this site are quite different from those of the *Ouadrilátero* 203 Ferrifero compared to UFLA. As the AMF species respond in different manners and have 204 different tolerances depending on the disturbance (Van der Heyde et al., 2017), the sporulation of a greater number of species at FURB may be due to the response of the AMF species in 205 206 overcoming adversity and surviving under environmental conditions different from their 207 conditions of origin. Lower insolation at FURB may have resulted in milder temperatures, allowing better development of the plants and, consequently, greater investment in 208 209 mycorrhization on the part of the host plant.

The TCs at UFLA were able to capture 28 AMF species, whereas at FURB, 43 were captured; a considerable increase in species richness could be observed with the use of TCs under different environmental conditions (Table 3). The species *Rhizophagus diaphanus* and *Glomus* sp2 sporulated in all the TCs at UFLA and did not sporulate at FURB.

Canga, when evaluated only by field spores, exhibited lower R and H' (TEIXEIRA et al., 2017); however, when evaluated in TCs (Table 3), species richness equal to that of the PE phytophysiognomy was observed. The TP phytophysiognomy, when only field spores were evaluated, was the phytophysiognomy that exhibited the highest R, followed by FT and CE, and the highest H'. A total of 59 species were found in all the phytophysiognomies considering TCs and direct extraction from the field and, among them, 15 could not be identified at the species level. Table 3 - Species richness of arbuscular mycorrhizal fungi and increases in species
richness by the use of trap cultures (TCs) at the Universidade Federal de Lavras
(UFLA) and the Universidade Regional de Blumenau (FURB) in soils from tailings
piles replanted to grass (TP), Cerrado (CE), canga (CN), planted eucalyptus (PE),
and forest (FT).

	TP	CE	CN	PE	FT
Direct extraction from soil	20	14	9	14	15
Richness increases TCs UFLA	7	3	8	5	7
Richness increases TCs FURB	18	15	9	8	23
Total richness increases TCs	22	17	16	11	25
Total richness	42	31	25	25	40

226

227 The lower diversity of AMF spores found in CN may be related with the small islands 228 of soil and other factors that hinder establishment of plants in these environments (Skirycz et 229 al., 2014). In a similar way, in PE, the lower diversity of plant species may have influenced the 230 lower diversity of AMF spores. Thus, as these fungi are necessarily biotrophic, the stability of 231 the ecosystems in regard to the constant presence of hosts can ensure the survival of AMF 232 species (Siqueira; Colozzi-Filho; Oliveira, 1989). Even though lower in relation to CP, CE, and 233 FT, the diversity of AMF spores found in CN is the greatest yet reported so far in studies of 234 these areas (Matias et al., 2009) and may be contributing to conservation of this environment.

235 Although disturbances affect soil properties and may diminish the diversity of AMF 236 (Lins et al., 2006), higher R and H' found in TP in the field, as well as greater total richness of species, indicate that AMF diversity was not only recovered, but also increased in the 237 238 phytophysiognomy in rehabilitation. Since there is preferentiality between macro- and 239 microsymbionts in mycorrhizas (Bever et al., 2009; Kiers et al., 2011), this greater diversity of 240 AMF species can facilitate the entrance of mycotrophic plant species in the phytophysiognomy, 241 thus assisting the continuity of its rehabilitation process. Considering that there are currently only 289 species of AMF described worldwide (Goto, 2017), the species described in this study 242

represent 15% of all species, showing that these phytophysiognomies are hotspots of diversityof AMF.

245

246 Inoculum Potential

Inoculum potential differed among the phytophysiognomies evaluated (Figure 3), with the CN phytophysiognomy showing the highest potential, with 39.9% of the roots with colonization. The CE phytophysiognomy exhibited the second highest inoculum potential, with 22.7% of the roots colonized, whereas the other phytophysiognomies did not differ among themselves and exhibited inoculum with lower potential for colonization, with fewer than 13% of roots colonized by AMF.

The viability of AMF propagules in the soil can decrease in accordance with the 253 254 disturbance to which they are subjected, thus reducing their infective capacity (Trejo; Barois; 255 Sangabriel-Conde, 2016). However, the infective capacity of the AMF species is not related to 256 propagule density (Caproni et al., 2003; Santos et al., 2000), since it infective capacity was not 257 correlated with spore density in the present study. In contrast, dormancy of the spores varies 258 considerably among species (Juge et al., 2002). Greater infectivity of the inocula of CN shows 259 that although it exhibits the lowest species diversity and has spore density similar to the other 260 phytophysiognomies, the inocula quickly colonize the host and can assist in the resilience of 261 this environment subject to stress factors.

Figure 3 - Mycorrhizal inoculum potential given by the percentage of mycorrhizal colonization of arbuscular mycorrhizal fungi in *Urochloa brizantha* inoculated with soil from the

265	phytophysiognomies of tailings piles replanted to grass (TP), Cerrado (CE), canga (CN),
266	planted eucalyptus (PE), and forest (FT). * Mean values followed by the same lowercase letters
267	do not differ statistically by the Scott-Knott test at the level of 5% significance.
268	
269	The inoculum potential and number of spores in the trap culture experiment was
270	influenced by organic matter content, Fe, cation exchange capacity at pH 7 and effective and

potential acidity (Figure 4). It was also observed that higher values of pH, Mn and silt inverselyinfluence inoculum potential and sporulation.

274

PC1

Figure 4 – Ordination diagram of Principal Component Analysis of soil properties, inoculum
potential (Inoc. Pot.), and sporulation (Spores) related to the ordination axes for the five
phytophysiognomies studied: forest, canga, Cerrado, tailings piles replanted to grass, and
planted eucalyptus.

280 CONCLUSIONS

The greater potential of mycorrhizal inoculum in the canga phytophysiognomies cancontribute to resilience in this phytophysiognomy.

The use of Trap Cultures in both locations of Brazil increases the diversity of AMF species captured insofar as different species tend to develop better under distinct environmental conditions.

Abiotic factors related to soil texture and fertility influence the inoculum potential of arbuscular mycorrhizal fungi.

289 ACKNOWLEDGMENTS

The authors are grateful to the project CRA – RDP – 00136 – 10 (FAPEMIG/ FAPESP/ FAPESPA/ VALE S. A.), "Diversity of plants and soil organisms with biotechnological potential and indicators of environmental recovery in Minas Gerais"; to Vale for financial support; to Fernanda de Carvalho; to Capes, FAPEMIG, and CNPq for financial assistance and scholarships. SLS, MACC, and FMSM thank the CNPq [SLS: 309163/2015-3; MACC: 308105/2014-1; FMSM: 304527/2016-5] and FAPEMIG [MACC: APQ-01661-16] for research productivity scholarships.

297

298 **REFERENCES**

BEVER, J. D.; RICHARDSON, S. C.; LAWRENCE, B. M.; HOLMES, J.; WATSON,
M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal
mutualism. Ecology Letters, [s. 1.], v. 12, n. 1, p. 13–21, 2009. Disponível em:
">http://doi.wiley.com/10.1111/j.1461-0248.2008.01254.x>

BŁASZKOWSKI, J. Glomeromycota. Kraków, Poland: W. Szafer Institute of Botany,
 Polish Academy of Sciences, 2012.

BRASIL. DNPM (Departamento Nacional de Produção Mineral). 2014. Disponível
 em: http://www.dnpm.gov.br/dnpm/sumarios/sumario-mineral-2014. Acesso em: 20 jun.
 2016.

308BRASIL.MMA (Ministério do Meio Ambiente).2015.Disponível em:309<http://www.mma.gov.br/biomas/cerrado>.Acesso em: 16 out. 2015.

310 CABRAL, L.; SOARES, C. R. F. S.; GIACHINI, A. J.; SIQUEIRA, J. O. Arbuscular 311 mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms 312 and major benefits of their applications. World Journal of Microbiology and Biotechnology, 313 1.1. 31, 11, 1655–1664, 2015. Disponível em: s. v. n. p. 314 <http://link.springer.com/10.1007/s11274-015-1918-y>

CAPRONI, A. L.; FRANCO, A. A.; BERBARA, R. L. L.; GRANHA, J. R. D. D. O.;
RIBEIRO, E. M. D. S.; SAGGIN, O. J. Capacidade infectiva de fungos micorrízicos
arbusculares em áreas reflorestadas após mineração de bauxita no Pará. Pesquisa
Agropecuaria Brasileira, [s. 1.], v. 38, n. 8, p. 937–945, 2003.

CARDOSO, E. J. B. N.; ANDREOTE, F. D. Microbiologia do solo. 2. ed. Piracicaba:
 Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz, 2016. Disponível
 em: ">http://www.livrosabertos.sibi.usp.br/portaldelivrosUSP/catalog/book/109>

322 CARVALHO FILHO, A. De; CURI, N.; SHINZATO, E. Relações solo-paisagem no

- 325 <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-
- $326 \qquad 204X2010000800017 \& lng=pt \& nrm= iso \& tlng=pt > \\$

327 GERDEMANN, J. W.; NICOLSON, T. H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the british mycological 328 329 society. 1.], 46, 2, 235 - 244, 1963. Disponível em: [s. v. n. p. 330 http://linkinghub.elsevier.com/retrieve/pii/S0007153663800790>. Acesso em: 27 jan. 2014.

GIOVANNETTI, M.; MOSSE, B. An evaluation of techniques for measuring vesicular
 arbuscular mycorrhizal infection in roots. The New Phytologist, [s. l.], v. 84, p. 489–500, 1980.

GOTO, B. T. Laboratório de Biologia de Micorrizas - Universidade Federal do Rio
 Grande do Norte. 2017. Disponível em:
 http://glomeromycota.wixsite.com/lbmicorrizas/cpia. Acesso em: 10 abr. 2017.

- HOPPER, S. D.; SILVEIRA, F. A. O. O.; FIEDLER, P. L. Biodiversity hotspots and
 Ocbil theory. Plant and Soil, [s. l.], v. 403, n. 1–2, p. 167–216, 2016. Disponível em:
 ">http://link.springer.com/10.1007/s11104-015-2764-2>
- HUISING, E. J.; COE, R.; CARES, J. E.; LOUZADA, J. N. C.; ZANETTI, R.;
 MOREIRA, F. M. de S.; SUSILO, F.; KONATÉ, S.; VAN NOORDWIJK, M.; HUANG, S. P.
 Estratégia e modelo de amostragem para avaliar a biodiversidade do solo. In: MOREIRA, F.
 M. S.; HUISING, E. J.; BIGNELL, D. E. (Eds.). Manual de biologia dos solos tropicais:
 amostragem e caracterização da biodiversidade. Lavras: UFLA, 2008. p. 43–78.
- JACOBI, C. M.; DO CARMO, F. F.; VINCENT, R. C.; STEHMANN, J. R. Plant
 communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem.
 Biodiversity and Conservation, [s. l.], v. 16, n. 7, p. 2185–2200, 2007. Disponível em:
 http://link.springer.com/10.1007/s10531-007-9156-8
- 348 JENKINS, W. R. A rapid centrifugal-flotation technique for separating nematodes from
 349 soil. Plant Disease Reporter, [s. l.], v. 48, p. 692, 1964.

JUGE, C.; SAMSON, J.; BASTIEN, C.; VIERHEILIG, H.; COUGHLAN, A.; PICHÉ,
Y. Breaking dormancy in spores of the arbuscular mycorrhizal fungus Glomus intraradices: a
critical cold-storage period. Mycorrhiza, [s. 1.], v. 12, n. 1, p. 37–42, 2002. Disponível em:
http://link.springer.com/10.1007/s00572-001-0151-8

- 354 KIERS, E. T.; DUHAMEL, M.; BEESETTY, Y.; MENSAH, J. A.; FRANKEN, O.; 355 VERBRUGGEN, E.; FELLBAUM, C. R.; KOWALCHUK, G. A.; HART, M. M.; BAGO, A.; 356 PALMER, T. M.; WEST, S. A.; VANDENKOORNHUYSE, P.; JANSA, J.; BUCKING, H. 357 Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science, [s. 1.], v. 358 333, 6044, 880-882, 2011. Disponível em: n. p. 359 <http://www.sciencemag.org/cgi/doi/10.1126/science.1208473>
- KOSKE, R. E.; GEMMA, J. N. A modified procedure for staining roots to detect VA
 mycorrhizas. Mycological Research, [s. 1.], v. 92, n. 4, p. 486–488, 1989. Disponível em:
 http://dx.doi.org/10.1016/S0953-7562(89)80195-9>
- 363 LEIFHEIT, E. F.; VERBRUGGEN, E.; RILLIG, M. C. Arbuscular mycorrhizal fungi

reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biology and
Biochemistry, [s. l.], v. 81, p. 323–328, 2015. Disponível em:
http://linkinghub.elsevier.com/retrieve/pii/S0038071714004179

- LIANG, M.; LIU, X.; ETIENNE, R. S.; HUANG, F.; WANG, Y.; YU, S. Arbuscular
 mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology, [s. l.], v.
 96, n. 2, p. 562–574, 2015. Disponível em: http://doi.wiley.com/10.1890/14-0871.1
- LINS, C. E. L.; CAVALCANTE, U. M. T.; SAMPAIO, E. V. S. B.; MESSIAS, A. S.;
 MAIA, L. C. Growth of mycorrhized seedlings of Leucaena leucocephala (Lam.) de Wit. in a
 copper contaminated soil. Applied Soil Ecology, [s. 1.], v. 31, p. 181–185, 2006.

MATIAS, S. R.; PAGANO, M. C.; MUZZI, F. C.; OLIVEIRA, C. a.; CARNEIRO, A.
A.; HORTA, S. N.; SCOTTI, M. R. Effect of rhizobia, mycorrhizal fungi and phosphatesolubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area
in Brazil. European Journal of Soil Biology, [s. 1.], v. 45, p. 259–266, 2009.

- 377 MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e Biotecnologia do Solo. [s.l:
 378 s.n.]. v. ed. 2
- MORI, A. S.; FURUKAWA, T.; SASAKI, T. Response diversity determines the
 resilience of ecosystems to environmental change. Biological Reviews, [s. 1.], v. 88, n. 2, p.
 349–364, 2013. Disponível em: http://doi.wiley.com/10.1111/brv.12004>
- 382 MORTON, J. West Virginia University. 2016. Disponível em:
 383 http://invam.wvu.edu/. Acesso em: 25 set. 2016.
- 384 OKSANEN, J.; BLANCHET, F. G.; FRIENDLY, M.; KINDT, R.; LEGENDRE, P.;
 385 MCGLINN, D.; MINCHIN, P. R.; HARA, R. B. O.; SIMPSON, G. L.; SOLYMOS, P.;
 386 STEVENS, M. H. H.; SZOECS, E. Package 'vegan ', Repository CRAN, 2017.
- PAGANO, M. C.; OEHL, F.; SILVA, G. A.; MAIA, L. C.; SILVA, D. K.; CABELLO,
 M. N. Advances in Arbuscular Mycorrhizal Taxonomy. In: PAGANO, M. C. (Ed.). Recent
 Advances on Mycorrhizal Fungi. Cham: Springer International Publishing, 2016. p. 15–21.
- PELLEGRINO, E.; BEDINI, S. Enhancing ecosystem services in sustainable
 agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular
 mycorrhizal fungi. Soil Biology and Biochemistry, [s. 1.], v. 68, p. 429–439, 2014. Disponível
 em: <http://linkinghub.elsevier.com/retrieve/pii/S0038071713003313>
- RESENDE, M.; CURI, N.; REZENDE, S. B. de S. B.; CORRÊA, G. F. G. F.; KER, J.
 C. J. C. Pedologia: Base para distinção de ambientes. 6ª edição ed. Lavras: Editora UFLA,
 2014.
- 397 SANTOS, A. L. Dos; DE SOUZA, F. A.; BERBARA, R. L. L.; GUERRA, J. G. M.
 398 Estabelecimento e capacidade infectiva de Gigaspora margarita e Glomus clarum em solo sob
 399 erosão. Acta Botanica Brasilica, [s. l.], v. 14, n. 11, p. 127–139, 2000. Disponível em:
 400 http://www.scielo.br/pdf/abb/v14n2/v14n2a01.pdf>. Acesso em: 12 set. 2013.
- SILVA, F. de A. S. e; AZEVEDO, C. A. V. De. The Assistat Software Version 7.7 and
 its use in the analysis of experimental data. African Journal of Agricultural Research,
 Campina Grande PB, v. 11, n. 39, p. 3733–3740, 2016. Disponível em:

404 <http://www.academicjournals.org/journal/AJAR/article-abstract/5E8596460818>

405 SIQUEIRA, J. O.; COLOZZI-FILHO, A.; OLIVEIRA, E. D. E. Ocorrência de
406 micorrizas vesicular-arbusculares em agro e ecossistemas do estado de Minas Gerais. pes, [s.
407 1.], v. 24, n. 12, p. 1499–1, 1989.

