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GENERAL ABSTRACT 
 

BESKOW, Samuel. LASH model: a hydrological simulation tool in GIS 
framework. 2009. 118 p. Dissertation (Doctorate in Agricultural Engineering) – 
Universidade Federal de Lavras, Lavras, MG.1 

 

Conceptual rainfall-runoff models at the watershed scale are useful tools 
for assisting in water resources management, making it possible to estimate 
hydrologic variables, i.e. streamflow and sediment yield, and to predict 
hydrologic impacts due to land-use changes. However, most models have 
presented a high complexity in terms of data base requirements, as well as, many 
calibration parameters, thus resulting in serious difficulties to application on 
‘data poor’ watersheds. The development of the Lavras Simulation of Hydrology 
(LASH) in a GIS framework is described in this dissertation, detailing its main 
components, parameters, and capabilities. This model was proposed in order to 
overcome difficulties in simulating watersheds which lack of input data. LASH 
is a simple deterministic, semi-physically based, spatially distributed model 
using long-term data sets, and a few maps to predict streamflow at a watersheds’ 
outlet. The main hydrologic components simulated by the LASH on a daily basis 
are surface runoff, sub-surface flow, base flow, capillary rise, 
evapotranspiration, interception of precipitation by vegetation, and soil water 
availability. The first application of the LASH model was with a data base from 
the Jaguara Experimental Watershed (JEW, 32 km2), located in southeastern 
Brazil, to predict streamflow on a daily basis. The JEW’s database used in the 
LASH model was composed of weather and discharge data sets as well as a few 
maps. An automatic weather station located in the JEW provided values of 
climatic variables over time, i.e. temperature, relative humidity, wind speed, 
solar radiation, and precipitation, whereas, discharge data were obtained from an 
automatic gauge station set up at the JEW’s outlet. A satellite imagery was 
acquired to allow the classification of the land-use types in the watershed and, 
consequently, derivation of other input parameters as a function of each land-
use. A Digital Elevation Model (DEM) enabled the model to detect differences 
in relief, while a soil map allowed us to account for the spatial distribution of 
values of maximum soil water availability. Firstly, a sensitivity analysis, 
parameter range reduction, and uncertainty analysis were performed prior to the 
calibration effort by using specific techniques (Morris method, Monte Carlo 

���������������������������������������� �������������������
1 Guidance Committee: Carlos Rogério de Mello – UFLA (Major Professor), Lloyd 

Darrell Norton – USDA–ARS–NSERL/Purdue University and Antônio 
Marciano da Silva – UFLA. 
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simulation and a Generalized Likelihood Uncertainty Equation (GLUE)). The 
LASH model was calibrated over a 2-year period using the Shuffled Complex 
Evolution (SCE-UA) global search method to optimize model parameters found 
to be the most sensitive or not directly measurable. Subsequently, the parameters 
obtained through calibration were kept constant for validation step using a 
different period of time from that analyzed during calibration. A sensitivity 
analysis enabled us to identify the most sensitive parameters, which are 
associated with the base flow and surface runoff. Two parameters had their 
range of values reduced, thus resulting in outputs closer to measured values and 
facilitating automatic calibration of the model with fewer iterations need to be 
run. Six parameters were calibrated, namely Kb, KSS, KCR, �, CS, and CSS. The 
Nash-Sutcliffe coefficient (CNS) values found were 0.820 and 0.764 during 
calibration and validation, respectively, whereas, log (CNS) values equal to 0.821 
and 0.770 were obtained for the same periods. The simulated Q90% was 0.131 m3 
s-1, while the observed Q90% value was 0.122 m3 s -1, thus, there was an 
overestimating of only 7%. The model resulted in CNS values of 0.807, 0.821 
and 0.983 for minimum discharge, maximum discharge and mean discharge, 
respectively. The sensitivity analysis, range adjustment and uncertainty analysis 
were found to be important, since they allowed reducing both the number of runs 
during calibration step and uncertainty associated with parameter ranges. The 
Shuffled Complex Evolution (SCE-UA) optimization method was found to be 
an efficient algorithm for finding ‘optimal’ parameter values. The SCE-UA 
presented a high efficiency (acceptable CNS values in most runs) and had a fast 
convergence. Based on the results obtained during calibration and validation 
phases, we concluded that the LASH model has a great potential for being 
applied in generating minimum and maximum discharge, as well as flow-
duration curves. Therefore, the model can reliably be successfully applied to this 
medium-sized watershed or other similar sized watersheds having as goal to 
provide design values for various hydraulic structures as well as soil 
conservation. Furthermore, the application of the LASH model can allow 
engineers to design irrigation systems and for estimating ecological discharge 
over different periods of year, thus taking into account the sustainable 
development in similar tropical and subtropical watersheds. 
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RESUMO GERAL 
 

BESKOW, Samuel. Modelo LASH: uma ferramenta de simulação 
hidrológica com base em SIG. 2009. 118 p. Tese (Doutorado em Engenharia 
Agrícola) – Universidade Federal de Lavras, Lavras, MG.2 

 

Modelos conceituais de chuva-vazão, aplicados a bacias hidrográficas, 
são ferramentas úteis para auxiliar na gestão de recursos hídricos, possibilitando 
estimar variáveis hidrológicas (por exemplo, vazão total e produção de 
sedimentos) e predizer impactos hidrológicos decorrentes de alterações no uso 
do solo. Porém, a maioria dos modelos tem apresentado alto grau de 
complexidade, em termos de base de dados e também de parâmetros de 
calibração. Em virtude destes fatores, se torna difícil a aplicação em bacias 
hidrográficas que têm bases de dados reduzidas. O desenvolvimento do modelo 
Lavras Simulation of Hydrology (LASH) em uma estrutura SIG é descrito nesta 
tese, detalhando seus principais componentes, parâmetros e potencialidades. 
Este modelo foi proposto no intuito de superar dificuldades de simulação em 
bacias hidrográficas que tenham limitação de dados. O LASH é um modelo de 
simulação determinístico, semifísico e distribuído, que utiliza dados de longo-
termo e alguns mapas para predizer vazão total média diária em bacias 
hidrográficas. Os principais componentes simulados pelo LASH, com passo de 
simulação diário, são escoamento superficial direto, escoamento subsuperficial, 
escoamento de base, ascensão capilar, evapotranspiração, interceptação e 
disponibilidade de água no solo. A primeira aplicação do modelo LASH foi feita 
com base nos dados da bacia hidrográfica do ribeirão Jaguara (JEW, 32 km2), 
localizada na região sudeste do Brasil, para simular vazão total média diária. A 
base de dados referente a JEW utilizada no modelo foi composta de dados de 
clima e vazão, bem como alguns mapas. Os dados de variáveis climáticas, como 
temperatura, umidade relativa, velocidade de vento, radiação solar e chuva 
foram fornecidos por uma estação climática automática localizada na JEW, 
enquanto o conjunto de dados de vazão foi obtido a partir de um linígrafo 
automático instalado na seção de controle. Uma imagem de satélite foi adquirida 
para possibilitar a classificação de uso do solo da bacia e derivar outros 
parâmetros de entrada dependentes de cada uso do solo. Um modelo digital de 
elevação (MDE) foi utilizado para permitir que o modelo detecte diferenças no 
relevo; já o mapa de solos usado possibilitou levar em conta a distribuição 
espacial de valores de disponibilidade máxima de água no solo. Primeiramente, 

���������������������������������������� �������������������
2 Comitê Orientador: Carlos Rogério de Mello – UFLA (Orientador), Lloyd Darrell 