SIQUEIRA, J. O.; SOARES, C. R. F. S.; SANTOS, J. G. D.; SCHNEIDER, J.;
CARNEIRO, M. A. C. Micorrizas e a degradação do solo: caracterização, efeitos e ação
recuperadora. In: CERETTA, C. S.; SILVA, L. S.; REICHERT, J. M. (Eds.). Tópicos em
Ciência do Solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2007. p. 219–306.

- SKIRYCZ, A.; CASTILHO, A.; CHAPARRO, C.; CARVALHO, N.; GEORGE, T.;
 SIQUEIRA, J. O. Canga biodiversity, a matter of mining. Front. Plant Sci, [s. 1.], v. 5, n. 653,
 p. 1–9, 2014.
- 415 SMITH, S. E.; SMITH, F. A. Roles of Arbuscular Mycorrhizas in Plant Nutrition and 416 Growth: New Paradigms from Cellular to Ecosystem Scales. Annual Review of Plant Biology, 227-250, 417 1.]. 62, 2011. Disponível [s. v. n. 1. p. em: 418 <http://www.ncbi.nlm.nih.gov/pubmed/21391813%5Cnfile:///Users/DURU/Documents/Mend 419 eley Desktop/Smith, Smith - 2011 - Roles of arbuscular mycorrhizas in plant nutrition and 420 growth new paradigms from cellular to ecosystem scales.pdf>
- SOARES, C. R. F. S.; CARNEIRO, M. A. C. Micorrizas arbusculares na recuperação
 de áreas degradadas. In: SIQUEIRA, J. O. (Ed.). Micorrizas: 30 anos de pesquisa no Brasil.
 Lavras: UFLA, 2010. p. 441–474.
- STUTZ, J. C.; MORTON, J. B. Successive pot cultures reveal high species richness of
 arbuscular endomycorrhizal fungi in arid ecosystems. Canadian Journal of Botany, [s. l.], v.
 74, n. 12, p. 1883–1889, 1996. Disponível em:
 ">http://www.nrcresearchpress.com/doi/abs/10.1139/b96-225>
- 428TEIXEIRA, A. F. dos S.; KEMMELMEIER, K.; MARASCALCHI, M. N.; STÜRMER,429S. L.; CARNEIRO, M. A. C.; MOREIRA, F. M. de S. Arbuscular mycorrhizal fungal430communities in an iron mining area and its surroundings: Inoculum potential, density, and431diversity of spores related to soil properties. Ciência e Agrotecnologia, [s. l.], v. 41, n. 5, p.432511–525,433<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-</td>
- THIRKELL, T. J.; CAMERON, D. D.; HODGE, A. Resolving the 'nitrogen paradox'
 of arbuscular mycorrhizas : fertilization with organic matter brings considerable benefits for
 plant nutrition and growth. Plant, Cell & Environment, [s. l.], v. 39, n. 8, p. 1683–1690, 2016.
 Disponível em: http://doi.wiley.com/10.1111/pce.12667>
- THOMÉ, V. M. R.; ZAMPIERI, S.; BRAGA, H. J.; PANDOLFO, C.; SILVA JÚNIOR,
 V. P. Da; BACIC, I.; LAUS NETO, J.; SOLDATELI, D.; GEBLER, E.; ORE, J. D.;
 ECHEVERRIA, L.; MATTOS, M.; SUSKI, P. P. Zoneamento agroecológico e
 socioeconômico do estado de Santa Catarina. Florianópolis: Epagri, 1999.
- TREJO, D.; BAROIS, I.; SANGABRIEL-CONDE, W. Disturbance and land use effect
 on functional diversity of the arbuscular mycorrhizal fungi. Agroforestry Systems, [s. l.], v.
 90, n. 2, p. 265–279, 2016.

VAN DER HEYDE, M.; OHSOWSKI, B.; ABBOTT, L. K.; HART, M. Arbuscular
mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza, [s. l.], p. 1–
10, 2017.

449 VILELA, L. A. F.; SAGGIN JÚNIOR, O. J.; PAULINO, H. B.; SIQUEIRA, J. O.; SANTOS, V. L. da S.; CARNEIRO, M. A. C. Arbuscular mycorrhizal fungus in microbial 450 451 activity and aggregation of a Cerrado Oxisol in crop sequence. Ciência e Agrotecnologia, [s. 452 1.], v. 38, n. 1, p. 34-42. 2014. Disponível em: 453 <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-

454 70542014000100004&lng=en&nrm=iso&tlng=en>

XING, Y.; SI, Y.-X.; HONG, C.; LI, Y. Multiple Factors Affect Diversity and
Abundance of Ammonia-Oxidizing Microorganisms in Iron Mine Soil. Archives of
Environmental Contamination and Toxicology, [s. 1.], v. 69, n. 1, p. 20–31, 2015. Disponível
em: http://link.springer.com/10.1007/s00244-015-0144-9

ARTIGO 2 – Prediction of microbiological indicators of soil quality: A proximal and remotely sensed data approach

Artigo formatado nas normas da revista Remote Sensing of Environment

Anita Fernanda dos Santos Teixeira^A; Sérgio Henrique Godinho Silva^A; David C.

Weindorf^B; Somsubhra Chakraborty^C; Teotonio Soares de Carvalho^A; Aline Oliveira Silva^A;

Amanda Azarias Guimarães^A; Fatima Maria de Souza Moreira^{A*}

^ADept. of Soil Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil.

^BDept. of Plant and Soil Sciences, Texas Tech University, Lubbock, Texas, United States of America.

^CAgricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India.

*Corresponding author: Fatima Maria de Souza Moreira. E-mail:fmoreira@ufla.br

1 Abstract

2 Microbiological indicators of soil quality respond to changes in the environment before other 3 indicators. For large-scale determination of soil quality, many sampling points are needed. The 4 search for techniques that allow for the reduction of the quantity of samples evaluated and the 5 accurate prediction of values at non-sampled places within an area are vital in advancing soil 6 science. This work sought to predict soil microbiological attributes based on soil fertility and 7 soil physical data, elemental concentrations determined by portable X-ray fluorescence 8 (pXRF), and terrain attribute data. Soil was collected in dry and rainy seasons in four 9 phytophysiognomies of the Quadrilátero Ferrífero in Minas Gerais, Brazil. Biomass microbial 10 carbon (BMC), basal soil respiration (BSR), metabolic quotient (qCO₂), and microbial quotient 11 (qMic) were used as microbiological indicators of soil quality. Values of terrain attributes, soil 12 fertility, and texture attributes, and elemental concentrations obtained by pXRF, as well as 13 phytophysiognomy and season of collect (dry or rainy) were used (separately and together) to 14 predict each of the microbiological indicators. Predictions were performed using conditional 15 random forest modeling and leave one out cross-validation. These methods are not intended to 16 replace conventional analyses of microbiological indicators, but to reduce the cost, time, and 17 number of samples collected and laboratory analyses needed to obtain microbiological 18 information. The best predictions were obtained when phytophysiognomy and season where 19 included as predictors. BSR was better predicted when using only terrain attributes as predictors 20 $(R^2 = 0.91)$. The qCO₂ was best predicted by the model using fertility and texture data together 21 with terrain data ($R^2 = 0.79$). The *q*Mic was best predicted when using only soil fertility and 22 texture data. BMC and *q*Mic presented lower coefficient of determination values ($R^2 \ge 0.65$) 23 while the highest value was found for BSR ($R^2 = 0.91$). Therefore, it is possible to predict the 24 microbiological indicators BMC, BSR, qCO₂, and qMic from soil fertility, physical data, and 25 terrain attributes. Terrain attributes can be used to predict microbiological indicators of soil quality, and may be useful for spatial analysis of these attributes across an area of interest. 26

Keywords: Soil microbiology, cforest, soil basal respiration, microbial biomass carbon,
prediction models

30

31 **1 Introduction**

32 Soil is a complex and dynamic environment responsible for several ecosystem processes 33 that support life. Microbiological indicators of soil quality, such as basal soil respiration and 34 microbial biomass carbon, are important attributes for detecting soil disturbances, as they are 35 sensitive to variations allowing rapid assessment of soil quality (Krüger et al., 2017; Santos et 36 al., 2016). The microorganisms, their metabolism, and metabolites in the soil, respond to natural 37 or anthropic variations such as temperature, precipitation, soil revolving, deposition of residues, 38 and changes of land use and cultivation systems commonly reflect changes in the environment 39 (Bonilla-Bedoya et al., 2017; Lopes et al., 2018; dos Santos et al., 2013; Muñoz et al., 2017; 40 Silva et al., 2018a). For an accurate interpretation of these indicators, it is necessary to collect 41 a high number of samples throughout large areas, which can be an obstacle to more frequent 42 use of these important attributes in decision making on land use and management.

43 Soil physical properties (e.g., texture) and chemical attributes related to fertility, such as 44 pH, CEC, and nutrient availability influence soil metabolism and microbial processes (Ragot et 45 al., 2016; Souza et al., 2016). These attributes have been commonly studied alone or together 46 with the microbiological indicators to verify if these and any other factors provokes a response 47 of the microbiota (Santos et al., 2013; Muñoz et al., 2017). These soil attributes are known to 48 influence soil microbiota and consequently, soil biological quality (Silva et al., 2018a). For 49 instance, pH, moisture and distribution of organic fractions in the soil are key drivers of 50 microbial communities (Burt and Butcher, 1985; de Carvalho et al., 2016; Fierer and Jackson, 51 2006; Florinsky et al., 2004; Jesus et al., 2009; Teixeira et al., 2017; Yu et al., 2017; Zhu et al., 52 2017). Soil attributes related to fertility and physical properties have been widely studied and 53 they are commonly used to assist decision making on soil management. However, many 54 different chemical reagents, specialized manpower and time are needed to evaluate each of 55 these attributes. The same is true for soil microbiological indicators, which are frequently less 56 used than soil fertility indicators (Joergensen and Brookes, 1990 McLean et al., 1958; 57 Shoemaker et al., 1961).

58 With the development of remote sensing technology and data processing software, 59 obtaining information on terrain features has become easy. Increasingly, better satellite images are being used to extract information and create digital elevation models that show information 60 61 about topography and terrain continuously over an area of interest (Gupta, 2018). This information is now easily obtained, at low costs, and has been efficiently used mostly for 62 63 prediction of several soil physical and chemical properties (Arrouays et al., 2014; Florinsky et 64 al., 2002; Lecours et al., 2017; McKenzie and Ryan, 1999; Menezes et al., 2018; Silva et al., 2016a; Zhu et al., 2010). The relationship between terrain attributes and specific groups of 65 66 organisms, such as denitrifiers, has already been shown (Florinsky et al., 2004) and slope has also been reported as a topographic factor influencing soil quality (Nabiollahi et al., 2018). 67 Although studies have already verified the influence of topographic attributes on specific 68 69 groups of organisms, works using terrain information to predict and spatially render 70 microbiological attributes related to soil quality indicators are less common (Berryman et al., 71 2018; Kaleita et al., 2017; Zhang et al., 2018; Zhong et al., 2018).

The spatial analysis of microbiological indicators of soil quality allows observation of how each indicator varies throughout each area. Spatial analysis techniques have been widely used for making maps of soil classes and properties (Abd-Elmabod et al., 2017; Silva et al., 2016a). These techniques are useful because they allow inferences about attribute values at non-sampled points across the evaluated area (Mancini et al., 2019), and can improve the cost-benefit of attribute mapping due to the smaller number of sampling points required when remote sensingdata is used as predictor variables.

79 In addition to remote sensors, proximal sensors have also been successfully used for better 80 soil characterization and prediction of its attributes (O'Rourke et al., 2016; Peluco et al., 2015; Silva et al., 2016b; Weindorf et al., 2018). Among these sensors, the portable X-ray 81 82 fluorescence spectrometer (pXRF) has been increasingly used in recent years for analysis of 83 soil, water, and vegetation (Cardelli et al., 2017; McGladdery et al., 2018; Pearson et al., 2017; 84 Peinado et al., 2010; Weindorf et al., 2012a). The pXRF is able to determine the concentration 85 of elements from Mg to U in the soil and other materials, quickly and without generation of 86 chemical waste (Ribeiro et al., 2017; Weindorf et al., 2014). The contents of the elements obtained by pXRF have also been efficiently used for the prediction of soil physical and 87 chemical attributes (Aldabaa et al., 2015; Chakraborty et al., 2016; Duda et al., 2017; Silva et 88 89 al., 2017; Teixeira et al., 2018; Wang et al., 2015; Weindorf et al., 2012b; Zhu et al., 2011). 90 Weindorf et al. (2018) successfully applied visible near infrared diffuse reflectance 91 spectroscopy for modeling of soil biological properties. However, there are still no studies on 92 the use of elemental data produced by pXRF in predicting microbiological attributes of soil 93 quality.

Mathematical models are used for data prediction; regression and machine learning algorithms such as random forest are common approaches for application development of proximally sensed data (Sharma et al., 2014; Towett et al., 2015; Wang et al., 2015; Zhu et al., 2011). Models based on random forests have achieved quality results for predicting soil attributes (Cardelli et al., 2017; Pelegrino et al., 2018; Silva et al., 2017). Importantly, modeling and spatial prediction are location specific. Further, these approaches are not meant to replace laboratory analyses of microbiological indicators of soil quality. Rather, they can be an alternative to reduce the number of samples to be collected and analyzed, as well as promotepredictions at non-sampled locals within a given area.

103 Thus, this work aimed to predict microbiological attributes of soil quality based on soil 104 fertility and texture data, chemical elemental contents obtained by pXRF, and terrain attribute 105 data. The hypotheses tested were a) it is possible to predict microbiological attributes of soil 106 quality from data of soil fertility, texture, pXRF elemental data, and terrain attributes, and b) 107 while modeling microbiological parameters, terrain attributes and pXRF reported soil elemental 108 data can produce comparable prediction accuracy to those produced by soil fertility and texture 109 data.

110

111 **2 Methods**

112 **2.1 Soil sampling**

Soil samples were collected in four phytophysiognomies, in the municipalities of Brumadinho and Nova Lima, located in the *Quadrilátero Ferrífero*, in the state of Minas Gerais, Brazil. The climate of the region features cold, dry winters and warm, rainy summers; this corresponds to the Cwa classification per the Köppen system (Alvares et al., 2013), with mean annual temperature of 21° C and precipitation of 1390 mm.

118 The area contains four vegetation types with contrasting characteristics 119 (phytophysiognomies) described by Castro et al. (2017) and Silva et al. (2018) as follows: 120 Ironstone Outcrops (IO) (known as "canga") on Petric Plinthosol (Typic Plinthaquox), 121 Neotropical Savanna (NS) (known as "Brazilian Cerrado") on Petric Plinthosol (Typic 122 Plinthaquox), Atlantic Forest (AF) on a toposequence of Red Latosol (Rhodic Haplustox), Red-123 Yellow Latosol (Typic Haplustox), and Haplic Cambisol (Typic Dystrustept); rehabilitated area 124 revegetated with grass (RA) is found on anthropic soil (Figure 1) (Coelho et al., 2017) [soils 125 classified per Brazilian Soil Classification System (Embrapa, 2013) and per Keys to Soil

126	Taxonomy	(Soil	Survey	Staff,	2014),	the	latter	in	parenthesis].	The	ΙΟ	and	NS
127	phytophysic	ognomi	es are lo	cated at	the Fer	rous '	Techno	logy	V Center (Migu	ielão)	(Nov	va Lir	na –
128	MG), while the phytophysiognomies under AF and RA are located in the Córrego do Feijão											eijão	
129	Mine (Brum	nadinho	o – MG).										

Soil sampling was conducted in both dry (August, 2015) and rainy (January, 2016) seasons in two transects in each phytophysiognomy with 50 m of distance between each other. Ten samples composed of five sub-samples were collected at depth of 0 to 20 cm in each phytophysiognomy. Subsamples were collected as follows: from a central position within the transect, the first subsample was collected, followed by the collection of four other subsamples at 5 and 10 m to the west and east of the central subsample, comprising five subsamples (Silva et al., 2018a).

137

139 Figure 1: Location of the soil sampling sites at the Ferrous Technology Center (Miguelão

141 **2.2 Soil analysis**

The microbiological indicators of soil quality used in this study were determined by Silva et al. (2018), including organic carbon (C_{org}) (Walkley and Black, 1934), biomass microbial carbon (BMC) (Vance et al., 1987; Islam and Weil, 1998), and basal soil respiration (BSR) (Anderson and Domsch, 1993). The metabolic quotient ($qCO_2 = BSR / BMC$) (Anderson and Domsch, 1993) and the microbial quotient ($qMic = BMC/C_{org}$) (Sparling, 1992) were also calculated.

148 The analyses of soil fertility and textural parameters (displayed with "f" added to their symbol to avoid confusion with some pXRF attributes) were performed on samples collected 149 150 during the dry and rainy seasons, and were presented by Castro et al. (2017) and Silva et al. 151 (2018). The attributes evaluated were pH in water (1:2.5) (fpH); available P (fP), K (fK), Fe 152 (fFe), Zn (fZn), Mn (fMn) and Cu (fCu) (Mehlich, 1953); remaining P (Prem) (Alvarez and Fonseca, 1990); exchangeable Ca^{2+} (fCa), Mg^{2+} (fMg), and Al^{3+} (fAl) (Mclean et al., 1958); 153 154 potential acidity (fH+Al) (Shoemaker et al., 1961); available S (fS) (Hoeft et al., 1973) and B 155 (fB) (Raij et al., 2001); total soil N (fNtotal) (Joergensen and Brookes, 1990); effective cation exchange capacity (CEC), CEC at pH 7 (fT), Al³⁺ saturation (fm), bases saturation (fV) (Alvarez 156 et al., 1999), soil organic matter (fOM) (Walkley and Black, 1934), and sand (fsand), silt (fsilt) 157 158 and clay (fclay) contents (Bouyoucos, 1951).

To obtain the values of terrain attributes, a digital elevation model (Alos Palsar) with spatial resolution of 12.5 m obtained in the digital platform of the Alaska Satellite Facility (https://vertex.daac.asf.alaska.edu/) was used. Using the software System for Automated Geoscientific Analysis (SAGA) GIS v 2.1.4 (Conrad et al., 2015), the following terrain attributes were generated: aspect (aspect), channel network base level (channbl), cross-sectional curvature (csc), hillshade (hillsh), longitudinal curvature (longcurv), multi-resolution ridge top flatness (mrrtf), multi-resolution index of valley bottom flatness (mrvbf), relative slope (relslop), valley depth (valleydep), vertical distance to channel network (vertdis), topographic
wetness index (twi) (Beven and Kirkby, 1979) and slope (slope). These terrain attributes have
been commonly used in modeling and predicting soil attributes (Adhikari et al., 2014; Arrouays
et al., 2014; Jafari et al., 2014; Silva et al., 2016a; Taghizadeh-Mehrjardi et al., 2015). The
values of these terrain attributes were extracted at the central sampling places using the software
ArcGis 10.3 (ESRI, The Redlands, CA, USA).

172 An S1 Titan LE pXRF (Bruker® Nano Analytics, Kennewick, WA, USA) (50 kV, e100 173 µA, Rh X-ray tube) was used to determine soil elemental contents. Air-dried samples were 174 sieved at 2 mm and analyzed by pXRF using the GeoChem software in Trace mode (dual soil) 175 for 60 seconds, in triplicate. The accuracy of the equipment was evaluated by analyzing the 2710a and 2711a reference materials certified by the National Institute of Standards and 176 177 Technology (NIST) as well as a standard sample provided by the equipment manufacturer 178 (check sample - CS). The percentage of recovery for the elements used in this work was 179 calculated for the certified elements in the samples (% of recovery = 100 x obtained content / 180 total certified content). The elements used in the present study were those that were detected in 181 all the repetitions of at least one phytophysiognomy under study (px was added before the 182 symbol to avoid confusion with some fertility attributes): Al₂O₃(pxAl₂O₃), As (pxAs), Bi (pxBi), 183 CaO (pxCaO), Ce (pxCe), Cl (pxCl), Cr (pxCr), Cu (pxCu), Fe (pxFe), K₂O (pxK₂O), Mn (pxMn), 184 Nb (pxNb), Ni (pxNi), P2O5 (pxP2O5), Pb (pxPb), Rb (pxRb), SiO2 (pxSiO2), Ta (pxTa), Ti (pxTi), V (pxV), Y (pxY), Zn (pxZn) and Zr (pxZr). Their recovery values, in the sequence 2710a/2711a/CS 185 186 (%), were: Al (78.9/69.4/88.4), As (0/0/0), Bi (0/0/0), Ca (36.1/43.2/0), Ce (0/0/0), Cl (0/0/0), 187 Cr (0/125.1/0), Cu (83.8/77.0/94.4), Fe (76.1/67.8/89.2), K (56.7/46.1/84.2), Mn 188 (69.9/61.8/81.3), Nb (0/0/0), Ni (0/114.9/90.1), P (412.0/577.9/0), Pb (109.4/106.4/105.6), Rb 189 (88.1/90.5/0), Si (57.9/49.9/90.2), Ta (0/0/0), Ti (78.2/71.5/0), V (0/0/0), Y (0/0/0), Zn (95.5/78.1/0) and Zr (104.6/0/0). Zero values indicate that the element was not present in the
certified material or that it was non-detectable via pXRF.

192

193 2.3 Data analysis

194 For the modeling and validation of BMC, BSR, qCO₂, and qMic, soil organic matter, soil 195 fertility and texture (F), terrain (T), and pXRF (pX) attributes were used separately and together, 196 comprising a total of seven distinct combinations of predictor datasets for model creation: pX 197 data only; F data only; T data only; F + pX data; F + T data; T + pX data; and F + pX + T data. 198 Moreover, each of the seven models was also calibrated with and without addition of 199 phytophysiognomy and season (dry or rainy) as predictor variables, separately or together (both 200 and season; only phytophysiognomies; only season; neither phytophysiognomy 201 phytophysiognomy or season), totaling 28 models per microbiological attribute (7 predictors 202 datasets x 4 combinations of phytophysiognomy and season). In this study, the 'partykit' 203 package with 'cforest' function was used in R (R Development Core Team, 2017) to fit a 204 conditional random forest model (Hothorn et al., 2006; Strobl et al., 2007). The models were 205 validated by the leave-one-out cross validation (LOOCV) via the 'caret' package (Kuhn et al., 206 2018), where the following parameters were obtained: coefficient of determination (R²), root 207 mean square error (RMSE), and mean absolute error (MAE). For the models with better results, 208 the most and least important variables were analyzed.

For models which produced good prediction results using only terrain attribute data, with or without the influence of phytophysiognomy and season, the predicted microbiological attribute was spatially rendered across the study phytophysiognomies. The values of these terrain attributes were extracted at the central sampling places using ArcGis 10.3 software. R software ('raster' and 'rgdal' packages) was used to apply the model generated with the terrain for prediction along each phytophysiognomy in the two seasons. 216 Quality prediction models of soil microbiological attributes were obtained. The models 217 containing phytophysiognomy and season as predictors produced generally better results than those in which those variables were omitted, as indicated by higher R² values and lower values 218 219 of RMSE and MAE (Figure 2). However, for BMC the decrease in model performance when 220 the phytophysiognomy, season or both were omitted was smaller than those models which used 221 only F, pX, or T as predictors, with losses in R² ranging from 0.04 when only fertility data were 222 used and 0.12 when only pXRF data were used. Therefore, it can be concluded that F, pX, and T were able to correctly capture variations in BMC across different phytophysiognomies and 223 224 seasons. For instance, the R² of the model including F+pX+T was 0.65 when phytophysiognomy and season were included, and 0.62 when they were omitted. Lower R² and 225 226 higher RMSE and MAE were observed when using only pX (A- S-: R²= 0.48, RMSE= 174 mg g⁻¹, MAE= 137; A+ S+: R²= 0.59, RMSE= 154 mg g⁻¹, MAE= 122) or T (A- S-: R²= 0.5, 227 RMSE= 178 mg g⁻¹, MAE= 148; A+ S+: R²= 0.61, RMSE= 152 mg g⁻¹, MAE= 122) as the 228 229 predictor and a substantial reduction in predictive capacity for all models was apparent when 230 phytophysiognomy and season were both omitted. Although the models using soil fertility and 231 texture data showed better results, incorporation of phytophysiognomy and/or season did not 232 produce substantial changes in \mathbb{R}^2 values. While the lowest \mathbb{R}^2 (0.59) was produced when using 233 pXRF, adding phytophysiognomy and season as predictors exhibited an R² of 0.65 using 234 fertility and texture parameters data as predictors.

Figure 2. Root mean square error (RMSE), coefficient of determination (R²), and mean absolute
error (MAE) for prediction of soil microbiological attributes using soil fertility and texture data
(F), pXRF (pX) and terrain (T), separately or together as predictors, in Minas Gerais, Brazil.
P+ S+ Both phytophysiognomy and season included as predictors; P + S- only
phytophysiognomy included as predictors; P- S+ only season included as predictors; P- S- not
including phytophysiognomy or season as predictors.

The accuracy of the model predicting BSR was highly dependent on both phytophysiognomy and season, and there were large losses of predictive power for the models when one or both of them were removed from the list of predictors. When phytophysiognomy and season were used, the predictions always yielded $R^2 > 0.85$ while the highest value was obtained when using only terrain attributes as predictors ($R^2 = 0.91$). When data from phytophysiognomy and season were not included, the model using only pXRF data presented the worst R^2 values among all models and all predicted microbiological attributes ($R^2 = 0.01$).

Comparing the R² values of the models obtained only with terrain attributes for BMC and qCO₂ with the models obtained using fertility and texture data, when data from phytophysiognomy and season were included, the reduction in R² values was very small (BMC $\sim 3\%$, qCO₂ $\sim 5\%$). In contrast, to predict qMic, the loss in R² value was higher (~20%).

254 The qCO_2 was best predicted by the model using fertility and texture data together with terrain data, with an R^2 of 0.79. The worst adjustments for the qCO_2 prediction models were 255 256 obtained when physiognomy and season were not among the predictors. However, when 257 phytophysiognomy and season were used, the R^2 was always > 0.67 even with only pXRF data 258 as the predictor, showing the importance of phytophysiognomy and season to predict the qCO_2 . 259 The *q*Mic was best predicted when using only fertility and texture data along with season 260 and phytophysiognomy. As observed for BMC, the modeling of *q*Mic was not sensitive to 261 omission of phytophysiognomy or season, with small variations in RMSE, R², and MAE values. The BMC and *q*Mic predictions presented lower values of R^2 although they were still > 0.65 262 when only fertility data were used (BMC: $R^2 = 0.65$; qMic: $R^2 = 0.66$), showing reasonable 263 264 accuracy (Figure 3).

Figure 3. Observed and predicted values from the best models for predicting Microbial Biomass, Basal Soil Respiration, metabolic quotient (qCO₂), and metabolic quotient (qMic), in Minas Gerais, Brazil. +P: with phytophysiognomy; +S: with season

265

With respect to variable importance, season was most important for the determination of BSR and qCO_2 (Figure 4). However, this variable was not among the five most important for predicting BMC and was among the four variables with negative values of importance for prediction of the qMic. Phytophysiognomy was among the most important predictors for BMC and qCO_2 .

Figure 4. Importance of the variables of the best prediction models for Microbial Biomass, Basal Soil Respiration, metabolic quotient (qCO₂), and metabolic quotient (qMic), in Minas Gerais, Brazil. +P: with phytophysiognomy; +S: with season

279

Among the five most important variables for the prediction of BMC, besides season and phytophysiognomy, two are related to the presence of exchangeable Al³⁺ in the soil (fAl and rm) and one to the organic matter of the soil (fOM). For predicting BSR, in addition to the season, only two other variables presented positive values of impact: multi-resolution index of valley bottom flatness and channel network base level.

To predict the qCO₂, soil organic matter, base saturation, and available _FCu appeared among the five most important variables. The most important variables for determination of the *q*Mic were soil organic matter, CEC at pH 7, soil pH, potential acidity, and _fCu available. 288 Since the terrain attributes presented significant results for prediction of microbial 289 attributes (Figure 2), and these data are spatially available, the generated model was used for 290 the production of spatial variability maps of these attributes across different 291 phytophysiognomies and seasons of the year (Figures 5, 6, 7 and 8). These maps show the 292 potential of using these tools to visualize the biological parameters in the phytophysiognomies. 293 The variation between seasons observed in BMC and *q*Mic were very small (Figures 5 and 8). 294 Contrariwise, for BSR and qCO_2 (Figures 6 and 7) differences between phytophysiognomies 295 and seasons were clearly observed. In addition to these expected differences, the spots with 296 different colors observed on the map indicated the variation of BSR and qCO_2 according to terrain attributes. 297

Figure 5. Spatial variability maps of microbial biomass according to the model generated using
phytophysiognomy, season, and terrain attributes as predictor variables, in Minas Gerais,
Brazil.

Figure 6. Spatial variability maps of soil respiration according to the model generated using
phytophysiognomy, season, and terrain attributes as predictor variables, in Minas Gerais,
Brazil.

Figure 7. Spatial variability maps of metabolic quotient according to the model generated using
phytophysiognomy, season, and terrain attributes as predictor variables, in Minas Gerais,
Brazil.

Figure 8. Spatial variability maps of microbial quotient spatialized according to the model
generated using phytophysiognomy, season and terrain attributes as predictor variables, in
Minas Gerais, Brazil.

314 4 Discussion

The microbial activity is influenced by humidity and temperature, rapidly responding to disturbances in the environment, variations in the season of soil sampling, the type of land use or vegetation cover (Silva et al., 2018a). The influence of both season and phytophysiognomy was indicated by the best models for prediction of BMC, BSR, qCO₂, and *q*Mic. Significant reduction in model fit was observed by the omission of phytophysiognomy and/or season for BSR and qCO₂, indicating that these were the sensitive parameters to respond to stresses and variations caused by land use and climate.

322 Conversely, when season and/or phytophysiognomy were not used, small reductions in 323 accuracy were observed for BMC and qMic prediction models. The BMC itself is related to soil 324 organic carbon and its decomposition, which further depend on temperature and humidity 325 (Sierra et al., 2015). Thus, the low importance of season and phytophysiognomy was probably 326 related to the covariation of these variables with other variables considered important in the 327 model, which reflect the variations of season and phytophysiognomy.

328 This work confirms the combined influence of the soil fertility, texture, and terrain for the prediction of BMC, BSR, and qCO₂, producing R² values close or even higher than the models 329 330 using only soil fertility parameters and texture. The BSR was best predicted with terrain 331 attributes, while the predictions of BMC and qCO_2 showed only small losses in prediction 332 capacity with only these attributes. This indicated the potential of terrain attributes to 333 complement or even replace fertility and textural attributes of the soil, reducing the related 334 expenses. The ease of obtaining terrain data makes this an important alternative to complement 335 studies related to soil microorganisms and soil microbiological attributes, which depend on 336 several factors such as humidity, temperature (Salazar-Villegas et al., 2016), and shading which 337 are correlated with terrain attributes. Moreover, it makes it possible to spatially render this 338 information.

This is the first study assessing the suitability of modeling microbiological indicators based 339 340 on total elemental content obtained through pXRF. For prediction of BMC, when 341 phytophysiognomy and/or season were used in conjunction with pXRF data as predictors, values of R^2 close to those of the models using soil fertility and texture and terrain attributes 342 343 were found. Elemental contents obtained by pXRF have already shown good correlation with 344 available nutrient contents and other soil fertility attributes such as pH, CEC, and base 345 saturation percentage (Aldabaa et al., 2015; Pelegrino et al., 2018; Ribeiro et al., 2017; Sharma 346 et al., 2015, 2014; Rawal et al., 2019), in addition to soil mineralogy and parent material (Silva 347 et al., 2018b).

348 However, terrain attributes, soil fertility and texture were more efficient in the prediction 349 of the microbiological indicators evaluated here. As soil total elemental content under natural 350 conditions tends to take longer periods of time to undergo changes in relation to managed areas 351 or other types of anthropogenic influence, it is expected that the microbial soil quality indicators 352 evaluated here also show few alterations due to changes in the content of elements obtained by 353 pXRF under conditions of low or no anthropic influence. Nevertheless, Mancini et al. (2018) 354 were able to verify the anthropic influence by the variation of soil elemental contents obtained by pXRF between managed and unmanaged areas. Therefore, further studies on alterations of 355 356 microbial attributes as a function of pXRF reported elements under the influence of fertilizer 357 applications or other types of anthropic influence are required.

The *q*Mic was the only microbiological attribute that showed little sensitivity to the prediction by season or phytophysiognomy, probably because it reflects the relationship between two indicators: BMC and soil organic carbon. The best prediction of *q*Mic was obtained using the predictors of soil fertility and texture, and the greatest importance of organic matter and total nitrogen in its prediction was obtained, since the soil organic carbon is a fraction
of soil organic matter. In turn, the soil organic matter is an important reservoir of nitrogen inthe soil ecosystem (Moreira et al., 2006).