Norton – USDA–ARS–NSERL/Purdue University e Antônio Marciano da 
Silva – UFLA. 
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análise de sensibilidade, redução dos intervalos de parâmetros e análise de 
incerteza foram realizados anteriormente à fase de calibração, utilizando 
metodologias específicas (método de Morris, simulação de Monte Carlo e 
Generalized Likelihood Uncertainty Equation (GLUE)). O modelo LASH foi 
calibrado com base em um período de 2 anos, usando o método de otimização 
global Shuffled Complex Evolution (SCE-UA). Este método foi utilizado para 
otimizar os parâmetros mais sensíveis ou que não são diretamente mensuráveis. 
Posteriormente, os parâmetros obtidos na calibração foram mantidos constantes 
para a validação, empregando-se um período de tempo diferente daquele 
utilizado na calibração. A análise de sensibilidade permitiu identificar os 
parâmetros mais sensíveis do modelo, os quais estão associados com o 
escoamento de base e o escoamento superficial direto. Foram reduzidos os 
intervalos de dois parâmetros, resultando em resultados simulados mais 
próximos dos observados e também facilitando a calibração automática do 
modelo com um menor número de iterações necessárias. Seis parâmetros foram 
escolhidos para a etapa de calibração: Kb, KSS, KCR, �, CS, e CSS. Valores do 
coeficiente de Nash-Sutcliffe (CNS) de 0,820 e 0,764 foram encontrados na 
calibração e validação, respectivamente, enquanto valores de log (CNS) iguais a 
0,821 e 0,770 foram obtidos para os mesmos períodos. O LASH simulou Q90% 
igual a 0,131 m3 s-1, enquanto o valor observado de Q90% foi 0,122 m3 s -1, 
superestimando esta variável em somente 7%. O modelo resultou em valores de 
CNS iguais a 0,807, 0,821 e 0,983, para vazão mínima, vazão máxima e vazão 
média, respectivamente. A análise de sensibilidade, a redução de intervalo de 
parâmetros e a análise de incerteza foram importantes, uma vez que tornaram 
possível a redução tanto do número de iterações durante a fase de calibração 
como incertezas associadas com os intervalos dos parâmetros. O método de 
otimização Shuffled Complex Evolution (SCE-UA) foi considerado um 
algoritmo eficiente destinado a localizar valores ótimos de parâmetros. O SCE-
UA apresentou alta eficiência (valores aceitáveis de CNS na maioria das 
iterações) e teve uma convergência bastante rápida. Com base nos resultados 
obtidos nas fases de calibração e validação, concluiu-se que o modelo LASH 
tem grande potencial para ser aplicado para a geração de séries de vazão mínima 
e máxima, bem como curvas de permanência. Assim, este modelo pode ser 
utilizado com sucesso para esta bacia de tamanho médio ou outras de tamanho 
similar na região, a fim de fornecer valores de projeto para o dimensionamento 
de diversas estruturas hidráulicas, assim como para conservação de solos. Além 
disso, a aplicação do modelo LASH pode permitir que engenheiros 
dimensionem sistemas de irrigação e estimem vazões ecológicas em diferentes 
períodos do ano, dessa forma levando em consideração o desenvolvimento 
sustentável de bacias hidrográficas tropicais e subtropicais similares. 
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CHAPTER 1 
�

1 GENERAL INTRODUCTION 
 

Water availability is an environmental issue that has been increasingly 

discussed in today’s society mainly due to the scarcity of good quality water and 

interest of people in the environment. Hydrologic models are helpful tools to 

represent complex systems (i.e watersheds) in a simplified way by means of a 

set of equations or even a logical sequence of operations, normally implemented 

within a computer program. 

Among various existing hydrologic models in literature, the conceptual 

watershed models (especially rainfall-runoff) have been often used to quantify 

streamflows generated by precipitation events by estimating physical processes 

associated with the water cycle, that is, interception, evapotranspiration, 

infiltration, direct runoff, interflow, etc. This kind of model has a considerable 

potential for performing flood forecasts, and water resources management, as 

well as for providing design criteria for hydraulic structures.  

Currently, most watershed models have employed spatially distributed 

approaches to consider the spatial variability of the main physical processes of 

interest, thus attempting to represent better the real world. However, many 

watershed models, i.e. Soil and Water Assessment Tool (SWAT) (Arnold et al., 

1998), Water Erosion Prediction Project (WEPP) (Flanagan & Nearing, 1995), 

and Limburg Soil Erosion Model (LISEM) (Roo et al., 1996), are complex and 

require a large amount of input data. Models like these can be inappropriate to 

be applied in regions with limited data. These regions include developing 

countries like Brazil, where rarely hydrologists have all input data necessary to 

run such complex models. For this reason, a simple approach model, which is 



2 
 

driven with less input data and contains few calibration parameters, is preferable 

for a better resource management in view of the Brazil’s data limited reality. 

In an attempt to overcome the above-mentioned drawbacks, the Lavras 

Simulation of Hydrology (LASH) model was designed, which is aimed at 

predicting streamflow at the watershed scale, especially for regions where there 

is an acute scarcity of input data (weather, maps, etc.). Input data required to run 

the model are associated with weather, soil, land-use, and stream discharge and 

can be applied both for model input and in the calibration step. LASH is a 

deterministic, continuous, semi-conceptual model and includes distributed 

simulation. It is expected that LASH model is able to predict streamflow data for 

‘data poor’ watersheds, thus making it possible to apply this kind of tool for 

water resources management. 

Whether or not a model can be used for watershed management will 

depend on its prediction accuracy. Duan et al. (1994) stressed that the accuracy 

is strongly influenced by how well the model structure is defined and how the 

model parameters are determined. Conceptual watershed models are usually 

composed of a large number of parameters and, in addition, many of them are 

empirical or unfeasible to be measured. This way, some parameters can be only 

estimated by means of model calibration. 

For application purposes, a watershed model should fulfill the following 

steps: calibration, validation, and prediction (Arabi et al., 2007). Nevertheless, it 

is greatly important to perform a sensitivity analysis before calibration efforts in 

order to determine which parameters may cause the most significant effect on 

the output of interest and, therefore, should be chosen in the calibration stage 

(Benaman & Shoemaker, 2004; Blasone et al., 2008). After choosing the 

calibration parameters, it is necessary to define the feasible range for each 

parameter so that the optimization algorithm is capable of searching for best 

values. While some parameters have their ranges established in literature, others 
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are unknown or not even based on field data, and consequently, they are given 

suggested values found for other similar sites. It should be mentioned that some 

parameters may have broad and unacceptable ranges for a specific watershed. 

For this reason, it is important to carry out an uncertainty analysis in an attempt 

of reducing ranges and uncertainties associated with parameters, thus avoiding 

an exaggerated number of unrealistic estimations and inefficiency of the 

optimization algorithm (Blasone et al., 2008). 

Next, calibration is performed to fit a set of parameters which is unique 

for a specific watershed. Subsequently, the model can be validated using the set 

of parameters optimized previously to simulate model output by using a 

different period of time from that used in calibration stage. Validation is helpful 

for verifying whether predictions are acceptable even on different data sets, 

whereas, prediction is applied with a view to evaluating the influence of 

different land-use change or other changing such as climate change scenarios on 

a given output.   

Calibration can be executed manually or automatically. Manual 

calibration is very subjective, time-consuming, and depends on the modeler’s 

expertise with running the given model. Automatic calibration enables 

hydrologists to save time and to take advantage of powerful computer capability 

currently widely available to simulate many model runs following a given 

standard procedure (optimization algorithm).  

There are various classes of optimization routines available in literature, 

i.e. direct search (local search), gradient, second derivative, and globally based 

optimization methods. Due to some difficulties found for hydrological modeling 

purposes with respect to gradient and second derivative methods, these 

procedures have not been used for conceptual watershed models. Local-search 

methods were the most common techniques until recently, however, hydrologic 

models present both multiple local optima and discontinuous derivatives and this 
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type of algorithm is not designed for dealing with these difficulties. Global 

search optimization methods have recently been widely employed in hydrologic 

modeling, and an excellent method is the Shuffled Complex Evolution (SCE-

UA) developed by Duan et al. (1992), which is robust and computationally 

efficient. 