365 Basal soil respiration was the only indicator that presented the best model without the use 366 of soil fertility attributes. The most important predictors of terrain were the multi-resolution 367 index of valley bottom flatness and channel network base level. The former identifies valley 368 bottoms using a slope classification was restricted to convergent areas (Gallant and Dowling, 369 2003), while the latter represents the vertical distance to the level of the base channel of a 370 localized network. Both are related to soil moisture and sediment deposition areas, important 371 factors that influence the respiratory activity of soil microorganisms (Orchard and Cook, 1983). 372 The spatial analysis of soil attributes has been much sought after in recent years; more commonly pedological attributes have been spatially rendered (Corassa et al., 2016; Demattê 373 374 et al., 2016; Silva et al., 2017). BSR's solid prediction from terrain data made it possible to 375 verify the variation of this attribute over the different phytophysiognomies in the two evaluated 376 seasons. Associated microbiological parameters should be studied to determine their feasability 377 for spatial rendering. Visualization of microbiological attributes can be an important strategy 378 for ecological studies, contributing to a better sampling of the biodiversity and assisting in 379 optimizing soil quality assessment.

380

381 5 Conclusions

Consideration of phytophysiognomy and season improved the prediction of microbiological indicators of soil quality. Soil fertility and physical attributes can predict the microbiological indicators of soil quality of BMC, BSR, qMic, and qCO₂. Contents of chemical elements obtained by pXRF failed to predict these microbiological indicators of soil quality. Terrain attributes are the best predictors of BSR, allowing for rapid and easy prediction as well as supporting the spatial analysis of attributes throughout the phytophysiognomy. These 388 methods do not totally replace the conventional analyses of microbiological indicators, but 389 reduce the cost, time, and the number of samples and laboratory analyses needed to obtain such 390 data.

391

392 Acknowledgement

The authors are grateful for the project [CRA- RDP- 00136- 10 (FAPEMIG/ FAPESP/ FAPESPA/ Vale SA)], the Fundação de Amparo à Pesquisa do Estado de Minas Gerais -FAPEMIG, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes and the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for financial support and scholarships granted, and to Luiz Roberto Guimarães Guilherme, for lending us the pXRF. The authors gratefully acknowledge the B.L. Allen Endowment in Pedology at Texas Tech University in collaborating with this research.

400

401 **References**

402 Abd-Elmabod, S.K., Jordán, A., Fleskens, L., Phillips, J.D., Muñoz-Rojas, M., van der Ploeg,

M., Anaya-Romero, M., El-Ashry, S., de la Rosa, D., 2017. Modeling agricultural
suitability along soil transects under current conditions and improved scenario of soil
factors. *In*: Pereira, P., Eric C, B., Munõz-Rojas, M., Miller, B.A. (Eds.), Soil mapping
and process modeling for sustainable land use management. Elsevier, Amsterdam, pp.
193–219. https://doi.org/10.1016/B978-0-12-805200-6.00007-4

408 Adhikari, K., Minasny, B., Greve, M.B., Greve, M.H., 2014. Constructing a soil class map of

409 Denmark based on the FAO legend using digital techniques. Geoderma 214–215, 101–

410 113. https://doi.org/10.1016/j.geoderma.2013.09.023

411 Aldabaa, A.A.A., Weindorf, D.C., Chakraborty, S., Sharma, A., Li, B., 2015. Combination of

412 proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 239,

- 413 34–46. https://doi.org/10.1016/j.geoderma.2014.09.011
- Alvares, C.A., Stape, J.L., Sentelhas, P.C., de Moraes Gonçalves, J.L., Sparovek, G., 2013.
 Köppen's climate classification map for Brazil. Meteorol. Zeitschrift 22, 711–728.
 https://doi.org/10.1127/0941-2948/2013/0507
- 417 Alvarez V., V.H., Fonseca, D.M., 1990. Definition of phosphorus doses for the determination
- 418 of the maximum phosphate adsorption capacity and for greenhouse trials. Rev. Bras.
 419 Cienc. do Solo 14, 49–55.
- Alvarez V., V.H., Novais, R.F. de, Barros, N.F. de, Cantarutti, R.B., Lopes, A.S., 1999.
 Interpretação dos resultados das análises de solos. *In*: Ribeiro, A.C., Guimarães, P.T.G.,
 Alvarez V., V.H. (Eds.), Recomendações para o uso de corretivos e fertilizantes em Minas
- 423 Gerais 5° Aproximação. Comissão de Fertilidade do Solo do Estado de Minas Gerais,
- 424 Viçosa, MG, pp. 25–32.
- 425 Anderson, T.H., Domsch, K.H., 1993. The metabolic quotient for CO₂ (qCO₂) as a specific 426 activity parameter to assess the effects of environmental conditions, such as pH, on the 427 microbial biomass forest soils. Soil Biol. Biochem. 25, 393-395. of 428 https://doi.org/10.1016/0038-0717(93)90140-7
- 429 Arrouays, D., Grundy, M.G., Hartemink, A.E., Hempel, J.W., Heuvelink, G.B.M., Hong, S.Y.,
- 430 Lagacherie, P., Lelyk, G., McBratney, A.B., McKenzie, N.J., Mendonca-Santos, M. d. L.,
- 431 Minasny, B., Montanarella, L., Odeh, I.O.A., Sanchez, P.A., Thompson, J.A., Zhang, G.-
- 432 L., 2014. GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Adv.

433 Agron. 125, 93–134. https://doi.org/10.1016/B978-0-12-800137-0.00003-0

- 434 Berryman, E.M., Vanderhoof, M.K., Bradford, J.B., Hawbaker, T.J., Henne, P.D., Burns, S.P.,
- 435 Frank, J.M., Birdsey, R.A., Ryan, M.G., 2018. Estimating soil respiration in a subalpine
- 436 landscape using point, terrain, climate, and greenness data. J. Geophys. Res.
- 437 Biogeosciences 123, 3231–3249. https://doi.org/10.1029/2018JG004613

- Bonilla-Bedoya, S., López-Ulloa, M., Vanwalleghem, T., Herrera-Machuca, M.Á., 2017.
 Effects of land use change on soil quality indicators in forest landscapes of the Western
- 440 Amazon. Soil Sci. 182, 128–136. https://doi.org/10.1097/SS.000000000000203
- Bouyoucos, G.Q., 1951. A recalibration of the hydrometer method for making analysis of soils.
 Agron. J. 43, 434–437.
- Burt, T.P., Butcher, D.P., 1985. Topographic controls of soil moisture distributions. J. Soil Sci.
 36, 469–486. https://doi.org/10.1111/j.1365-2389.1985.tb00351.x
- Cardelli, V., Weindorf, D.C., Chakraborty, S., Li, B., De Feudis, M., Cocco, S., Agnelli, A.,
 Choudhury, A., Ray, D.P., Corti, G., 2017. Non-saturated soil organic horizon
 characterization via advanced proximal sensors. Geoderma 288, 130–142.
 https://doi.org/10.1016/j.geoderma.2016.10.036
- 449 Castro, J.L. de, Souza, M.G., Rufini, M., Guimarães, A.A., Rodrigues, T.L., Moreira, F.M. de 450 S., 2017. Diversity and efficiency of rhizobia communities from iron mining areas using 451 cowpea trap plant. Rev. Bras. Cienc. do Solo 41, 1 - 20.as a 452 https://doi.org/10.1590/18069657rbcs20160525
- 453 Chakraborty, S., Weindorf, D.C., Michaelson, G.A.R.Y.J., Ping, C.L., Choudhury, A.,
- 454 Kandakji, T., Acree, A., Sharma, A., Wang, D., 2016. In-situ differentiation of acidic and
- 455 non-acidic tundra via portable X-ray fluorescence (PXRF) spectrometry. Pedosphere 26,
- 456 549–560. https://doi.org/10.1016/S1002-0160(15)60064-9
- 457 Coelho, M.R., Vasques, G. de M., Tassinari, D., Souza, Z.R. de, Oliveira, A.P. de, Moreira,
 458 F.M. de S., 2017. Solos do Quadrilátero Ferrífero sob Diferentes Coberturas Vegetais e
 459 Materiais de Origem.
- 460 Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J.,
- 461 Wichmann, V., Böhner, J., 2015. System for automated geoscientific analyses (SAGA) v.
- 462 2.1.4. Geosci. Model Dev. 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

- 463 Corassa, G.M., Amado, T.J.C., Tabaldi, F.M., Schwalbert, R.A., Reimche, G.B., Nora, D.D.,
 464 Alba, P.J., Horbe, T.A.N., 2016. Espacialização em alta resolução de atributos da acidez
 465 de Latossolo por meio de sensoriamento em tempo real. Pesqui. Agropecuária Bras. 51,
 466 1306–1316. https://doi.org/10.1590/s0100-204x2016000900030
- 467 de Carvalho, T.S., Jesus, E. da C., Barlow, J., Gardner, T.A., Soares, I.C., Tiedje, J.M., Moreira,
- F.M. de S., 2016. Land use intensification in the humid tropics increased both alpha and
 beta diversity of soil bacteria. Ecology 97, 2760–2771. https://doi.org/10.1002/ecy.1513
- 470 Demattê, J., Ramirez-Lopez, L., Rizzo, R., Nanni, M., Fiorio, P., Fongaro, C., Medeiros Neto,
- L., Safanelli, J., da S. Barros, P., 2016. Remote sensing from ground to space platforms
 associated with terrain attributes as a hybrid strategy on the development of a pedological
 map. Remote Sens. 8, 826. https://doi.org/10.3390/rs8100826
- 474 dos Santos, J.V., de Melo Rangel, W., Azarias Guimarães, A., Duque Jaramillo, P.M., Rufini,
- 475 M., Marra, L.M., Varón López, M., Pereira da Silva, M.A., Fonsêca Sousa Soares, C.R.,
- de Souza Moreira, F.M., 2013. Soil biological attributes in arsenic-contaminated gold
 mining sites after revegetation. Ecotoxicology 22, 1526–1537.
 https://doi.org/10.1007/s10646-013-1139-9
- 479 dos Santos, J.V., Varón-López, M., Soares, C.R.F.S., Lopes Leal, P., Siqueira, J.O., Moreira,
- 480 F.M.S., 2016. Biological attributes of rehabilitated soils contaminated with heavy metals.
- 481 Environ. Sci. Pollut. Res. 23, 6735–6748. https://doi.org/10.1007/s11356-015-5904-60
- 482 Duda, B.M., Weindorf, D.C., Chakraborty, S., Li, B., Man, T., Paulette, L., Deb, S., 2017. Soil
- characterization across catenas via advanced proximal sensors. Geoderma 298, 78–91.
 https://doi.org/10.1016/j.geoderma.2017.03.017
- 485 Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial communities.
- 486 Proc. Natl. Acad. Sci. 103, 626–631. https://doi.org/10.1073/pnas.0507535103
- 487 Florinsky, I., Eilers, R., Manning, G., Fuller, L., 2002. Prediction of soil properties by digital

- 488 terrain modelling. Environ. Model. Softw. 17, 295–311. https://doi.org/10.1016/S1364489 8152(01)00067-6
- Florinsky, I. V., McMahon, S., Burton, D.L., 2004. Topographic control of soil microbial
 activity: A case study of denitrifiers. Geoderma 119, 33–53.
 https://doi.org/10.1016/S0016-7061(03)00224-6
- 493 Gallant, J.C., Dowling, T.I., 2003. A multiresolution index of valley bottom flatness for
 494 mapping depositional areas. Water Resour. Res. 39.
 495 https://doi.org/10.1029/2002WR001426
- 496 Gupta, R.P., 2018. Digital elevation model, *In*: Remote sensing geology. Springer Berlin
 497 Heidelberg, Berlin, Heidelberg, pp. 101–106. https://doi.org/10.1007/978-3-662-55876498 8_8
- Hoeft, R.G., Walsh, L.M., Kenney, D.R., 1973. Evaluation of various extractants for available
 soil sulfur. Soil Science Society American Proceeding, Madison.
- Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased recursive partitioning: A conditional
 inference framework. J. Comput. Graph. Stat. 15, 651–674.
 https://doi.org/10.1198/106186006X133933
- Islam, K.R., Weil, R.R., 1998. Microwave irradiation of soil for routine measurement of
 microbial biomass carbon. Biol. Fertil. Soils 27, 408–416.
 https://doi.org/10.1007/s003740050451
- Jafari, A., Khademi, H., Finke, P.A., Van de Wauw, J., Ayoubi, S., 2014. Spatial prediction of
 soil great groups by boosted regression trees using a limited point dataset in an arid region,
 southeastern Iran. Geoderma 232–234, 148–163.
 https://doi.org/10.1016/j.geoderma.2014.04.029
- Jesus, E. da C., Marsh, T.L., Tiedje, J.M., Moreira, F.M. de S., 2009. Changes in land use alter
 the structure of bacterial communities in Western Amazon soils. ISME J. 3, 1004–1011.

- 513 https://doi.org/10.1038/ismej.2009.47
- 514 Joergensen, R.G., Brookes, P.C., 1990. Ninhydrin-reactive nitrogen measurements of microbial
- 515 biomass in 0.5 m K₂SO₄ soil extracts. Soil Biol. Biochem. 22, 1023–1027.
 516 https://doi.org/10.1016/0038-0717(90)90027-W
- 517 Kaleita, A.L., Schott, L.R., Hargreaves, S.K., Hofmockel, K.S., 2017. Differences in soil
- 518 biological activity by terrain types at the sub-field scale in central Iowa US. PLoS One 12,

519 e0180596. https://doi.org/10.1371/journal.pone.0180596

- 520 Krüger, I., Chartin, C., van Wesemael, B., Malchair, S., Carnol, M., 2017. Integrating biological
- 521 indicators in a Soil Monitoring Network (SMN) to improve soil quality diagnosis a case
- 522 study in Southern Belgium (Wallonia). Biotechnol. Agron. Soc. Env. 21, 219–230.
- 523 https://doi.org/10.25518/1780-4507.13482
- 524 Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer,
- 525 Z., Kenkel, B., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y.,
- 526 Candan, C., Hunt, T., 2018. Package ' caret .' Available at https://cran.r527 project.org/web/packages/caret/caret.pdf (accessed 23 Aug 2018)
- 528 Lecours, V., Devillers, R., Simms, A.E., Lucieer, V.L., Brown, C.J., 2017. Towards a
- 529 framework for terrain attribute selection in environmental studies. Environ. Model. Softw.
- 530 89, 19–30. https://doi.org/10.1016/j.envsoft.2016.11.027
- 531 Lopes, A.A.C., Sousa, D.M.G., dos Reis, F.B., Figueiredo, C.C., Malaquias, J.V., Souza, L.M.,
- 532 Carvalho Mendes, I., 2018. Temporal variation and critical limits of microbial indicators
- in oxisols in the Cerrado, Brazil. Geoderma Reg. 12, 72–82.
 https://doi.org/10.1016/j.geodrs.2018.01.003
- Mancini, M., Weindorf, D.C., Chakraborty, S., Silva, S.H.G., dos Santos Teixeira, A.F.,
 Guilherme, L.R.G., Curi, N., 2019. Tracing tropical soil parent material analysis via
 portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado. Geoderma 337,

- 538 718–728. https://doi.org/10.1016/j.geoderma.2018.10.026
- 539 McGladdery, C., Weindorf, D.C., Chakraborty, S., Li, B., Paulette, L., Podar, D., Pearson, D.,
- 540 Kusi, N.Y.O., Duda, B., 2018. Elemental assessment of vegetation via portable X-ray
- fluorescence (PXRF) spectrometry. J. Environ. Manage. 210, 210–225.
 https://doi.org/10.1016/j.jenvman.2018.01.003
- McKenzie, N., Ryan, P.J., 1999. Spatial prediction of soil properties using environmental
 correlation. Geoderma 89, 67-94. https://doi.org/10.1016/S0016-7061(98)00137-2
- 545 McLean, E.O., Heddleson, M.R., Bartlett, R.J., Holowaychuk, N., 1958. Aluminum in soils: I.
- 546 Extraction methods and magnitudes in clays and Ohio soils. Soil Sci. Soc. Am. J. 22, 382-
- 547 387. https://doi.org/10.2136/sssaj1958.03615995002200050005x
- Mclean, E.O., Hedleson, M.R., Bartlett, R.J., Holowaychuk, D., 1958. Aluminium in soils: I.
 Extraction methods and magnitud clays in Ohio soils. Soil Sci. Soc. Am. Proc. 22, 382–
 387.
- Mehlich, A., 1953. Determination of P, Ca, Mg, K, Na and NH₄. North Carolina Soil Testing
 Division, Raleigh.
- 553 Menezes, M.D. de, Silva, S.H.G., Mello, C.R. de, Owens, P.R., Curi, N., 2018. Knowledge-
- based digital soil mapping for predicting soil properties in two representative watersheds.

555 Sci. Agric. 75, 144–153. https://doi.org/10.1590/1678-992x-2016-0097

- Moreira, F.M. de S., Siqueira, J.O., Brussaard, L., 2006. Soil biodiversity in Amazonian and
 other Brazilian ecosystems. CABI Publishing, London.
- 558 Muñoz, K., Buchmann, C., Meyer, M., Schmidt-Heydt, M., Steinmetz, Z., Diehl, D., Thiele-559 Bruhn, S., Schaumann, G.E., 2017. Physicochemical and microbial soil quality indicators 560 as affected by the agricultural management system in strawberry cultivation using straw 561 polyethylene mulching. Appl. Ecol. 36-44. black Soil 113, or 562 https://doi.org/10.1016/j.apsoil.2017.01.014

- Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., Davari, M., 2018.
 Assessing the effects of slope gradient and land use change on soil quality degradation
 through digital mapping of soil quality indices and soil loss rate. Geoderma 318, 16–28.
 https://doi.org/10.1016/j.geoderma.2017.12.024
- 567 Orchard, V.A., Cook, F.J., 1983. Relationship between soil respiration and soil moisture. Soil
 568 Biol. Biochem. 15, 447–453. https://doi.org/10.1016/0038-0717(83)90010-X
- 569 O'Rourke, S.M., Stockmann, U., Holden, N.M., McBratney, A.B., Minasny, B., 2016. An
 570 assessment of model averaging to improve predictive power of portable vis-NIR and XRF
- for the determination of agronomic soil properties. Geoderma 279, 31–44.
 https://doi.org/10.1016/j.geoderma.2016.05.005
- 573 Pearson, D., Chakraborty, S., Duda, B., Li, B., Weindorf, D.C., Deb, S., Brevik, E., Ray, D.P.,
- 574 2017. Water analysis via portable X-ray fluorescence spectrometry. J. Hydrol. 544, 172–
 575 179. https://doi.org/10.1016/j.jhydrol.2016.11.018
- 576 Peinado, F.M., Ruano, S.M., González, M.G.B., Molina, C.E., 2010. A rapid field procedure
 577 for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF).
- 578 Geoderma 159, 76–82. https://doi.org/10.1016/j.geoderma.2010.06.019
- 579 Pelegrino, M.H.P., Weindorf, D.C., Silva, S.H.G., de Menezes, M.D., Poggere, G.C.,
- 580 Guilherme, L.R.G., Curi, N., 2018. Synthesis of proximal sensing, terrain analysis, and
- 581 parent material information for available micronutrient prediction in tropical soils. Precis.
- 582 Agric. 1–21. https://doi.org/10.1007/s11119-018-9608-z
- 583 Peluco, R.G., Júnior, J.M., Siqueira, D.S., Pereira, G.T., Barbosa, R.S., Teixeira, D. de B., 2015.
- 584 Mapeamento do fósforo adsorvido por meio da cor e da suscetibilidade magnética do solo.
- 585 Pesqui. Agropecu. Bras. 50, 259–266. https://doi.org/10.1590/S0100586 204X2015000300010
- 587 Ragot, S.A., Huguenin-Elie, O., Kertesz, M.A., Frossard, E., Bünemann, E.K., 2016. Total and

- active microbial communities and phoD as affected by phosphate depletion and pH in soil.
 Plant Soil 408, 15–30. https://doi.org/10.1007/s11104-016-2902-5
- Raij, B. van, Andrade, J.C., Cantarella, H., Quaggio, J.A., 2001. Análise química para
 avaliaçãoda fertilidade de solos tropicais. Instituto Agronômico de Campinas, Campinas.
- 592 Rawal, A., Chakraborty, S., Li, B., Lewis, K., Godoy, M., Paulette, L., Weindorf, D.C., 2019.
- 593 Determination of base saturation percentage in agricultural soils via portable X-ray 594 fluorescence spectrometer. Geoderma 338, 375-382. 595 https://doi.org/10.1016/j.geoderma.2018.12.032
- 596 Ribeiro, B.T., Silva, S.H.G., Silva, E.A., Guilherme, L.R.G., 2017. Portable X-ray fluorescence
- 597 (pXRF) applications in tropical Soil Science. Ciência e Agrotecnologia 41, 245–254.
 598 https://doi.org/10.1590/1413-70542017413000117
- Salazar-Villegas, A., Blagodatskaya, E., Dukes, J.S., 2016. Changes in the size of the active
 microbial pool explain short-term soil respiratory responses to temperature and moisture.

601 front. Microbiol. 7, 1–10. https://doi.org/10.3389/fmicb.2016.00524

- 602 Sharma, A., Weindorf, D.C., Man, T., Aldabaa, A.A.A., Chakraborty, S., 2014. Characterizing
- soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma 232–

604 234, 141–147. https://doi.org/10.1016/j.geoderma.2014.05.005

- 605 Sharma, A., Weindorf, D.C., Wang, D., Chakraborty, S., 2015. Characterizing soils via portable
- 606 X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma 239,

607 130–134. https://doi.org/10.1016/j.geoderma.2014.10.001

- 608 Shoemaker, H.E., McLean, E.O., Pratt, P.F., 1961. Buffer methods for determining lime
- requirement of soils with appreciable amounts of extractable aluminum1. Soil Sci. Soc.
- 610 Am. J. 25, 274-277. https://doi.org/10.2136/sssaj1961.03615995002500040014x
- 611 Sierra, C.A., Trumbore, S.E., Davidson, E.A., Vicca, S., Janssens, I., 2015. Sensitivity of
- 612 decomposition rates of soil organic matter with respect to simultaneous changes in

- 613 temperature and moisture. J. Adv. Model. Earth Syst. 7, 335–356.
 614 https://doi.org/10.1002/2014MS000358
- 615 Silva, A.O., Costa, A.M., Teixeira, A.F. dos S., Guimarães, A.A., Santos, J.V., Moreira, F.M.
- 616 de S., 2018a. Soil microbiological attributes indicate recovery of an iron mining area and
- of the biological quality of adjacent phytophysiognomies. Ecol. Indic. 93, 142–151.
- 618 https://doi.org/10.1016/j.ecolind.2018.04.073
- Silva, S.H.G., Hartemink, A.E., Teixeira, A.F. dos S., Inda, A.V., Guilherme, L.R.G., Curi, N.,
 2018b. Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer
 in an Inceptisol from the Brazilian Cerrado. Appl. Clay Sci. 162, 27–37.
- 622 https://doi.org/10.1016/j.clay.2018.05.028
- Silva, S.H.G., Menezes, M.D. de, Owens, P.R., Curi, N., 2016a. Retrieving pedologist's mental
 model from existing soil map and comparing data mining tools for refining a larger area
 map under similar environmental conditions in Southeastern Brazil. Geoderma 267, 65–
 77. https://doi.org/10.1016/j.geoderma.2015.12.025
- 627 Silva, S.H.G., Poggere, G.C., Menezes, M.D., Carvalho, G.S., Guilherme, L.R.G., Curi, N., 628 2016b. Proximal sensing and digital terrain models applied to digital soil mapping and 629 modeling of Brazilian Latosols (Oxisols). Remote Sens. 8, 614–35. 630 https://doi.org/10.3390/rs8080614
- Silva, S.H.G., Teixeira, A.F. dos S., Menezes, M.D. de, Guilherme, L.R.G., Moreira, F.M. de
 S., Curi, N., 2017. Multiple linear regression and random forest to predict and map soil
 properties using data from portable X-ray fluorescence spectrometer (pXRF). Ciência e
 Agrotecnologia 41, 648–664. https://doi.org/10.1590/1413-70542017416010317
- Souza, R.C., Mendes, I.C., Reis-Junior, F.B., Carvalho, F.M., Nogueira, M.A., Vasconcelos,
 A.T.R., Vicente, V.A., Hungria, M., 2016. Shifts in taxonomic and functional microbial
- 637 diversity with agriculture: How fragile is the Brazilian Cerrado? BMC Microbiol. 16, 42.

- 638 https://doi.org/10.1186/s12866-016-0657-z
- 639 Sparling, G., 1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive 640 indicator of changes in soil organic matter. Aust. J. Soil Res. 30, 195-207. 641 https://doi.org/10.1071/SR9920195
- 642 Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T., 2007. Bias in random forest variable 643 importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25.

644 https://doi.org/10.1186/1471-2105-8-25

- 645 Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., Triantafilis, J., 2015. Comparing data
- 646 mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh
- 647 region, Iran. Geoderma 253–254, 67–77. https://doi.org/10.1016/j.geoderma.2015.04.008
- Teixeira, A.F. dos S., Kemmelmeier, K., Marascalchi, M.N., Stürmer, S.L., Carneiro, M.A.C., 648
- 649 Moreira, F.M. de S., 2017. Arbuscular mycorrhizal fungal communities in an iron mining 650 area and its surroundings: Inoculum potential, density, and diversity of spores related to 651 soil properties. Ciência e Agrotecnologia 41, 511-525. https://doi.org/10.1590/1413-652
- 70542017415014617
 - 653 Teixeira, A.F. dos S., Weindorf, D.C., Silva, S.H.G., Guilherme, L.R.G., Curi, N., 2018. 654 Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical 655 attributes in Inceptisols under different land uses. Cienc. e Agrotecnologia 42, 501–512. 656 https://doi.org/10.1590/1413-70542018425017518
 - 657 Towett, E.K., Shepherd, K.D., Tondoh, J.E., Winowiecki, L. A., Lulseged, T., Nyambura, M.,
 - 658 Sila, A., Vågen, T.-G., Cadisch, G., 2015. Total elemental composition of soils in Sub-
 - 659 Saharan Africa and relationship with soil forming factors. Geoderma Reg. 5, 157–168. 660 https://doi.org/10.1016/j.geodrs.2015.06.002
 - 661 Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil 662 microbial biomass C. Soil Biol. Biochem. 19, 703-707. https://doi.org/10.1016/0038-

663 0717(87)90052-6

- Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil
 organic matter and a proposed modification of the chromic acid titration method. Soil Sci.
 37, 29–38.
- Wang, D., Chakraborty, S., Weindorf, D.C., Li, B., Sharma, A., Paul, S., Ali, M.N., 2015.
 Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and
 total nitrogen. Geoderma 243–244, 157–167.
 https://doi.org/10.1016/j.geoderma.2014.12.011
- Weindorf, D.C., Bakr, N., Zhu, Y., 2014. Advances in Portable X-ray fluorescence (PXRF) for
 environmental, pedological, and agronomic applications. Adv. Agron. 128, 1–45.
 https://doi.org/10.1016/B978-0-12-802139-2.00001-9
- 674 Weindorf, D.C., Chakraborty, S., Moore-Kucera, J., Li, B., Fultz, L., Acosta-Martinez, V., Li,

C. 2018. Advanced modeling of soil biological properties using visible near infrared
diffuse reflectance spectroscopy. International Journal of Bioresource Science 5, 1-20.

677 https://doi.org/ 10.30954/2347-9655.01.2018.1

- 678 Weindorf, D.C., Zhu, Y., Haggard, B., Lofton, J., Chakraborty, S., Bakr, N., Zhang, W.,
- Weindorf, W.C., Legoria, M., 2012a. Enhanced pedon horizonation using portable X-ray
 fluorescence spectrometry. Soil Sci. Soc. Am. J. 76, 522–531.
 https://doi.org/10.2136/sssaj2011.0174
- 682 Weindorf, D.C., Zhu, Y., McDaniel, P., Valerio, M., Lynn, L., Michaelson, G., Clark, M., Ping,
- C.L., 2012b. Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic
 and Albic horizons. Geoderma 189–190, 268–277.
 https://doi.org/10.1016/j.geoderma.2012.06.034
- Yu, B., Liu, G., Liu, Q., Feng, J., Wang, X., Han, G., Huang, C., 2017. Effects of microtopography and vegetation type on soil moisture in a large gully on the Loess Plateau of

- 688 China. Hydrol. Res. nh2017023. https://doi.org/10.2166/nh.2017.023
- Zeileis, A., Hothorn, T., 2014. partykit : A toolkit for recursive partytioning. J. Mach. Learn.
 Res. 16, 3905–3909.
- 691 Zhang, W., Ruirui, L., Ai, X., Chen, J., Xu, W., Li, W., Ai, Y., 2018. Enzyme activity and
- 692 microbial biomass availability in artificial soils on rock-cut slopes restored with outside
- soil spray seeding (OSSS): Influence of topography and season. J. Environ. Manage. 211,

694 287–295. https://doi.org/10.1016/j.jenvman.2018.01.005

- 695 Zhong, L., Li, F.Y., Wang, Y., Zhou, X., Zhou, S., Gong, X., Bai, Y., 2018. Mowing and
- 696 topography effects on microorganisms and nitrogen transformation processes responsible
- 697 for nitrous oxide emissions in semi-arid grassland of Inner Mongolia. J. Soils Sediments

698 18, 929–935. https://doi.org/10.1007/s11368-017-1819-9

- Zhu, A. X., Qi, F., Moore, A., Burt, J.E., 2010. Prediction of soil properties using fuzzy
 membership values. Geoderma 158, 199–206.
 https://doi.org/10.1016/j.geoderma.2010.05.001
- 702 Zhu, M., Feng, Q., Qin, Y., Cao, J., Li, H., Zhao, Y., 2017. Soil organic carbon as functions of
- slope aspects and soil depths in a semiarid alpine region of Northwest China. Catena 152,

704 94–102. https://doi.org/10.1016/j.catena.2017.01.011

- Zhu, Y., Weindorf, D.C., Zhang, W., 2011. Characterizing soils using a portable X-ray
 fluorescence spectrometer: 1. Soil texture. Geoderma 167–168, 167–177.
- 707 https://doi.org/10.1016/j.geoderma.2011.08.010

ARTIGO 3 – Soil physicochemical properties and terrain information predict soil enzymes activity

Artigo formatado nas normas da revista Remote Sensing of Environment

Anita Fernanda dos Santos Teixeira^A; Sérgio Henrique Godinho Silva^A; Teotonio

Soares de Carvalho^A; Aline Oliveira Silva^A; Amanda Azarias Guimarães^A; Fatima Maria de

Souza Moreira^{A*}

^ADept. of Soil Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil.

*Corresponding author: fmoreira@dcs.ufla.br

1 Abstract

2 Soil enzymes act in biogeochemical cycles and are indicators of soil quality since they rapidly 3 reflect changes in the environment. Moreover, enzymes are related to soil physical-chemical 4 properties, but their spatial distribution has been rarely evaluated. The hypothesis of this work 5 is that soil attributes related to fertility and texture (F), contents of chemical elements obtained 6 by portable X-ray fluorescence (pX) spectrometry and terrain attributes (T) can be used as 7 predictors to soil enzyme activity. The objective of this work was to predict soil enzymes 8 activity and assess the spatial distribution of these enzymes in phytophysiognomies of the 9 Quadrilátero Ferrífero mineral province, in Brazil. Soil samples were collected in five 10 phytophysiognomies in dry and humid seasons, and activity of β -glycosidase, acid phosphatase, 11 alkaline phosphatase, urease, and hydrolysis of fluorescein diacetate (FDA) were determined. 12 Phytophysiognomy, season, F, T, and pX, were used together or separately, to predict the 13 enzymes through conditional random forest and leave-one-out cross validation. The importance 14 of the variables was determined. Model generated using T was used for the spatialization of the 15 enzymes. The generated models presented good accuracy, with coefficient of determination 16 (\mathbb{R}^2) varying from 0.63 (FDA by pX) to 0.82 (β -glycosidase by F and T). Spatialization 17 generated maps showing the variation of the enzymes along the phytophysiognomies. PX 18 variables were more important for predicting acid phosphatase and urease, while F variables 19 were more important for predicting β -glucosidase. Prediction of soil enzymes is possible 20 through pXRF, terrain, fertility and texture data.

21

Keywords: Portable X-ray fluorescence; β-glucosidase; Urease; Phosphatase; Relief, Soil
Quality; prediction models

24 **1 Introduction**

The *Quadrilátero Ferrífero* is one of the largest mineral provinces in the world. In this region, there is a great variation in the soil composition besides a great biological diversity, being considered a hot spot of the diversity (Carvalho Filho et al., 2010; Castro et al., 2017; Silva et al., 2018; Skirycz et al., 2014; Teixeira et al., 2017).

29 Soil are in the interface of the spheres of the planet, being in contact with atmosphere, 30 lithosphere, and hydrosphere, besides containing a great diversity of organisms and presenting 31 important functions for the maintenance of the biosphere. In soil, besides macro, meso, and 32 microfauna, as well as microorganisms are present, which perform functions of great 33 environmental importance, despite their small size (Singh et al., 2018). The microorganisms 34 are responsible directly and indirectly for the decomposition of residues, cycling of the elements 35 and maintenance of the biogeochemical cycles that guarantee the continuity of life on the planet 36 (Plante, 2007).

Soil enzymes are largely excreted by the inhabiting microorganisms. These enzymes play key roles in accelerating processes related to the nutrient cycling and catalysis of reactions that would take several years to occur without their action. Enzymes involved in cycles of soil elements, such as in the carbon, nitrogen and phosphorus, have been considered indicators of soil quality, since their activity rapidly reflects changes in the environment, as a consequence of their relationship with soil physicochemical properties and with the structure of the microbial community (Paz-Ferreiro and Fu, 2016).