The objectives of this dissertation were to: (i) describe a simple 

distributed hydrologic model (LASH) as well as its parameters and capabilities; 

(ii) determine the most sensitive parameters of the model and to reduce their 

suggested ranges; (iii) analyze uncertainties with respect to streamflow 

predictions prior to the model calibration; (iv) calibrate different LASH 

parameters for an experimental watershed using its DEM, soil, and land-use 

maps as well as discharge data monitored at the watershed outlet; (v) validate 

this model for the same watershed by applying a period of time different from 

that used in the calibration stage; (vi) investigate whether the SCE-UA 

optimization method is efficient for the specific case of the LASH model. 

 

2 LITERATURE REVIEW 
 

2.1 Hydrologic modeling 

2.1.1 Definitions 

Hydrologic models are tools destined to represent the real world system 

in a simplified way by means of a set of equations or even a logical sequence of 

operations implemented within a computational program. According to 

Moradkhani & Sorooshian (2008), researchers have extensively used hydrologic 

models, and the applications depend on the desired purposes. Yet, they reported 

that several models are applied simply for research purposes, aiming to 

understand better certain hydrological processes which exert great influence 

within a given watershed. On the other hand, there are many models that are 
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employed for simulation of a real world system in order to allow modelers to 

choose appropriate alternatives with respect to physical, ecological, economic, 

and social considerations. 

Among other applications of rainfall-runoff hydrologic models, it is 

possible to cite Mosley & McKerchar (1993), Pilgrim & Cordery (1993) and 

Wheater (2008), who included some applications: (i) real-time flood forecasting 

and warning; (ii) flood frequency estimation; (iii) design of hydraulic structures 

(e.g. spillways, dams, and bridges); (iv) computation of flow-duration curves; 

(v) inundation prediction; (vi) impact assessment of climate and land use 

change; and (vii) integrated watershed management. 

Depending on the purpose of hydrologic models, they can be called 

watershed models when applied to the entire watershed area. Too often, 

hydrologists handle data from watersheds with different drainage areas, which 

leads them naturally to name as small, medium or large sized watersheds. 

However, according to Pilgrim & Cordery (1993),   it is impossible to establish 

an accurate limit between “small” and “medium” sized watersheds, but upper 

limits of 25 km2 and 500 km2, respectively, can be used. We are following these 

limits to classify the watershed used in this study. 

When dealing with hydrologic modeling, it is critical to have in mind 

some concepts associated with mathematics, such as phenomenon, variable and 

parameter, as follows (Tucci, 2005). A phenomenon refers to a physical process 

that causes alteration in the system, for instance, rainfall, evaporation, 

infiltration, etc. A variable corresponds to a value (i.e. discharge), varying in 

time and space, which quantifies a phenomenon. The last but not least, 

parameters are values used to characterize the system and can also vary in time 

and space. Some examples of parameter are Manning’s roughness coefficient, 

and drainage area of a watershed. 
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2.1.2 Classification of hydrologic models 
By analyzing whether or not physical processes are taken into account, 

hydrologic models can be classified as empirical or conceptual, as follows 

(Tucci, 2005). Empirical models, also known as black-box models, fit calculated 

values to observed data by means of functions which have no relation with the 

physical processes involved (i.e. regression equations), whereas, conceptual 

models have functions which consider physical processes. Because empirical 

functions associated to the physical components are too often used in conceptual 

models, some hydrologists prefer to separate conceptual models into semi-

conceptual and physically-based. The former type includes characteristics of the 

processes, but the equation parameters have a reasonable level of empiricism; 

while the latter makes use of the main differential equations found in real world 

system to represent the processes and, their parameters are the most similar to 

the physical reality.   

This type of model can also be differentiated with respect to spatial 

variability considered (Wheater, 2008): lumped, distributed or semi-distributed. 

A model is classified as lumped when its parameters, inputs, and outputs are 

spatially averaged and a single value is taken to characterize the entire 

watershed. A model is known as distributed in case of taking into account the 

spatial variability of its parameters, inputs, and outputs. A model is semi-

distributed if it employs a lumped representation for individual subwatersheds.  

Hydrologic models can also be split into two other groups (Shaw, 1994): 

deterministic and stochastic models. Deterministic models attempt to convert 

rainfall into streamflow by quantifying the physical processes occurring in the 

watershed. Stochastic models make use of probability distributions to generate 

hydrological time series of several variables (i.e. rainfall, evaporation and 

streamflow). Wheater (2008) mentioned another fundamental difference 

between deterministic and stochastic models. According to this researcher, a 
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model is classified as deterministic if a set of input values always produces 

exactly the same output values, whereas, a model is stochastic if a set of input 

values need not produce the same output values due to the use of random 

components. 

Relative to the time scale, Wheater (2008) suggests grouping in event-

based models, which result in output for specific time periods, and in continuous 

models, which simulate output continuously. 

 

2.1.3 Well-known hydrologic models 

Many hydrologic models have been developed and applied all over the 

world with various aims. Despite the great existing variation in model structures, 

they can still be grouped into one of the above-mentioned classifications. 

The following, are some characteristics of three well-known watershed 

models. 

 

2.1.3.1 SWAT 

The Soil and Water Assessment Tool – SWAT (Arnold et al., 1998) was 

developed by Dr. Jeff Arnold and others for the United States Department of 

Agriculture (USDA)-Agricultural Research Service (ARS). Such model was 

developed to predict the impact of land management practices on water, 

sediment and agricultural chemical yields in large complex watersheds with 

varying soils, land use and management conditions over long periods of time 

(Neitsch et al., 2005). The main characteristics of SWAT are: (i) is physically-

based; (ii) uses readily available inputs; (iii) is computationally efficient; and 

(iv) is a continuous model, operating on a daily basis. According to Gassman et 

al. (2007), the main model components are weather, hydrology, soil temperature 

and properties, plant growth, nutrients, pesticides, bacteria and pathogens, and 

land management. 
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SWAT divides a watershed into a number of subwatersheds. These 

subwatersheds are further divided into Hydrologic Response Units (HRUs), 

which are a lumped land area within the subwatershed that consist of unique 

land cover, soil, and management combinations. It should be mentioned that the 

water balance is computed in each of the HRUs, considering several storage 

volumes (Eckhardt et al., 2005): canopy storage, snow, soil profile, shallow 

aquifer and deep aquifer. The main hydrologic components simulated by SWAT 

are canopy storage, infiltration, redistribution, evapotranspiration, lateral 

subsurface flow, surface runoff, and return flow. 

This model is driven with some mandatory GIS input files, namely: 

digital elevation model (DEM), land cover, and soil layers. DEM is not only 

used to compute parameters of each subwatershed (slope, slope length, etc.) but 

also to delineate the drainage network of watersheds. Relative to soil for 

hydrology simulation, SWAT requires information about many physical 

characteristics, such as hydrologic soil group, root depth, soil’s bulk density, soil 

texture (% of clay, sand, silt), and saturated hydraulic conductivity of each soil. 

Climatic data on a daily basis are also required, which are as follows: 

precipitation, minimum temperature, maximum temperature, relative humidity, 

wind speed, and solar radiation. 

An ArcGIS–ArcView extension, named as ArcSWAT, was created for 

the SWAT model in order to make its application to watersheds easier. 

 

2.1.3.2 WEPP 

The Water Erosion Prediction Project (WEPP) was developed largely at 

the USDA-Agricultural Research Service (ARS), National Soil Erosion 

Research Laboratory (NSERL), located at Purdue University, IN, USA. 