The activity of the soil enzymes is influenced by several factors, from attributes related to fertility, soil moisture, texture, and to the chemical composition of the soil. On the other hand, some chemical elements can be toxic to the microorganisms producing these enzymes (Gianfreda et al., 2002; Mounissamy et al., 2017; Wang et al., 2007). Few studies evaluated the influence of several chemical elements meansured by conventional methods in the soil enzymes activity, being more common the evaluation of these elements in contaminated areas (dos
Santos et al., 2016; Wang et al., 2007). Modern tools, such as the portable X-ray fluorescence
(pXRF), spectrometry have proved successful for predicting various soil attributes and making
the quantification of elemental contents easier, more rapid and less costly (Mancini et al., 2019;
Ribeiro et al., 2017; Silva et al., 2017; Teixeira et al., 2018; Weindorf et al., 2012; Zhu et al.,
2011).

55 Soil enzymes are good microbiological indicators of soil quality (dos Santos et al., 2013; 56 Nadimi-Goki et al., 2018; Paz-Ferreiro and Fu, 2016; Silva et al., 2018). However, for a 57 throughout characterization, soil sampling to determine the activity of these enzymes should be 58 performed in several points on the area of interest, increasing the number of samples, which 59 may constraint the work. Moreover, in between the sampling sites there are gaps where information on enzyme activity is not contemplated by the sampling scheme. Currently, several 60 61 works have sought to represent in a spatial way the variability of soil physical, chemical, and 62 biological attributes and, for that end, several techniques can be used (Duda et al., 2017; 63 Forkuor et al., 2017; Hengl et al., 2017; Liu et al., 2012; Malone et al., 2017; Pelegrino et al., 64 2018; Qu et al., 2018; Spohn et al., 2013a; Vasu et al., 2017). Among these techniques, terrain 65 attributes, i.e., representation of topography features in a raster type (pixel-based) format, such as slope, curvature and topographic wetness index, that correlate with the variation of the data 66 67 of interest (e.g., soil enzymes activity) along the areas have been used for prediction of these 68 attributes of interest, generating a map with continuous information of these attributes 69 variability across the study area.

The hypothesis of this work is that contents of chemical elements obtained by portable Xray fluorescence (pX) spectrometry and terrain attributes (T) can be used as predictors to soil enzyme activity. The objective of this work was to predict soil enzymes activity and to assess the spatial distribution of these enzymes in phytophysiognomies of the *Quadrilátero Ferrífero*mineral provice, in Brazil.

75

76 2 Material and Methods

77 **2.1 Soil sampling**

This study was conducted in Brumadinho and Nova Lima counties, located in the *Quadrilátero Ferrífero* region, in the state of Minas Gerais, Brazil. The climate of the region is Cwa according to Köppen-Geiger classification, with dry winters and hot summers (Alvares et al., 2013).

82 The evaluated areas contains four vegetation types with contrasting characteristics 83 (phytophysiognomies) described by Castro et al. (2017) and Silva et al. (2018) as follows: 84 Ironstone Outcrops (IO) (known as "Canga") on Petric Plinthosol (Typic Plinthaquox), 85 Neotropical Savanna (NS) (known as "Brazilian Cerrado") on Petric Plinthosol (Typic 86 Plinthaquox), Atlantic Forest (AF) on a toposequence of Red Latosol (Rhodic Haplustox), Red-87 Yellow Latosol (Typic Haplustox), and Haplic Cambisol (Typic Dystrustept); rehabilitated area 88 revegetated with grass (RA) is found on anthropic soil (Coelho et al., 2017) (Figure 1) [soils 89 classified per Brazilian Soil Classification System (Embrapa, 2013) and per Keys to Soil 90 Taxonomy (Soil Survey Staff, 2014), the latter in parenthesis] (Figure 1) (Castro et al., 2017; 91 Silva et al., 2018). Soil sampling was carried out by collecting 10 samples per 92 phytophysiognomy, each of them composed of five sub-samples collected at 0 to 20 cm depth 93 at five and ten meters to the east and west of a central georeferenced sampling point (Silva et 94 al., 2018).

96 Figure 1: Location of the soil sampling sites at the Ferrous Technology Center (Miguelão 97 Nova Lima) and the Córrego do Feijão Mine (Brumadinho) in Minas Gerais State, Brazil.

99 2.2 Soil analysis

100 The enzymes evaluated were β -glucosidase (Eivazi and Tabatabai, 1988), acid 101 phosphatase, alkaline phosphatase (Eivazi and Tabatabai, 1977), and urease (Keeney and 102 Nelson, 1982; Tabatabai and Bremner, 1970), in addition to total enzyme activity by hydrolysis 103 of fluorescein diacetate (FDA) (Dick et al., 1996). The activity values of the soil enzymes used 104 in this study were determined by Silva et al. (2018).

105 Mean values of soil fertility and texture were presented by Castro et al. (2017) and Silva et 106 al. (2018). The following soil properties were determined: total N contents (fNtotal) (Joergensen and Brookes, 1990), exchangeable contents of Ca²⁺ (fCa), Mg²⁺ (fMg), and Al³⁺ (fAl), (Mclean 107 108 et al., 1958); pH in water (1:2.5) (fpH); available contents of P (fP), K (fK), Fe (fFe), Zn (fZn), 109 Mn (fMn) and Cu (fCu) (Mehlich, 1953); remaining P (Prem) (Alvarez V. and Fonseca, 1990); 110 potential acidity (fH+Al) (Shoemaker et al., 1961); available S (fS) (Hoeft et al., 1973) and B 111 (fB) (Raij et al., 2001); effective cation exchange capacity (CEC) (ft), potential CEC at pH 7 112 (fT), aluminum saturation (fm), base saturation (fV) (Alvarez V. et al., 1999), and soil organic matter (fOM) obtained by oxidation with potassium dichromate in acidic medium (Walkley and
Black, 1934). The sand (fsand), silt (fsilt), and clay (fclay) contents were obtained through soil
texture determination by the pippete method (Bouyoucos, 1951).

116 The terrain attributes were derived from an Alos Palsar digital elevation model (spatial 117 resolution of 12.5m) obtained on the digital platform of the Alaska Satellite Facility 118 (https://vertex.daac.asf.alaska.edu). The terrain attributes Slope, Topographic Wetness Index 119 (twi) (Beven and Kirkby, 1979), Aspect (aspect), Hillshade (hillsh), Channel Network Base 120 Level (channbl), Cross-sectional Curvature (csc), Longitudinal Curvature (longcurv), Multi-121 resolution Ridge Top Flatness (mrrtf), Relative Slope (relslop), Valley Depth (valleydep) and 122 Vertical Distance to Channel Network (vertdis) were obtained using the software System for 123 Automated Geoscientific Analysis (SAGA) GIS v 2.1.4 (Conrad et al., 2015). The values of 124 these terrain attributes were extracted at the sampling sites.

125 Soil chemical elemental contents were obtained through a pXRF Bruker® model S1 Titan 126 LE (50 kV e100 μ A X-ray tubes). For such analyses, the samples were air dried, sieved to 2 127 mm, and scanned in triplicate with the equipment, for 60 seconds, at Trace (dual soil) mode, 128 using the GeoChem software. The accuracy of the equipment was assessed by scanning 129 reference materials certified by the National Institute of Standards and Technology (NIST), 130 2710a, 2711a, and by equipment manufacturer (check sample - CS). The recovery percentage 131 (% of recovery = $100 \times \text{Obtained content} / \text{Total certified content})$ for the elements used in this 132 study was calculated. The elements used in this study were Al₂O₃(pxAl2O3), As (pxAs), Bi 133 (pxBi), CaO (pxCaO), Ce (pxCe), Cl (pxCl), Cr (pxCr), Cu (pxCu), Fe (pxFe), K2O (pxK2O), Mn 134 (pxMn), Nb (pxNb), Ni (pxNi), P2O5 (pxP2O5), Pb (pxPb), Rb (pxRb), SiO2 (pxSiO2), Ta (pxTa), Ti (pxTi), V (pxV), Y (pxY), Zn (pxZn) and Zr (pxZr). These elements were used since they presented 135 136 results in all the repetitions of at least one phytophysiognomy under study. The recovery values 137 of samples 2710a / 2711a / CS are, respectively: Al (78.8/68.9/88.3 %), As (0/0/0), Bi (0/0/0),

Ca (36.2/42.9/0), Ce (0/0/0), Cl (0/0/0), Cr (0/124.7/0), Cu (84.0/77.2/94.3), Fe
(75.8/67.6/89.3), K (55.6/45.9/84.3), Mn (69.9/61.2/80.5), Nb (0/0/0), Ni (0/115.0/90.2), P
(411.8/577.9/0), Pb (108.2/106.3/105.6), Rb (88.3/91.1/0), Si (57.4/49.3/90.5), Ta (0/0/0), Ti
(77.7/72.0/0), V (0/0/0), Y (0/0/0), Zn (94.2/77.8/0) and Zr (105.0/0/0). Zero values indicate
either that the element was not present in the certified material or that pXRF could not detect
it.

144

145 **2.3 Data analysis**

146 The software R (R Development Core Team, 2017) was used for fitting the models using 147 the partykit package (Zeileis and Hothorn, 2014) and the cforest algorithm, which creates 148 random forests from unbiased classification trees (Hothorn et al., 2006; Strobl et al., 2007). For 149 modeling and validation of β -glucosidase, acid phosphatase, alkaline phosphatase, urease and 150 FDA, the following variables were used as predictors: Phytophysiognomy; season; soil organic 151 matter, soil fertility and texture (F); terrain attributes (T); and pXRF data (pX). The sets of 152 predictor variables F, T and pX were used separately or in combination, encompassing seven 153 conditions: a) (pX); b) (F); c) (T); d) (F + pX); e) (F + T); f) (T + pX); and g) (F + pX + T). In 154 addition to the seven combinations of variables, an eighth model was developed with the 15 155 most important variables for predicting each enzyme (15+) as well as a ninth model with all 156 variables that presented positive importance values (All +), totaling nine models.

The importance of the variables was determined for the F + pX + T models. All models were validated by the Leave One Out Cross-Validation (LOOCV) method of the caret package (Kuhn et al., 2018). The values of coefficient of determination (R^2), root mean square error (RMSE), and absolute mean error (MAE) were obtained, comparing the values estimated by the model with the observed (real) values. The predicted and observed values of the two best models (largest R^2 and smallest RMSE and MAE) were also plotted in 1:1 graphs for 163 comparison. Moreover, the predicted enzymes activity were spatialized to the 164 phytophysiognomies using the models created based on T data. For that, the values of the terrain 165 attributes were extracted at the central sampled point. Then, the raster and rgdal packages of 166 the R software were applied to the generated models for spatial prediction along each 167 phytophysiognomy in each season, providing a spatial overview of the soil enzymes activities 168 within the study phytophysiognomies.

169

170 **3 Results**

171 **3.1 Variables importance**

The most important variables for the β -glucosidase prediction were phytophysiognomy, fAl, fMg, fB and fT (Figure 2). Besides the phytophysiognomy, only variables related to soil fertility were among the five most important ones to predict this enzyme activity. For the Acid Phosphatase prediction, the most important variables were pxFe, pxMn, phytophysiognomy, pxAs and fClay (Figure 2), which means that among the five most important variables, only one is related to soil texture, and three (pxFe, pxMn and pxAs) are related to the results of elemental contents obtained by pXRF.

179 Variables obtained by pXRF appear among the five most important also for Alkaline 180 Phosphatase and FDA prediction (Figure 2). The most important variables for the Alkaline 181 Phosphatase prediction were pxCu, phytophysiognomy, fAl, pxZn and fm. For the FDA 182 prediction, the most important variables were Season, fB, fS, pxTi and pxAs. Similarly to the 183 FDA prediction, Season was also the most important variable for the Urease prediction, 184 followed by pxTa, phytophysiognomy, pxPb and pxFe (Figure 2). Twi was the only variable that 185 negatively influenced the modeling of all enzymes (Figure 2). The terrain variables did not 186 appear among the most important for the models probably because they are constant throughout 187 the year, as opposed to the enzymes activity.

Figure 2: Importance of the variables for the prediction of the enzymes β-glucosidase, acid
phosphatase, alkaline phosphatase, urease and fluorescence diacetate hydrolysis activity
(FDA).

192 **3.2 Prediction of soil enzymes**

Better values of R^2 are observed in the prediction of Urease, β -glucosidase and FDA as 193 194 well as considerable decreases in RMSE and MAE values for Acid Phosphatase prediction 195 when the soil variables obtained by pXRF and variables related to terrain attributes are used in 196 addition to those of soil fertility (Figure 3). The R² values obtained for the 9 models evaluated 197 were higher than 0.60, reaching 0.82 in the β -glucosidase prediction (F and F + T models) (Figure 3). The lowest R² was obtained in the FDA model using only pX data ($R^2 = 0.63$). When 198 199 only terrain attributes were used, observed R² values were close to those obtained using other 200 predictor variables.

The RMSE and MAE values behaved similarly (Figure 3). The highest values of these parameters in relation to the other values for prediction of the same enzyme activity were observed in the models for the Alkaline Phosphatase prediction. To predict this enzyme activity, the model that used only the T data was 2 to 4 units higher than the values of the other models. The lowest values of RMSE and MAE for the prediction of the same enzyme were observed in the Acid Phosphatase prediction. In this case, the F+T model had at least 8 units lower than the other models used to predict this enzyme.

The selection of variables for enzymes prediction did not present significant results. None of the models for enzyme prediction with selection of variables by importance (All + and 15+) presented higher results than the models in which all the data were used.

25 F **F** + pX 20 $\blacksquare F + pX + T$ 15 **F**+T ∎ pX 10 ■ pX + T 5 T 15+ 0 ■ All + FDA β-glucosidase Acid Alkaline Urease Phosphatase Phosphatase

RMSE

Figure 3: Coefficient of determination (R^2), root mean square error (RMSE) and absolute mean error (MAE) for prediction of hydrolysis of fluorescein diacetate and of the enzymes β glucosidase, Acid Phosphatase, Alkaline Phosphatase and Urease through models with varying predictor variables: soil fertility and texture (F), portable X-ray fluorescence (pX) data, terrain attributes (T), the 15 most important variables (15+), and all variables with positive importance (All+).

In the two best models for FDA prediction (F and F+T) and the enzymes β -glucosidase (F and F + T) and Urease (T and F + T) the points were close to the trend line, showing the good accuracy of both models (Figure 4). When comparing these graphs with the 1:1 graphs generated by the predicted vs. observed values of Acid Phosphatase (F and F+pX+T) and Alkaline Phosphatase (F and F+pX), it is noted that they are a little more scattered trend line.

The best model for Urease enzyme prediction was obtained only using terrain attribute data (Figure 3). Although the models generated only with terrain attributes to predict the other enzymes and the FDA were not the best, the lowest R^2 value observed was 0.68 for Alkaline Phosphatase, a small variation when it is considered that the highest R^2 value obtained for

227 prediction of this enzyme was 0.76.

Figure 4: Values predicted two best prediction models and observed values of the FDA and the enzymes β -glucosidase, Acid Phosphatase, Alkaline Phosphatase and Urease. F = attributes of

soil fertility and texture; T = terrain attributes; pX = values obtained by portable fluorescence
X-ray spectrometer.

240

241 **3.3 Spatialization of soil enzymes**

The models generated only with terrain attribute data were used for enzyme and FDA spatialization in the phytophysiognomies evaluated in the two seasons (Figures 5, 6, 7, 8 and 9). As the terrain attributes do not vary from one season to another, enzyme and FDA responses were also similar in their distribution on maps, with variations mainly on the scales. The enzymes β -glucosidase (Figure 5), Urease (Figure 8), and FDA (Figure 9) were the enzymes that varied most in relation to the collection season, while the Acid Phosphatase enzymes (Figure 6) and Alkaline Phosphatase (Figure 7) showed very small variations.

β-glucosidase

Figure 5: Spatialization of the predicted values of the β-glucosidase activity based on the model
generated with terrain attributes (T) for the Ironstone Outcrops, Rehabilitated Area, Neotropical
Savanna and Atlantic Forest phytophysiognomies in the Dry and Rainy seasons.

Figure 6: Spatialization of predicted values of Acid Phosphatase activity based on the model
generated with terrain attributes (T) for the Ironstone Outcrops, Rehabilitated Area, Neotropical
Savanna and Atlantic Forest phytophysiognomies in the Dry and Rainy seasons.

Figure 7: Spatialization of the predicted values of Alkaline Phosphatase activity based on the
model generated with terrain attributes (T) for the Ironstone Outcrops, Rehabilitated Area,
Neotropical Savanna and Atlantic Forest phytophysiognomies in the Dry and Rainy seasons.

Figure 8: Spatialization of the predicted values of Urease enzyme based on the model generated
with terrain attributes (T) for the Ironstone Outcrops, Rehabilitated Area, Neotropical Savanna
and Atlantic Forest phytophysiognomies in the Dry and Rainy seasons.

Figure 9: Spatialization of predicted values of FDA based on the model generated with terrain
attributes (T) for the Ironstone Outcrops, Rehabilitated Area, Neotropical Savanna and Atlantic
Forest phytophysiognomies in the Dry and Rainy seasons.

269 **4 Discussion**

4.1 Variables importance

271 Among the variables used in the models, phytophysiognomies, soil fertility and Season are 272 variables already known to influence soil microbiology (Silva et al., 2018; Alkorta et al., 2017; Ravindran and Yang, 2015; Stone et al., 2015; Štursová et al., 2016). In this work it was 273 274 demonstrated that the microbiological attributes studied are differently influenced by 275 phytophysiognomy and season, depending on the microbiological parameter to be predicted. 276 While phytophysiognomy appeared among the most important variables for the enzymes β -277 glucosidase, Acid Phosphatase, Alkaline Phosphatase and Urease, it did not appear among the 278 most important for FDA prediction, which is used as a measure of general enzymatic activity. 279 For FDA prediction, Season appears as the most important variable. The modeling of the 280 importance of the variables was able to demonstrate that the enzymatic activities vary in 281 different intensities when phytophysiognomy and/or season are different, as evidenced by Silva 282 et al. (2018).

In addition to phytophysiognomy and season, variables related to soil fertility and texture commonly appeared among the most important ones in the models for predicting attributes related to soil microbiology. Variables related to soil physicochemical properties such as values of electrical conductivity, pH, organic carbon, soil texture and nutrient contents have already been cited as important for improving the accuracy of prediction models (Ebrahimi et al., 2017; Tavares et al., 2018).

289

290 **4.2 Prediction of soil enzymes**

For Acid Phosphatase prediction, the two most important variables were _{px}Fe and _{px}Mn. The influence of Fe and Mn oxides has been observed in the enzymes phosphatase and urease, promoting the abiotic polymerization of phenolic compounds, with the adsorbed enzyme 294 molecules exposed, presenting greater activities (Gianfreda et al., 2002). As the evaluated 295 phytophysiognomies are located in the Quadrilátero Ferrífero, region with highly weathered 296 soils derived from parent materials with high concentrations of Fe (Carvalho Filho et al., 2010), 297 it is expected that the mineralogy of these soils will present Fe oxides, known for their high P 298 fixing capacity (Kämpf et al., 2012; Resende et al., 2014), as well as Al and Mn oxides. We 299 believe that the importance of these elements obtained by pXRF is therefore related to the 300 mineralogy of the soils of the region. Mancini et al. (2019) demonstrated that pXRF is a tool 301 capable of detecting even slight chemical variations in soil parent materials, which would lead 302 to the formation of soils with different chemical compositions and, therefore, soil mineralogy. 303 This fact also explains why the importance of these elements obtained by pXRF was greater 304 than that of available contents of these elements for the same soil. Another explanation for the 305 influence of these elements on Acid Phosphatase is the P-fixing ability of these soils. As the 306 soils of the region are generally acidic and have a high P fixing capacity (Motta et al., 2002), 307 the higher Acid Phosphatase activity may be related to the lower P availability in these 308 environments, which is also a reflection of their mineralogy.

Conversely, for Alkaline Phosphatase prediction, pxCu was the most important variable. 309 310 The importance of this variable may be related to the effect of Cu on the decrease of Alkaline 311 Phosphatase activity already demonstrated in studies in areas under influence of this element 312 (Mounissamy et al., 2017; Wang et al., 2007). The importance of pxTa for Urease and pxAs for 313 FDA predictions is probably related to their toxic effect to the microbial population, being able 314 to reduce the enzymatic activity (Li et al., 2016; Nadimi-Goki et al., 2018; Oladipo et al., 2014). The R² values found for β-Glucosidase, Alkaline Phosphatase and Acid Phosphatase 315 316 prediction using phytophysiognomy, season and pXRF information by cForest were all higher 317 than those found by Comino et al. (2018) using infrared spectroscopy and Partial Least Squares 318 Regression model, indicating that different models and techniques can produce different results.
108

319 It demonstrates that pXRF is also an important tool for studies related to the soil microbiological 320 quality of the soil. New technologies have been sought to aid in the study and understanding of 321 soil microbiological parameters, such as enzyme activity. Technologies such as infrared 322 spectroscopy have been able to partially predict individual soil enzymes and can be used to 323 estimate the soil biological quality index (Comino et al., 2018). The models with selection of 324 the variables of positive importance (All + and 15+) did not present better results compared to 325 the other models, showing the importance of maintaining all variables for the prediction of 326 enzyme activity.

327

328 **4.3 Spatialization of soil enzymes**

The stability of the enzyme Phosphatase, observed in the spatialization of the attributes for the phytophysiognomies at the different seasons (Figures 8 and 9) has been previously reported. Lopes et al. (2018), in evaluations over 5 years, observed that the enzyme Acid Phosphatase did not present significant variations, remaining stable. Urease was the only enzyme that had its activity reduced in the rainy season.

334 The use of microbiological attributes related to soil quality, such as enzymes, is a 335 worldwide trend (Spohn et al., 2013b). The spatialization of soil microbiological attributes is 336 an important alternative for assessing soil quality, since these attributes can vary, even in 337 unchanged areas, under the same vegetation type and other similar conditions (Figures 7, 8, 9, 338 10 and 11). The influence of terrain along with the variability of soil physicochemical attributes 339 at short distances on soil enzyme activities is still little studied and can be a great key factor for 340 determining the reference values of microbiological attributes for each phytophysiognomy, 341 making interpretation and extrapolation easier to similar areas.

5. Conclusions

Elements obtained by pXRF and soil physicochemical properties and terrain attributes provide the generation of predictive models for soil enzymes with great accuracy. The spatialization of the enzymes using models generated with terrain attributes data allows a better overview of the variability of the enzymatic activity across each study phytophysiognomy in a given season of the year.

348

349 Acknowledgement

The authors are grateful for the project [CRA- RDP- 00136- 10 (FAPEMIG/ FAPESP/ FAPESPA/ Vale SA)], the Fundação de Amparo à Pesquisa do Estado de Minas Gerais -FAPEMIG, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes and the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for financial support and scholarships granted, and to Luiz Roberto Guimarães Guilherme, for lending us the pXRF.

356 **References**

Alkorta, I., Epelde, L., Garbisu, C., 2017. Environmental parameters altered by climate change
 affect the activity of soil microorganisms involved in bioremediation. FEMS Microbiol.

359 Lett. 364. https://doi.org/10.1093/femsle/fnx200

- Alvares, C.A., Stape, J.L., Sentelhas, P.C., de Moraes Gonçalves, J.L., Sparovek, G., 2013.
 Köppen's climate classification map for Brazil. Meteorol. Zeitschrift 22, 711–728.
 https://doi.org/10.1127/0941-2948/2013/0507
- Alvarez V., V.H., Fonseca, D.M., 1990. Definition of phosphorus doses for the determination
 of the maximum phosphate adsorption capacity and for greenhouse trials. Rev. Bras.
 Cienc. do Solo 14, 49–55.
- 366 Alvarez V., V.H., Novais, R.F. de, Barros, N.F. de, Cantarutti, R.B., Lopes, A.S., 1999.

367	Interpretation of the results of soil analysis, in: Ribeiro, A.C., Guimarães, P.T.G., Alvarez
368	V., V.H. (Eds.), Recommendations for the Use of Corrective and Fertilizers in Minas
369	Gerais - 5th Approach. Soil Fertility Commission of the State of Minas Gerais, Viçosa,
370	MG, pp. 25–32.
371	Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin
372	hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin
373	versant. Hydrol. Sci. Bull. 24, 43-69. https://doi.org/10.1080/02626667909491834
374	Bouyoucos, G.Q., 1951. A recalibration of the hydrometer method for making analysis of soils.
375	Agron. J. 43, 434–437.
376	Carvalho Filho, A. de, Curi, N., Shinzato, E., 2010. Relações solo-paisagem no Quadrilátero
377	Ferrífero em Minas Gerais. Pesqui. Agropecuária Bras. 45, 903–916.
378	https://doi.org/10.1590/S0100-204X2010000800017
379	Castro, J.L. de, Souza, M.G., Rufini, M., Guimarães, A.A., Rodrigues, T.L., Moreira, F.M. de
380	S., 2017. Diversity and efficiency of rhizobia communities from iron mining areas using
381	cowpea as a trap plant. Rev. Bras. Cienc. do Solo 41, 1-20.
382	https://doi.org/10.1590/18069657rbcs20160525
383	Coelho, M.R., Vasques, G. de M., Tassinari, D., Souza, Z.R. de, Oliveira, A.P. de, Moreira,

- F.M. de S., 2017. Solos do Quadrilátero Ferrífero sob Diferentes Coberturas Vegetais e
 Materiais de Origem.
- Comino, F., Aranda, V., García-Ruiz, R., Ayora-Cañada, M.J., Domínguez-Vidal, A., 2018.
 Infrared spectroscopy as a tool for the assessment of soil biological quality in agricultural
 soils under contrasting management practices. Ecol. Indic. 87, 117–126.
 https://doi.org/10.1016/j.ecolind.2017.12.046
- Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J.,
 Wichmann, V., Böhner, J., 2015. System for Automated Geoscientific Analyses (SAGA)

392 v. 2.1.4. Geosci. Model Dev. 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

- 393 Dick, R.P., Breakwell, D.P., Turco, R.F., 1996. Soil enzyme activities and biodiversity
 394 measurements as integrative microbiological indicators, in: Doram, J.W., Jones, A.J.
 395 (Eds.), Methods for Assessing Soil Quality. Soil Science Society of America, Madison,
 396 pp. 247–272.
- 397 dos Santos, J.V., de Melo Rangel, W., Azarias Guimarães, A., Duque Jaramillo, P.M., Rufini, 398 M., Marra, L.M., Varón López, M., Pereira da Silva, M.A., Fonsêca Sousa Soares, C.R., 399 de Souza Moreira, F.M., 2013. Soil biological attributes in arsenic-contaminated gold 400 mining after revegetation. Ecotoxicology 22, 1526-1537. sites 401 https://doi.org/10.1007/s10646-013-1139-9
- 402 dos Santos, J.V., Varón-López, M., Fonsêca Sousa Soares, C.R., Lopes Leal, P., Siqueira, J.O., 403 de Souza Moreira, F.M., 2016. Biological attributes of rehabilitated soils contaminated 404 Pollut. with heavy metals. Environ. Sci. Res. 23. 6735-6748. 405 https://doi.org/10.1007/s11356-015-5904-6
- 406 Duda, B.M., Weindorf, D.C., Chakraborty, S., Li, B., Man, T., Paulette, L., Deb, S., 2017. Soil
 407 characterization across catenas via advanced proximal sensors. Geoderma 298, 78–91.
 408 https://doi.org/10.1016/j.geoderma.2017.03.017
- 409 Ebrahimi, M., Safari Sinegani, A.A., Sarikhani, M.R., Mohammadi, S.A., 2017. Comparison
- 410 of artificial neural network and multivariate regression models for prediction of
- 411 Azotobacteria population in soil under different land uses. Comput. Electron. Agric. 140,
- 412 409–421. https://doi.org/10.1016/j.compag.2017.06.019
- 413 Eivazi, F., Tabatabai, M.A., 1988. Glucosidases and galactosidases in soils. Soil Biol. Biochem.
- 414 20, 601–606. https://doi.org/10.1016/0038-0717(88)90141-1
- 415 Eivazi, F., Tabatabai, M.A., 1977. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172.
- 416 https://doi.org/10.1016/0038-0717(77)90070-0

- 417 Forkuor, G., Hounkpatin, O.K.L., Welp, G., Thiel, M., 2017. High resolution mapping of soil
- 418 properties using remote sensing variables in South-Western Burkina Faso: a comparison
- 419 of machine learning and multiple linear regression models. PLoS One 12, e0170478.
- 420 https://doi.org/10.1371/journal.pone.0170478
- 421 Gianfreda, L., Rao, M.A., Sannino, F., Saccomandi, F., Violante, A., 2002. Enzymes in soil:
- 422 Properties, behavior and potential applications, in: Developments in Soil Science. pp. 301–
 423 327. https://doi.org/10.1016/S0166-2481(02)80027-7
- 424 Hengl, T., Leenaars, J.G.B., Shepherd, K.D., Walsh, M.G., Heuvelink, G.B.M., Mamo, T.,
- 425 Tilahun, H., Berkhout, E., Cooper, M., Fegraus, E., Wheeler, I., Kwabena, N.A., 2017.
- 426 Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m
- 427 spatial resolution using machine learning. Nutr. Cycl. Agroecosystems 109, 77–102.
 428 https://doi.org/10.1007/s10705-017-9870-x
- Hoeft, R.G., Walsh, L.M., Kenney, D.R., 1973. Evaluation of various extractants for available
 soil sulfur. Soil Science Society American Proceeding, Madison.
- Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased recursive partitioning: A conditional
 inference framework. J. Comput. Graph. Stat. 15, 651–674.
 https://doi.org/10.1198/106186006X133933
- Joergensen, R.G., Brookes, P.C., 1990. Ninhydrin-reactive nitrogen measurements of microbial
 biomass in 0.5 m K2SO4 soil extracts. Soil Biol. Biochem. 22, 1023–1027.
 https://doi.org/10.1016/0038-0717(90)90027-W
- Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros, in: Pedologia
 Fundamentos. SBCS, Viçosa, MG, p. 343.
- 439 Keeney, D.R., Nelson, D.W., 1982. Nitrogen organic forms, in: PAGE, A.L. (Ed.), Methods of
- 440 Soil Analysis: Chemical and Microbiological Properties. American Society of
 441 Agronomy/Soil Science Society of America, Madison, pp. 643–698.

- 442 Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer,
- Z., Kenkel, B., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y.,
 Candan, C., Hunt, T., 2018. Package ' caret .'
- 445 Li, Z., Ma, T., Yuan, C., Hou, J., Wang, Q., Wu, L., Christie, P., Luo, Y., 2016. Metal
- 446 contamination status of the soil-plant system and effects on the soil microbial community
 447 near a rare metal recycling smelter. Environ. Sci. Pollut. Res. 23, 17625–17634.
 448 https://doi.org/10.1007/s11356-016-6958-9
- Liu, F., Geng, X., Zhu, a. X., Fraser, W., Waddell, A., 2012. Soil texture mapping over low
 relief areas using land surface feedback dynamic patterns extracted from MODIS.
 Geoderma 171–172, 44–52. https://doi.org/10.1016/j.geoderma.2011.05.007
- 452 Lopes, A.A.C., Sousa, D.M.G., dos Reis, F.B., Figueiredo, C.C., Malaquias, J.V., Souza, L.M.,
- 453 Carvalho Mendes, I., 2018. Temporal variation and critical limits of microbial indicators 454 in oxisols in the Cerrado, Brazil. Geoderma Reg. 12, 72–82.
- 455 https://doi.org/10.1016/j.geodrs.2018.01.003
- Malone, B.P., Styc, Q., Minasny, B., McBratney, A.B., 2017. Digital soil mapping of soil
 carbon at the farm scale: A spatial downscaling approach in consideration of measured
 and uncertain data. Geoderma 290, 91–99.
 https://doi.org/10.1016/j.geoderma.2016.12.008
- 460 Mancini, M., Weindorf, D.C., Chakraborty, S., Silva, S.H.G., dos Santos Teixeira, A.F.,
- 461 Guilherme, L.R.G., Curi, N., 2019. Tracing tropical soil parent material analysis via
- 462 portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado. Geoderma 337,
- 463 718–728. https://doi.org/10.1016/j.geoderma.2018.10.026
- Mclean, E.O., Hedleson, M.R., Bartlett, R.J., Holowaychuk, D., 1958. Aluminium in soils: I.
 Extraction methods and magnitud clays in Ohio soils. Soil Sci. Soc. Am. Proc. 22, 382–
 387.