According to Flanagan & Nearing (1995), the WEPP erosion model is a 

continuous simulation computer program which predicts soil loss and sediment 
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deposition from overland flow on hillslopes, soil loss and sediment deposition 

from concentrated flows in small channels, and sediment deposition in 

impoundments. In addition to the erosion components, it also includes a climate 

component which uses a stochastic weather generator to provide daily 

information, a hydrology component which is based on a modified Green-Ampt 

infiltration equation and solutions of the kinematic wave equations, a daily water 

balance component, a plant growth and residue decomposition component, and 

an irrigation component.  

The WEPP model can be applied with three different versions (Machado 

et al., 2003): a hillslope version, a watershed version, or a grid version. In 

addition to continuous simulation, this model allows hydrologists to use the 

option of event-based simulation (Chaves, 1992).  

With respect to database requirements, WEPP needs information on 

(Bowen et al., 1998): weather, topography, soil and land-use/management. In 

brief, some details about these data according to Flanagan & Livingston (1995) 

are listed as follows. Climatic data include precipitation, temperature, wind 

speed, and solar radiation. Topographic parameters, i.e. orientation, slope and 

slope length throughout the watershed, are derived from DEMs of the 

subwatersheds. Some physical characteristics regarding each soil class (up to 8 

layers) are necessary, namely: initial soil moisture content, hydraulic 

conductivity, wetting-front suction, soil’s bulk density, percentage of sand, clay, 

and organic matter, etc. Regarding land-use/management information, WEPP 

requires some parameters associated to land-use classes, plant and residue 

management, initial conditions, rotation practices, etc.  

In order to easily deal with data in the watershed version of WEPP, a 

Graphical User Interface was developed for the WEPP model, which is called 

GeoWEPP (Renschler, 2003, 2008). 

 



10 
 

2.1.3.3 LISEM 

The Limburg Soil Erosion Model (LISEM) is a physically based model 

that was written in a raster Geographical Information System, and allows 

simulating the hydrology and sediment transport during and immediately after a 

single rainfall event in catchments (Jetten, 2002). According to Roo et al. 

(1996), the processes incorporated in the LISEM model are rainfall, interception, 

surface storage in microdepressions, infiltration, vertical movement of water in 

the soil, overland flow, channel flow, detachment by rainfall and throughfall, 

detachment by overland flow, and transport capacity of the flow. In addition, 

Roo et al. (1996) pointed out that LISEM is able to simulate the influence of 

machine tracks and small paved roads on the hydrological and soil erosion 

processes. As a disadvantage, Jetten (2002) reported that the LISEM model has 

been used so far only in small catchments. 

All input and output maps in LISEM are in the format of the PCRaster 

Geographical Information System. LISEM is driven with at least 24 maps 

depending on the input options selected in the interface. All input data can be 

derived from four base maps (digital elevation model, land use, soil type and 

impermeable areas), however, techniques like geostatistical interpolation and 

remote sensing can be used to help create the input maps. Jetten (2002) suggests 

dividing the spatial input data for LISEM into the following classes: 

A. Catchment maps: local drain direction, catchment boundaries, area 

covered by rain gauges, slope gradient, and location of outlet and suboutlets; 

B. Vegetation maps: leaf area index, fraction of soil covered by vegetation, 

and vegetation height; 

C. Soil surface maps: Manning’s n, random roughness, fraction covered 

with stones, fraction cover with a crust, width of impermeable roads; 
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D. Infiltration related maps (Green and Ampt option): saturated hydraulic 

conductivity, saturated volumetric soil moisture content, initial volumetric soil 

moisture content, soil water tension at the wetting front, soil depth; 

E. Erosion/deposition related maps: aggregate stability, cohesion of bare 

soil, additional cohesion by roots, D50 value of the soil (median of the texture of 

the soil). 

F. Channel maps: local drain direction of channel network, channel 

gradient, Manning’s n for the channel, cohesion of the channel bed, width of 

channel, and channel cross section shape. 

 

2.2 Optimization methods applied to hydrologic models 

Watershed models have been frequently applied for prediction of 

streamflow, and usually contain many calibration parameters. If the goal is to 

use such model as an environmental management tool, it is indispensable to 

make predicted streamflow values agree with observed data by changing the 

model parameters manually or automatically. Depending on the complexity of 

the model, the number of parameters, and the modeler’s expertise, a successful 

manual calibration can be a quite difficult and very time-consuming task, if not 

impossible. This way, for a reasonable performance of conceptual watershed 

models, it is convenient to apply mathematical procedures which rely on 

techniques of automatic parameter estimation. There are various types of 

automatic optimization methods applied to hydrologic modeling available in the 

literature as well as different classifications, since this issue has been widely 

discussed since the early 1970s.  

Optimization algorithms can be grouped into three classes (Hendrickson 

et al., 1988): direct search (or local search), gradient, and second-derivative. In 

addition, there is another class known as globally based optimization methods 

(Duan et al., 1992). Local search methods sample systematically the value of the 
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estimation criterion, without applying derivatives of the estimation criterion with 

respect to parameters. Hendrickson et al. (1988) reported that the difference 

between gradient and second derivative methods is that the former uses only first 

derivatives. Yet, the simplest gradient algorithm is called “steepest descent 

method”, which searches along the gradient direction, while Newton-type 

algorithms are the most used of second derivative methods. More information 

about derivative-based optimization algorithms for watershed models is 

presented in Gupta & Sorooshian (1985) and Hendrickson et al. (1988). 

Gradient-based methods have not been used in hydrologic models, since 

derivatives of model equations regarding their parameters cannot be explicitly 

obtained due to the existence of threshold-type parameters in such models 

(Gupta & Sorooshian, 1985). Another difficulty is that conceptual watershed 

models usually have response surface with discontinuous derivatives, thus 

affecting the performance of this kind of algorithm. 

Until recently, many rainfall-runoff models have been calibrated through 

‘local-search’ optimization methods, i.e. the Simplex method, the pattern search 

method, and the rotating directions method (Gupta & Sorooshian, 1985). 

Nevertheless, they depend on the subjective choice of a starting point, and this 

kind of method is unreliable since it can give ‘optimal’ parameters which can 

vary considerably (Yapo et al., 1996). Moreover, these methods are not designed 

to deal with the existence of multiple local optima and discontinuous 

derivatives; however, hydrologic models contain both characteristics (Duan et 

al., 1992). 

Because global search optimization methods have been the most 

frequently used in hydrologic modeling, only a few common algorithms of this 

type will be briefly described next. 
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2.2.1 Uniform Random Sampling (URS) 
The Uniform Random Sampling (URS) method is classified as a 

probabilistic global optimization technique. It will be summarized here 

according to Duan et al. (1992) and Tucci (2005). In this method, a uniform 

probability distribution is used to sample N points randomly from the feasible 

parameter space of each parameter, allowing computing of an objective function 

value at each point sampled. The point representing the parameter values which 

resulted in the best objective function value (minimum or maximum, depending 

on the objective function used) is considered as optimum. Since N is sufficiently 

large, one can say that the solution obtained is optimum, however, this method is 

not computationally efficient even with powerful computers currently used, 

especially if many parameters must be calibrated.   

 

2.2.2 Adaptive Random Search (ARS) 

A drawback of the previous method is that it does not use the insight 

gained during sampling to guide the search towards the region of the global 

optimum. 

Masri et al. (1976) came up with the Adaptive Random Search (ARS) 

method, later modified by Pronzato et al. (1984), in order to overcome this 

problem and to direct the random search adaptively in the direction to the global 

optimum. 

For implementation of the ARS method, hydrologists should establish 

the feasible space (lower and upper bounds) of each parameter to be calibrated 

so that the algorithm is able to search automatically an appropriate set of values 

(Duan et al., 1992). Yet, modelers can select these bounds with basis on 

hydrologic data, knowledge of the watershed characteristics and manual 

calibration techniques. The ARS method was described by Pronzato et al. (1984) 

and Duan et al. (1992), as follows: 
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1) A focal point should be selected. There are different ways of choosing 

this point; it can be the centroid of the feasible space or the best point found in a 

previous process of defining the parameter space. 

2) A set of N points is randomly sampled within the feasible space of each 

parameter according to a uniform or normal distribution. The location of the 

point with the best function value is recorded thereafter. 

3) Step 2 is repeated a given number of times (i) using the initial parameter 

range divided by 10i and centered on the focal point, thus limiting the space in 

which parameters will be searched. The location of the point with the best 

objective function value is stored for each iteration. 

4) The point with the best function value is chosen among all the points 

obtained through steps 1-4. This point is then defined as the new focal point, and 

its range level is stored. 

5) Steps 2-4 are repeated, aiming to find the best point in the smallest range 

level. Then, this point is called the optimal parameter set. 

 

2.2.3 Combined Adaptive Random Search/Simplex method 

This method employs a random search technique to provide a starting 

point so that a local search method can be initialized. Duan et al. (1992) 

recommended executing the ARS algorithm a certain number of times (say 

1,000, 3,000 or 5,000 function evaluations), and the best point can be used as the 

starting point for the Simplex method of Nelder & Mead (1965), which is a local 

search optimization algorithm.  

 

2.2.4 Multistart Simplex (MSX) 

Johnston & Pilgrim (1976) suggested modelers to use another strategy, 

which was termed as Multistart Simplex (MSX), for handling multiple optima in 

hydrologic models. In this method, a local search optimization algorithm is 
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executed many times considering various starting points within the feasible 

space. It is known as a multistart strategy because the search routine is repeated 

from many different starting points. 

Duan et al. (1992) made use of the MSX strategy on the SIXPAR model 

through 100 independent optimization runs using the Simplex local search 

algorithm. Such model contains 6 calibration parameters; therefore, the initial 

simplex for each run was constructed by seven points (number of parameters + 

1) randomly chosen in the feasible space. 

 

2.2.5 Shuffled Complex Evolution (SCE-UA) 

The Shuffled Complex Evolution (SCE-UA) method is a global 

optimization technique which combines efforts of four concepts necessary for 

global optimization (Duan et al., 1993). It includes a combination of random and 

deterministic approaches, the concept of clustering, the concept of a systematic 

evolution of a complex of points within the feasible space in the direction of 

global improvement, and the concept of competitive evolution for optimization. 

Briefly, its main characteristics will be summarized in accordance with 

description by Duan et al. (1993). Deterministic procedures are applied for the 

method to gain information on response surface in order to direct the search, 

whereas random components ensure that the algorithm is flexible and robust. 

The first step of the SCE-UA is to create randomly a complex of points in the 

entire feasible space. Such a complex should be large enough to guarantee that 

all the information necessary is provided with respect to the number, location, 

and size of the major regions of attraction. A clustering technique is used to 

make it possible to guide the search in the most promising of the regions 

identified by the initial complex. A strategy of systematic complex evolution is 

essential for providing robustness of the search and, in addition, for directing the 

search based on the objective function chosen. The incorporation of a 
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competitive evolution procedure is helpful in improving global convergence 

efficiency. 

The steps of the SCE-UA method are illustrated in Figure 1 and Figure 2 

simply to put readers in the picture concerning this algorithm. Details about 

steps and equations employed in SCE-UA method will not be discussed here. 

For more details, we refer readers to Duan et al. (1992, 1993, 1994). 
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FIGURE 1 Flowchart representing the Shuffled Complex Evolution (SCE-UA) 

method (Source: Duan et al., 1992). 
 

 

Input: n = dimension, p = number of complexes, m 
= number of points in each complex. 

Compute: sample size s = p x m 
���

Sample s points at random in �. 
Compute the function value at each point. 

���

Sort the s points in order of increasing function 
value. Store them in D.�

Partition D into p complexes of m points i.e.,  
D = {Ak, k = 1, … , p} 

   

Evolve each complex Ak,  
k = 1, … , p 

���

Replace Ak, k = 1, … , m, 
into D. 

Convergence 
satisfied? 

CCE algorithm 
(Figure 2) 

���

Start 

Stop 
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FIGURE 2 Flowchart representing the Competitive Complex Evolution (CCE) 
algorithm of the SCE-UA method (Source: Duan et al., 1992). 

 
 

Given dimension n, complex A, and number of points m in A, select q, �, �, where 2 � q � m, � � 
1, � � 1. Set � = 1. 

Assign a triangular probability distribution to A: pi = [2(m + 1 – i)]/[m(m + 1)]    , i = 1, … , m. 

Select q points from A according to pi. Store them in B and their relative positions in A in L. Set j = 1. 

Sort B and L in order of increasing function value. Compute the centroid of u1, … , uq-1 and let uq 
be the worst point in B. 

Compute r = 2g – uq (reflection step). 

r within �? 

Compute fr 

fr < fq? 

Compute c = (g + uq) / 2 and fc 

fc < fq? 

Set uq = c and fq = fc 

j >= �? 

Replace B into A according to L and sort A 
in order of increasing function value. 

� >= �?�

Set uq = r and fq = fr 

j = j + 1 

� = � + 1 

Generate a point z at 
random in H. Set r = z. 

Generate a point z at 
random in H. Compute 
fz. Set uq = z and fq = fz 

Return to SCE 
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CHAPTER 2 

 

LASH MODEL: DEVELOPMENT, SENSITIVITY AND UNCERTAINTY 

ANALYSIS 

 

1 ABSTRACT3 

 

 
Many hydrologic models have been developed to help manage natural 

resources all over the world. Nevertheless, most models have presented a high 
complexity in terms of data base requirements, as well as, many calibration 
parameters.  This has resulted in serious difficulties to application in watersheds 
which have a scarcity of data. The development of the Lavras Simulation of 
Hydrology (LASH) in a GIS framework is described in this chapter which 
focuses on its main components, parameters, and capabilities. Coupled with 
LASH, sensitivity analysis, parameter range reduction, and uncertainty analysis 
were performed prior to the calibration effort by using specific techniques 
(Morris method, Monte Carlo simulation and a Generalized Likelihood 
Uncertainity Equation (GLUE)) with a data base from a Brazilian Tropical 
Experimental Watershed (32 km2), in order to predict streamflow on a daily 
basis. LASH is a simple deterministic and spatially distributed model using 
long-term data sets, and a few maps to predict streamflow at a watersheds’ 
outlet. Based on the results found we were able to identify the most sensitive 
parameters using a reference watershed which are associated with the base flow 
and surface runoff components. Using a conservative threshold, two parameters 
had their range of values reduced, thus resulting in outputs closer to measured 
values and facilitating automatic calibration of the model with fewer iterations 
need to be run. GLUE was found to be an efficient method to analyze 
uncertainties related to the prediction of mean daily streamflow in the watershed. 
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2 RESUMO4 

 

 

Diversos modelos hidrológicos têm sido desenvolvidos no intuito de 
auxiliar na gestão de recursos naturais em todo o mundo. Porém, a maioria 
desses modelos apresenta um alto grau de complexidade em relação tanto à 
necessidade de base de dados, quanto ao número de parâmetros de calibração. 
Em virtude desses fatores, se torna difícil a aplicação em bacias hidrográficas 
que têm bases de dados reduzidas. Neste capítulo é descrito o desenvolvimento 
do modelo Lavras Simulation of Hydrology (LASH) em uma estrutura de SIG, 
buscando enfatizar seus principais componentes e parâmetros, bem como suas 
potencialidades. Além da descrição do modelo, também foram realizadas a 
análise de sensibilidade, a redução do intervalo de parâmetros e a análise de 
incertezas, anteriormente à fase de calibração, utilizando metodologias 
específicas (método de Morris, simulação de Monte Carlo e o método 
Generalized Likelihood Uncertainty Equation (GLUE)), com a base de dados de 
uma bacia hidrográfica experimental tropical brasileira (32 km²), a fim de 
simular a vazão total média diária. O LASH é um modelo classificado como 
determinístico e distribuído, que utiliza dados de longo termo e poucos mapas 
para predizer vazão total na seção de controle de bacias hidrográficas. Foi 
possível identificar os parâmetros mais sensíveis do modelo para a bacia 
hidrográfica de referência, os quais estão associados com os componentes de 
escoamento de base e superficial direto. Em função do limiar conservador 
utilizado neste estudo, foram reduzidos os intervalos de dois parâmetros, dessa 
forma gerando resultados simulados mais realísticos e também facilitando a 
calibração automática do modelo com menor número de iterações. O método da 
GLUE mostrou ser eficiente frente à análise de incertezas relacionadas à 
predição de vazão total média diária na bacia de estudo. 
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3 INTRODUCTION 
 