467 Mehlich, A., 1953. Determination of P, Ca, Mg, K, Na and NH4. North Carolina Soil Testing
468 Division, Raleigh.

- 469 Motta, P.E.F., Curi, N., Siqueira, J.O., Van Raij, B., Furtini Neto, A.E., Lima, J.M., 2002.
- 470 Adsorption and forms of phosphorus in latosols: influence of mineralogy and use. Rev.
- 471 Bras. Ciência do Solo 26, 349–359. https://doi.org/10.1590/S0100-06832002000200008
- 472 Mounissamy, V.C., Kundu, S., Selladurai, R., Saha, J.K., Biswas, A.K., Adhikari, T., Patra,
- A.K., 2017. Effect of Soil Amendments on Microbial Resilience Capacity of Acid Soil
 Under Copper Stress. Bull. Environ. Contam. Toxicol. 99, 625–632.
 https://doi.org/10.1007/s00128-017-2173-8
- Nadimi-Goki, M., Bini, C., Wahsha, M., Kato, Y., Fornasier, F., 2018. Enzyme dynamics in
 contaminated paddy soils under different cropping patterns (NE Italy). J. Soils Sediments
 18, 2157–2171. https://doi.org/10.1007/s11368-017-1830-1
- 479 Oladipo, O.G., Olayinka, A., Awotoye, O.O., 2014. Ecological impact of mining on soils of
 480 Southwestern Nigeria. Environ. Exp. Biol. 12, 179–186.
- 481 Paz-Ferreiro, J., Fu, S., 2016. Biological Indices for Soil Quality Evaluation: Perspectives and
- 482 Limitations. L. Degrad. Dev. 27, 14–25. https://doi.org/10.1002/ldr.2262
- 483 Pelegrino, M.H.P., Weindorf, D.C., Silva, S.H.G., de Menezes, M.D., Poggere, G.C.,
- 484 Guilherme, L.R.G., Curi, N., 2018. Synthesis of proximal sensing, terrain analysis, and
- 485 parent material information for available micronutrient prediction in tropical soils. Precis.
- 486 Agric. 1–21. https://doi.org/10.1007/s11119-018-9608-z
- 487 Plante, A.F., 2007. Soil biogeochemical cycling of inorganic nutrients and metals, in: Soil
- 488 Microbiology, Ecology and Biochemistry. Elsevier, pp. 389–432.
 489 https://doi.org/10.1016/B978-0-08-047514-1.50019-6
- 490 Qu, M., Wang, Y., Huang, B., Zhao, Y., 2018. Spatial uncertainty assessment of the
 491 environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry

- 494 Raij, B. van, Andrade, J.C., Cantarella, H., Quaggio, J.A., 2001. Análise química para avaliação
 495 da fertilidade de solos tropicais. Instituto Agronômico de Campinas, Campinas.
- 496 Ravindran, A., Yang, S.-S., 2015. Effects of vegetation type on microbial biomass carbon and
- 497 nitrogen in subalpine mountain forest soils. J. Microbiol. Immunol. Infect. 48, 362–369.
 498 https://doi.org/10.1016/j.jmii.2014.02.003
- Resende, M., Curi, N., Rezende, S.B., Corrêa, G.F., Ker, J.C., 2014. Pedologia: Base para
 distinção de ambientes, 6th ed. Editora UFLA, Lavras.
- Ribeiro, B.T., Silva, S.H.G., Silva, E.A., Guilherme, L.R.G., 2017. Portable X-ray fluorescence
 (pXRF) applications in tropical Soil Science. Ciência e Agrotecnologia 41, 245–254.
- 503 https://doi.org/10.1590/1413-70542017413000117
- 504 Shoemaker, H.E., McLean, E.O., Pratt, P.F., 1961. Buffer Methods for Determining Lime 505 Requirement of Soils With Appreciable Amounts of Extractable Aluminum1. Soil Sci.
- 506 Soc. Am. J. 25, 274. https://doi.org/10.2136/sssaj1961.03615995002500040014x
- 507 Silva, A.O., Costa, A.M., Teixeira, A.F.S., Guimarães, A.A., Santos, J.V., Moreira, F.M.S.,
- 508 2018. Soil microbiological attributes indicate recovery of an iron mining area and of the
- 509 biological quality of adjacent phytophysiognomies. Ecol. Indic. 93, 142–151.
 510 https://doi.org/10.1016/j.ecolind.2018.04.073
- 511 Silva, S.H.G., Teixeira, A.F. dos S., Menezes, M.D. de, Guilherme, L.R.G., Moreira, F.M. de
- 512 S., Curi, N., 2017. Multiple linear regression and random forest to predict and map soil
- 513 properties using data from portable X-ray fluorescence spectrometer (pXRF). Ciência e
- 514 Agrotecnologia 41, 648–664. https://doi.org/10.1590/1413-70542017416010317
- 515 Singh, N., Singh, J., Singh, K., 2018. Small at Size, Big at Impact: Microorganisms for
 516 Sustainable Development, in: Microbial Bioprospecting for Sustainable Development.

- 517 Springer Singapore, Singapore, pp. 3–28. https://doi.org/10.1007/978-981-13-0053-0_1
- 518 Skirycz, A., Castilho, A., Chaparro, C., Carvalho, N., George, T., Siqueira, J.O., 2014. Canga
- 519 biodiversity, a matter of mining. Front. Plant Sci 5, 1–9.
 520 https://doi.org/10.3389/fpls.2014.00653
- Spohn, M., Carminati, A., Kuzyakov, Y., 2013a. Soil zymography A novel in situ method for
 mapping distribution of enzyme activity in soil. Soil Biol. Biochem. 58, 275–280.
- 523 https://doi.org/10.1016/j.soilbio.2012.12.004
- 524 Stone, M.M., Kan, J., Plante, A.F., 2015. Parent material and vegetation influence bacterial 525 community structure and nitrogen functional genes along deep tropical soil profiles at the
- 526 Luquillo Critical Zone Observatory. Soil Biol. Biochem. 80, 273–282.
- 527 https://doi.org/10.1016/j.soilbio.2014.10.019
- Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T., 2007. Bias in random forest variable
 importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8.
 https://doi.org/10.1186/1471-2105-8-25
- 531 Štursová, M., Bárta, J., Šantrůčková, H., Baldrian, P., 2016. Small-scale spatial heterogeneity
- 532 of ecosystem properties, microbial community composition and microbial activities in a
- temperate mountain forest soil. FEMS Microbiol. Ecol. 92, fiw185.
 https://doi.org/10.1093/femsec/fiw185
- Tabatabai, M.A., Bremner, J.M., 1970. Arylsulfatase Activity of Soils1. Soil Sci. Soc. Am. J.
- 536 34, 225. https://doi.org/10.2136/sssaj1970.03615995003400020016x
- 537 Tavares, R.L.M., Oliveira, S.R. de M., Barros, F.M.M. de, Farhate, C.V.V., Souza, Z.M. de,
- 538 Scala Junior, N. La, 2018. Prediction of soil CO2 flux in sugarcane management systems
- using the Random Forest approach. Sci. Agric. 75, 281–287. https://doi.org/10.1590/1678-
- 540 992x-2017-0095
- 541 Teixeira, A.F.S., Kemmelmeier, K., Marascalchi, M.N., Stürmer, S.L., Carneiro, M.A.C.,

- 542 Moreira, F.M. de S., 2017. Arbuscular mycorrhizal fungal communities in an iron mining 543 area and its surroundings: Inoculum potential, density, and diversity of spores related to 544 soil properties. Ciência e Agrotecnologia 41, 511-525. https://doi.org/10.1590/1413-
- 545 70542017415014617

551

- 546 Teixeira, A.F.S., Weindorf, D.C., Silva, S.H.G., Guilherme, L.R.G., Curi, N., 2018. Portable
- 547 X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes 548 in Inceptisols under different land uses. Cienc. e Agrotecnologia 42, 501-512. 549 https://doi.org/10.1590/1413-70542018425017518
- 550 Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V.P., Ramamurthy, V.,
- Lalitha, M., Kalaiselvi, B., 2017. Assessment of spatial variability of soil properties using 552 geospatial techniques for farm level nutrient management. Soil Tillage Res. 169, 25-34. 553 https://doi.org/10.1016/j.still.2017.01.006
- 554 Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil 555 organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 556 37, 29–38.
- 557 Wang, Y., Shi, J., Wang, H., Lin, Q., Chen, X., Chen, Y., 2007. The influence of soil heavy 558 metals pollution on soil microbial biomass, enzyme activity, and community composition 559 smelter. Ecotoxicol. Environ. Saf. 67. 75-81. near a copper 560 https://doi.org/10.1016/j.ecoenv.2006.03.007
- 561 Weindorf, D.C., Zhu, Y., McDaniel, P., Valerio, M., Lynn, L., Michaelson, G., Clark, M., Ping,
- C.L., 2012. Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic 562
- 563 and Albic horizons. Geoderma 189–190, 268–277. 564 https://doi.org/10.1016/j.geoderma.2012.06.034
- 565 Zeileis, A., Hothorn, T., 2014. partykit : A Toolkit for Recursive Partytioning. J. Mach. Learn. 566 Res. 16, 3905–3909.

567 Zhu, Y., Weindorf, D.C., Zhang, W., 2011. Characterizing soils using a portable X-ray
568 fluorescence spectrometer: 1. Soil texture. Geoderma 167–168, 167–177.
569 https://doi.org/10.1016/j.geoderma.2011.08.010

TERCEIRA PARTE – CONSIDERAÇÕES FINAIS

A região do Quadrilátero Ferrífero, além de ser uma área de depósitos de Fe, é considerada um "hot spot" de biodiversidade. A relação entre fatores químicos, físicos e biológicos do solo com as fitofisionomias, como em todos os ecossistemas naturais, pode ser afetada negativamente pela atividade antropogênica, comprometendo esse "hot spot". Os microrganismos do solo são responsáveis por processos que garantem a manutenção da vida no planeta e podem auxiliar de forma direta e indireta na recuperação de áreas degradadas. Eles são influenciados por diversos fatores, entre os quais, os fatores abióticos. Portanto, há necessidade de maior compreensão de como os fatores abióticos podem influenciar e determinar os atributos microbiológicos do solo sob uma mesma fitofisionomia. Assim, entender as relações entre fatores abióticos e atributos microbiológicos do solo foi o que motivou a condução deste trabalho em fitofisionomias sob influência de mineração nos municípios de Sabará (artigo 1), Brumadinho e Nova Lima (artigos 2 e 3), no Quadrilátero Ferrífero.

Este trabalho faz parte do projeto multidisciplinar "Diversidade de plantas e de organismos dos solos com potencial biotecnológico e indicadores de impacto ambiental, no Estado de Minas Gerais" [CRA- RDP- 00136- 10 (FAPEMIG/ FAPESP/ FAPESPA/ Vale SA)]. Este projeto buscou aumentar o conhecimento sobre biodiversidade e processos do solo, visando sua conservação e o aumento da produtividade e da qualidade ambiental por meio de uma abordagem holística daquele importante "hot spot".

Neste trabalho foram realizadas coletas de solo e os dados relativos à fertilidade e textura do solo foram determinados em todas as amostras compostas de solo. Esses fatores abióticos já são amplamente conhecidos por influenciarem a atividade dos organismos do solo. Nas áreas de Brumadinho – MG e Nova Lima – MG também foram determinados teores totais de elementos químicos por análise do solo em espectrômetro de fluorescência de raios-X portátil (pXRF), e atributos de terreno. Assim, os fatores abióticos relacionados a fertilidade e textura do solo, teores totais de elementos e atributos de terreno foram utilizados em conjunto e em separado para predição dos atributos microbiológicos. Os atributos de terreno foram utilizados

O pXRF é capaz de determinar o teor de diversos elementos químicos no solo em poucos segundos, sem geração de resíduos. Apesar de o pXRF já ser utilizado há algum tempo em algumas áreas da ciência, apenas há alguns anos esse equipamento começou a ser utilizado para estudos de solo e ainda não são encontrados estudos que relacionem seus dados a dados de atributos microbiológicos do solo.

Os atributos de terreno podem ser gerados a partir do modelo digital de elevação (MDE). O MDE apresenta pixels com valores de altitude ao longo das áreas e pode ser obtido com grande facilidade e gratuitamente. Os diferentes atributos de terreno apresentam informações importantes como, índice de umidade, declividade, entre outros que podem influenciar os atributos microbiológicos do solo. Apesar da grande facilidade de obtenção desses dados, poucos estudos de atributos microbiológicos do solo utilizam atributos de terreno.

A predição de dados vem sendo cada vez mais utilizada em diversas áreas do conhecimento. Diversos modelos de *machine learning* têm surgido nos últimos anos. Esses modelos utilizam conjuntos de dados (de treinamento) para predição e tem se mostrado eficientes na predição de dados de diversos atributos de solos como, por exemplo, classes e mineralogia, mas poucos estudos sobre predição de atributos microbiológicos do solo são encontrados.

Portanto, nesse trabalho, buscamos integrar técnicas inovadoras de modelagem e de obtenção de dados (pXRF) para predizer atributos microbiológicos do solo a partir de diferentes grupos de fatores abióticos. Para isso, utilizamos a técnica de modelagem *Conditional Random Forests* (cforest) que tem se mostrado eficiente em predições relacionadas a atributos de solo.

No primeiro artigo o enfoque maior foi dado nos fungos micorrízicos arbusculares (FMA), que são microrganismos que podem auxiliar a reabilitação de áreas degradadas devido a sua simbiose mutualística com a maioria das espécies vegetais. A coleta de solo foi realizada em Sabará – MG em áreas de pilha de rejeitos revegetada, mata, eucalipto plantado, cerrado e canga. Foram montados experimentos de culturas armadilha para recuperação FMA, em Lavras – MG e Blumenau – SC, e experimento para determinação do potencial de inóculo de FMA. A influência dos fatores abióticos relacionados à fertilidade e textura do solo no potencial de inóculo de FMA foi avaliada. O maior potencial do inóculo micorrízico foi encontrado em ambiente de canga. Foi observado aumento da diversidade de espécies de FMA capturadas em culturas armadilha quando as mesmas são conduzidas em localidades diferentes. Além disso, foi observada a influência dos fatores abióticos relacionados à textura e fertilidade do solo no potencial inóculo FMA.

Os fatores abióticos análise de fertilidade e textura do solo, teores de elementos químicos obtidos por pXRF, e atributos de terreno obtidos por modelo digital de elevação do terreno foram utilizados como preditores de indicadores microbiológicos de qualidade do solo no segundo e terceiro artigos. Em ambos os artigos o solo foi coletado em duas estações (seca e chuvosa) em fitofisionomias de Cerrado (Nova Lima – MG), canga (Nova Lima – MG), Mata Atlântica (Brumadinho – MG) e pilhas de estabilização de área de armazenagem de minério pré-transporte (Brumadinho – MG).

No segundo artigo foram preditos carbono da biomassa microbiana, respiração basal do solo, quociente microbiano e quociente metabólico. O uso de fitofisionomia e estação de coleta do solo como preditores nos modelos melhorou a predição dos indicadores. Fertilidade do solo e textura foram importantes para a predição dados de. Os teores de elementos químicos obtidos pelo pXRF não foram capazes de predizer esses indicadores microbiológicos de qualidade do solo, enquanto os atributos do terreno foram os melhores preditores da respiração basal do solo.

No terceiro artigo, os indicadores de qualidade do solo preditos foram as enzimas do solo: urease, β -glicosidase, fosfatase ácida, fosfatase alcalina e atividade total de enzimas estimada pela hidrólise do diacetato de fluoresceína. Os teores de elementos obtidos pelo pXRF, as propriedades físico-químicas do solo e atributos do terreno conseguiram predizer as enzimas do solo com grande precisão, e os teores de elementos lidos por pXRF estiveram entre os mais importantes para a predição das enzimas.

A espacialização dos indicadores microbiológicos de qualidade do solo preditos foi feita, nos artigos 2 e 3, usando modelos gerados com dados de atributos do terreno. A espacialização permitiu melhor visão geral da variabilidade desses em cada área de estudo em uma determinada estação do ano. Neste trabalho, a espacialização foi feita com a finalidade de mostrar o potencial de uso da técnica para fins de estudos relacionados à microbiologia do solo, sendo necessários estudos com validação para comprovar sua eficácia e para auxiliar na interpretação e tomada de decisão sobre manejo a ser utilizado nas áreas avaliadas.

Mais estudos sobre influência de fatores abióticos nos atributos microbiológicos do solo e do uso desses fatores para a predição dos indicadores microbiológicos de qualidade do solo são necessários. Ressalta-se ainda que esses estudos não têm por objetivo a substituição das técnicas atualmente utilizadas para a determinação dos atributos microbiológicos pois os atributos microbiológicos determinados por técnicas clássicas são necessários para a modelagem dos dados. A vantagem da predição utilizando ferramentas de modelagem é a redução da quantidade de amostras necessárias para estudos em diferentes áreas.

Por fim, ressalta-se a importância dos estudos relacionados a biodiversidade e manutenção da qualidade do solo no Quadrilátero Ferrífero. Dois grandes desastres humanos e ambientais causaram perturbações antropogênicas drásticas nos últimos anos nesse importante "hot spot" de biodiversidade que foram o rompimento das barragens Fundão, em Mariana – MG, e Córrego do Feijão, em Brumadinho – MG. Esses desastres afetam direta e indiretamente a biodiversidade local e aumentaram ainda mais o apelo ecológico e ambiental para estudos nessas áreas. Esses estudos auxiliam no processo de busca por alternativas eficientes para a

recuperação de áreas impactadas direta ou indiretamente pela mineração, além de servirem como base de conhecimento para outras áreas.