 

Several hydrologic models have been developed and used in recent years 

to predict different variables associated with water, sediment, nutrient transport, 

etc. Models like Water Erosion Prediction Project (WEPP) (Flanagan & Nearing, 

1995), Limburg Soil Erosion Model (LISEM) (Roo et al., 1996), and Soil and 

Water Assessment Tool (SWAT) (Arnold et al., 1998; Gassman et al., 2007) 

have been designed to help engineers manage natural resources all over the 

world due to problems related to degradation.  

Hydrologic simulation at the watershed scale is highly complex, thus 

Mello et al. (2008) suggested that models for such purpose should preferably 

consider the main physical processes involved as well as spatial and temporal 

variation of the main variables linked with the output component of interest.  

 Most models are too complex to be used in areas with limited data.  In 

developing countries, researchers do not have all of the data necessary to run 

complex hydrologic models (Beskow et al., 2009b). Rarely are data available 

from watersheds that have been monitored for a long period of time that may be 

needed to calibrate and apply complex models. Under this aspect, a model with a 

simple approach which makes use of less data is preferable for better resource 

management. 

The LASH is a simple hydrologic model designed for prediction of 

streamflow in watersheds where there are limited data. These data are related to 

weather, soil, land-use, and discharge and can be applied both for model input 

and in the calibration step. Under these circumstances, a simple model is more 

suitable for simulating and generating discharge data for small ‘data poor’ 

tropical and sub-tropical watersheds, thus making estimates on the effects of 

water resources management easier.     
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 Studies concerning models applied to watersheds usually consider the 

following steps: calibration, validation, and prediction (Arabi et al., 2007). 

Calibration is a fundamental step towards application of hydrologic models, 

because it enables one to fit a set of parameters which are unique for a specific 

watershed. The calibration effort is performed by either maximizing or 

minimizing efficiency coefficients such as root mean square error or Nash-

Sutcliffe, for example. After calibrating a model, the set of parameters optimized 

is used to assess the influence of different land-use scenarios on a given output. 

However, prior to a model calibration it is very important to determine which 

parameters may cause the most significant effect on the output of interest 

through sensitivity analysis (Benaman & Shoemaker, 2004). Sensitivity analysis 

is a measure of the influence of different parameters on the response of an output 

variable in that the greater the difference in output response, the more sensitive 

the respective parameter (White & Chaubey, 2005). Sensitivity analysis is a way 

of evaluating which parameters should be taken into account in the calibration 

phase (Blasone et al., 2008). This kind of analysis has been successfully applied 

in several studies concerning hydrologic modeling prior to calibration (Francos 

et al., 2003; Benaman & Shoemaker, 2004; Muleta & Nicklow, 2005; White & 

Chaubey, 2005; Griensven et al., 2006; Arabi et al., 2007; Blasone et al., 2008). 

According to Benaman & Shoemaker (2004), a model may contain 

parameters that are not based on field data, therefore, these parameters are given 

suggested ranges of values found for other sites. Nevertheless, some parameters 

may have very broad ranges instead of narrow and acceptable ranges for a 

specific watershed, thus resulting in not only many unrealistic estimations, but 

also inefficiency in the optimization method (Blasone et al., 2008).  

Methodologies based on sensitivity and uncertainty analysis including 

Monte Carlo simulations have been widely used in studies concerning a 

reduction of parameter ranges which both have broad suggested intervals and 
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generate too many inaccurate predictions. Arabi et al. (2007) employed this kind 

of methodology coupled with the SWAT model for application in two 

watersheds located in Indiana-USA in order to narrow suggested ranges of some 

parameters and to evaluate its influence on streamflow, sediment, and nutrient 

results. Benaman & Shoemaker (2004) also used a similar procedure for SWAT 

simulations in a watershed in the United States for analyzing uncertain 

parameter ranges prior to model calibration and uncertainty analysis. Wei et al. 

(2008) applied Monte Carlo simulation with successful results for calculating 

the model predictive uncertainties for some input parameters using the 

Rangeland Hydrology and Erosion Model (RHEM). Huang & Liang (2006) 

employed the Monte Carlo method for analyzing uncertainties associated with 

parameters of the VIC-3L model (Three-Layer Variable Infiltration Capacity) so 

that this model could provide reasonable predictions of streamflows.  

The objectives of this chapter were to:  (a) describe a simple spatially 

distributed hydrologic model as well as its parameters and capabilities; (b) 

identify the most sensitive parameters of the model and to reduce their suggested 

ranges; and (c) analyze uncertainties with respect to streamflow predictions prior 

to the model calibration. The model as well as sensitivity and uncertainty 

analysis were applied to an experimental tropical watershed located in Minas 

Gerais State in southeastern Brazil having limited data. 
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4 THEORETICAL BACKGROUND 

 

 

4.1 One-factor-At-a-Time (OAT) sensitivity analysis 

This assessment is necessary to identify the most important factors in a 

computational model for reducing the number of model runs need for 

calibration. OAT is a type of sensitivity analysis method classified as a 

screening method in which perturbations occur in one-factor-at-a-time (Saltelli 

et al., 2004). There are several different screening methods; however, the one 

proposed by Morris (1991) was chosen, since it has been successfully used in 

many fields.  

The OAT method suggested by Morris (1991) computes the global effect 

by taking an average of local sensitivities (dk), which are calculated at different 

points along a range (xk) for each parameter tested using the following equation:  

( ) ( )][
∆

−∆+= +− xyx,,x,x,x,,x,xy
)x(d n1kk1k21

k

��
                            (1) 

where y (x) represents the model output of interest; � is the elementary effect of 

a small perturbation of the kth component.  The perturbation is a predetermined 

multiple of 1/(p - 1) in which p corresponds to the number of intervals that a 

parameter range is divided by. If dk is computed at different points in space, a 

finite distribution (Fi) of elementary effects of parameter xk is obtained. Morris 

(1991) suggested using two sensitivity measures: the mean (µ) and standard 

deviation (	) of Fi. The former statistic expresses the overall effect of different 

factors on a given output; while the latter represents interaction as well as 

curvature effects. 
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4.2 Generalized Likelihood Uncertainty Estimation (GLUE) 
Generalized Likelihood Uncertainty Estimation (GLUE) is a 

methodology developed for quantifying uncertainties in the prediction of output 

variables for different models (Beven & Binley, 1992). According to Stedinger 

et al. (2008), more than 500 publication citations have referred to the original 

paper about the GLUE method, proving its acceptance. The GLUE method has 

been mainly applied to uncertainty analysis of deterministic models (Beven & 

Freer, 2001). 

For a GLUE analysis, parameter sets must be obtained through Monte 

Carlo simulation. All parameters are sampled simultaneously according to their 

respective probability distribution, usually a uniform distribution (Benaman & 

Shoemaker, 2004; Montanari, 2005; Arabi et al., 2007). The model is run for 

each parameter set which enables computation of a statistic based on goodness-

of-fit, having as goal to evaluate the fit between model predictions and observed 

data over a certain period of analysis. According to Beven & Binley (1992), 

efficiency statistics are used to create likelihood measures. Various likelihood 

measures can be found in Beven & Freer (2001). The Nash-Sutcliffe efficiency 

coefficient is often applied to hydrologic model calibration, and can be used to 

compute the likelihood measure (Equation 2): 
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where L(p|Y) corresponds to the likelihood measure of the parameter set (p) for 

the observed data (Y); the values 	S and 	O represent the variance of the error 

between model prediciton and observed data, and the variance of the observed 

data, respectively. 

Parameter data sets that produce likelihood values less than a certain 

threshold are considered “nonbehavioral” and then discarded, whereas, the rest 

of the parameter sets are termed “behavioral” (Stedinger et al., 2008). The latter 
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parameter sets are then used to compute likelihood weights, thereafter, each 

weight is divided by their sum and then they are sorted. This way, a cumulative 

distribution for the model output parameter of interest is created and used for 

estimating uncertainty bounds.     

�

5 MATERIAL AND METHODS 

 

 

5.1 Hydrologic model setup and data 

A new hydrological computational model was developed for this study, 

named as Lavras Simulation of Hydrology (LASH). This model is similar to the 

one presented by Mello et al. (2008), however, this new model uses a distributed 

approach instead of either lumped or semi-distributed. LASH was designed to 

take into account temporal and spatial variability of all the variables included in 

the hydrologic components by dividing the watershed into homogeneous grid 

cells.  

This is a semi-physically based and continuous simulation model, using 

the following components on a daily basis: evapotranspiration, interception of 

precipitation by vegetation, capillary rise, soil water availability, surface runoff 

(quick runoff), sub-surface flow (hortonian flow), and base flow (groundwater 

flow from shallow aquifers). The model was written in Delphi (Windows 

environment) and provides a graphical user interface (GUI). Its GUI allows 

users to import maps from various Geographical Information Systems (GIS), 

thus making the use of the model easier. Furthermore, LASH has an automatic 

optimization routine embedded in it which is based on the Shuffled Complex 

Evolution method - SCE-UA (Duan et al., 1992), allowing users to calibrate as 

many parameters as necessary.  
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The model is divided into three basic modules: (a) its first module is 

designed  to compute surface runoff flow (DS), sub-surface flow (DSS), base flow 

(DB), and capillary rise (DCR); (b) the second module generates flow within each 

cell to the stream network; this module takes into account the lag effect using the 

concept of linear soil reservoir (Collischonn, 2001; Tucci, 2005); (c) in the last 

module, LASH employs the Muskingum-Cunge Linear Model to propagate the 

flows through the channel network.   

Soil water balance is calculated at each time step for each grid cell in the 

watershed according with Equation 3. The number of grid cells depends on both 

the cell size and how large the study watershed is.    
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where j and i are indexes associated to time step and grid cell, respectively; j
ti

A  

is the soil water availability (mm) for the grid cell i at the end of the time step j; 
1−j

ti
A represents the soil water availability (mm) for the grid cell i at the start of 

the time step j; �t is the time step (daily); Pi corresponds to the precipitation 

(mm day-1) minus the interception of precipitation by land cover; ETi is the 

evapotranspiration (mm day-1); 
iSD is the surface runoff (mm); 

iSSD represents 

the sub-surface flow (mm day-1); 
iBD is the base flow (mm day-1); and

iCRD

corresponds to the capillary rise depth (mm day-1). The variable 1−j
ti

A  is 

computed for each time step for each cell. The latter variable allows the 

computation of components like surface runoff flow, sub-surface flow, base 

flow, capillary rise flow, and real evapotranspiration in time j. 

Once precipitation begins, it is stored on the vegetation cover until 

maximum interception storage (Imax) is reached, which is calculated for each grid 

cell as a linear function of Leaf Area Index (LAI) (Zhou et al., 2006; Almeida et 
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al., 2007; Collischonn et al., 2007). LASH uses the Penman-Monteith equation 

(Allen et al., 1998) to compute how much from intercepted water is evaporated 

in each time step.   

imax LAIICI
i

⋅=                                    (4) 

where IC is the interception coefficient, assumed to be 0.2 mm (Collischonn et 

al., 2007); LAI is the leaf area index (m2 m-2). Values for the latter parameter 

can be obtained from either literature or field trials. Since LAI values may have 

a great variation over time, an option was implemented in LASH so that users 

can input a separate file (linked to the land-use map) in order to represent such 

time dependent variation for each land-use. 

The Modified Mishra-Singh (MMS) model (Mishra et al., 2003) was 

employed in LASH for estimating the surface runoff component (DS), in mm. 

All of the variables with a subscript i in equations means that such variable is 

computed for each grid cell in time j. 
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where P is the precipitation (mm day-1); Ia is the initial abstraction (mm); M 

corresponds to the antecedent soil moisture (mm); and S is the soil potential 

maximum retention (mm). 
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where � is an initial abstraction coefficient (dimensionless); and P5 represents 

the 5-day antecedent precipitation (mm). In SCS-CN model, the � parameter is 

assumed equal to 0.2. Even though � can vary between 0 and 
, Mishra et al. 

(2003, 2006) suggest employing values from 0 to 0.5 to calibrate this parameter. 
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( ) i0Si hS
ii

⋅θ−θ=                                  (8) 

where �S is the saturation soil moisture content (m3 m-3); �0 represents the 

current soil moisture content (m3 m-3); and h is the control layer of water budged 

(rooting depth, mm). 

( ) iiPWPSm hA
ii

⋅θ−θ=                                 (9) 

where Am is the maximum soil water availability (mm); and �PWP corresponds to 

the permanent wilting point soil moisture content (m3 m-3). 

ii tmi AAS −=                                  (10) 

where At represents the soil water availability in time j. 

The Brooks and Corey equation, recommended by Rawls et al. (1993) 

and used in the VIC-2L model (Lohmann et al., 1998), was incorporated in the 

LASH to simulate the sub-surface flow component (DSS), in mm day-1: 
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iSSD = 0                  (11) 

where KSS corresponds to the hydraulic conductivity of the sub-surface reservoir 

(mm day-1), which is a calibration parameter; ACC is the minimum soil water 

availability to generate sub-surface flow (mm), estimated as being equal to 10% 

of Am (Mello et al., 2008); PS represents the pore-size index which may be 

assumed constant and equal to 0.4 due to its low sensitivity (Collischonn et al., 

2007). 

The following equation was implemented in LASH in order to simulate 

the base flow component (DB), in mm day-1 (Collischonn, 2001): 
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itA >
iCA ; else 

iBD = 0                                  (12) 

where KB corresponds to the hydraulic conductivity of the shallow saturated 

zone reservoir (mm day-1), which has been considered as a parameter of 
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calibration due to difficulty in obtaining it through field trials; and AC is the 

minimum soil water availability to generate base flow (mm), which can be 

considered equal to 1% of Am (Mello et al., 2008). 

The capillary rise component (DCR), in mm day-1, was implemented in 

LASH to allow simulation of situations in which some areas of the watershed 

have low soil water availability, thus occurring rise of water from shallow 

aquifer to the soil layer and making it available for evapotranspiration.  
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i
  if 

iCRA >
itA ; else 

iCRD = 0                         (13) 

where KCR corresponds to the maximum flow returning to soil by capillary rise 

(mm day-1), being considered a parameter of calibration; and ACR is the soil 

water availability limit (mm) so that capillary rise occurs, which has a low 

sensitivity and can be set to 10% of Am (Collischonn, 2001). 

The evapotranspiration (ET) module, in mm day-1, was incorporated in 

LASH making use of the Penman-Monteith equation, described in Allen et al. 

(1998). Relative to evapotranspiration, LASH makes available two options: (a) 

calculation of a reference evapotranspiration using both climatic data and 

characteristics of a hypothetical grass reference crop; in order to convert to crop 

evapotranspiration under standard conditions, the model employs crop 

coefficients which can vary for each land cover as well as over time; (b) 

calculation of crop evapotranspiration using climatic data as well as 

characteristics of each crop, such as albedo, height, and surface resistance. These 

variables can be input in LASH taking into account their spatial and temporal 

variability, since some of them may have a considerable variation throughout the 

year: 
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where CF is a simple conversion factor to convert from m s-1 to mm day-1; � 

corresponds to the slope of the saturation vapor pressure curve (kPa ºC-1); Rn is 

the net radiation (MJ m-2 s-1); G is the soil heat flux (MJ m-2 s-1); �a represents 

the mean specific mass of the air at constant pressure (kg m-3); �w is the specific 

mass of the water (kg m-3); cP is the specific heat of the air (MJ kg-1 ºC-1); (es – ea) 

corresponds to the vapor pressure deficit of the air (kPa); 
 is the psychrometric 

constant (kPa ºC-1); LHV stands for the latent heat of vaporization (MJ kg-1); rs 

corresponds to the surface or canopy resistance (s m-1); ra represents the 

aerodynamic resistance (s m-1). All parameters presented in Equation 14 are 

calculated based on procedures described in Allen et al. (1998). 

However, if soil moisture in a watershed is less than a given limit of soil 

water availability, actual evapotranspiration is less than or equal to the crop 

evapotranspiration. The relationship between crop evapotranspiration and actual 

evapotranspiration can be expressed by the coefficient KS (Allen et al., 1998). 

After computing ET under standard conditions, the model adjusts it for non-

standard conditions multiplying by the soil water stress coefficient Ks 

(dimensionless), which depends on the soil moisture in time j. This coefficient 

allows simulating watersheds properly when a water deficit occurs for a long 

time:  
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where AL corresponds to the lower limit of soil water availability (mm) below 

which a decrease of evapotranspiraton occurs; and APWP is the soil water 
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availability at the permanent wilting point. Shuttleworth (1993) recommended 

setting AL to 50% of Am. 

Once the model computes DS, DSS and DB, it converts each flow 

component to discharge. It is necessary to account for the delay of the inflow to 

the stream network, therefore, a flow routing method has to be used. The method 

of linear reservoirs was chosen to route flow through each cell, since it is a 

simple approach and it has been successfully used in many other studies (Zhou 

et al., 2006; Collischonn et al., 2007; Mello et al., 2008). Thus, there are three 

different reservoirs for each cell, one for each flow component, namely: quick 

runoff (surface), hortonian flow (sub-surface), and base flow (groundwater). The 

following equations are used to compute outflow from the three reservoirs as 

previously stated: 
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where
iSQ , 

iSSQ and
iBQ  are the outflows from surface, sub-surface and 

groundwater reservoirs (m3 s-1) of the cell i, respectively; j
Si

V , j
SSi

V , and j
Bi

V  

are the water volumes in the surface, sub-surface and groundwater reservoirs 

(m3) of the cell i at time j, respectively; 
iCT  corresponds to the time of 

concentration (s); CB represents the recession time (s) which can be calculated 

from a hydrograph previously monitored in the watershed; and CS and CSS are 

response time parameters. It is worthwhile to point out that CS is less than CSS 

due to different delays in each reservoir.  The time of concentration can be 



37 
 

estimated by different methods (equations). Such equations use variables 

associated with watersheds’ topography such as altitude thus making it possible 

to detect differences in relief. 

Mean daily streamflow at the outlet is obtained by summing the three 

outflow components as stated before, which are propagated through the drainage 

network using the Muskingum-Cunge Linear Model in order to consider the 

accumulation effects of channel networks on hydrograph behavior.   

LASH was written in Delphi (Windows Environment) and provides a 

friendly Graphical User Interface (GUI), making available different windows to 

both input databases and type simple data. The model is driven with two 

different types of files: GIS maps and spreadsheets (such as Excel). The 

hydrologic model has an important function that allows importing maps from 

various Geographical Information Systems, such as ArcGIS, PCRaster, etc., thus 

making the use of the model easier. In this case, the users need to have maps in 

raster format and to convert them to the ASCII format. The latter file format 

contains the following information associated to each map: number of columns, 

number of rows, latitude and longitude at either lower left corner or upper left 

corner, cell size, and the value corresponding to the cells located outside of the 

watershed’s boundary. 

As it can be seen in the previous equations, there are many parameters 

which may have spatial variation. Even though spatial variation should be taken 

into account, users are also able to use lumped values to represent some 

parameters depending on how much data they have available. Moreover, if there 

is lack of some data or even uncertainty with respect to a given parameter, users 

are given an option to choose the respective parameter to be calibrated. All of 

the maps used by the model are derived from the DEM, land-use, soil or channel 

network maps.  
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In addition to the maps, LASH also needs two other files in table format. 

The first one contains information on climatic data as well as observed discharge 

(m3 s-1) over the time. The following climatic data are necessary in the model to 

compute evapotranspiration on a daily basis according with Penman-Monteith 

equation: minimum temperature (ºC), maximum temperature (ºC), relative 

humidity (%), wind speed (m s-1), and global solar radiation (MJ m-2 day-1). 

Rainfall is the fundamental variable, since it is the main input for simulation of 

the surface runoff component, and calculation of water balance. Since there is an 

optimization method in the LASH, observed discharge at each time step also has 

to be given to the model so that it is able to fit a simulated hydrograph to the 

observed data by either minimizing or maximizing a given objective function 

(root mean square error, Nash-Sutcliff coefficient, etc.).  

A second file in table format is used to inform the model of the variation 

in parameters connected to the land-use over time, for instance, leaf area index 

(m2 m-2), height (m), albedo (dimensionless), surface resistance (s m-1), rooting 

depth (mm), and crop coefficient (dimensionless). Leaf area index is a critical 

parameter for simulation for the interception module, while rooting depth is used 

in calculation of the water balance, and the remainder of these parameters are 

necessary for computing evapotranspiration. 

The optimization algorithm is based on the Shuffled Complex Evolution 

(SCE-UA) method (Duan et al., 1992). The SCE-UA is a global optimization 

method that has been extensively used and accepted in the field of hydrology for 

several years. This optimization method is not discussed because the calibration 

of the LASH model for the study watershed was not an objective of this chapter. 

Complete details about this method can be found in Duan et al. (1992, 1994). 

�
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5.2 Sensitivity analysis, adjustment of parameter ranges and uncertainty 

analysis 

For this study, all the procedures are based on the methodology 

described by Benaman & Shoemaker (2004) following four steps, however, 

some adaptations were made in accordance with Arabi et al. (2007). Basically, 

the methodology uses two sampling methods: (a) the Morris method (Morris, 

1991) which can be classified as One-factor-At-a-Time (OAT) sensitivity 

analysis (Saltelli et al., 2004); and (b) Generalized Likelihood Uncertainty 

Estimation – GLUE (Beven & Binely, 1992). 

Step 1:  Initial sensitivity analysis and establishment of upper and lower 

bounds for each parameter. 

The first step of this method is to assess all of the calibration parameters 

used in the model to choose those that are most sensitive and those with large 

uncertainties. The Morris method (Morris, 1991) was applied to carry out the 

sensitivity analysis of LASH.  

Local sensitivity indices (dk) were computed for each parameter (Table 

1) applying Equation 1, while global sensitivity indices (dg) were obtained by 

taking the average of these local sensitivities at different points sampled in the 

respective parameter space. In this study, a rescaled sensitivity index (dr) was 

applied, which was recommended by Arabi et al. (2007). The dr index was 

determined by dividing the global sensitivity indices by their total sum. The 

values of dr can vary between 0 and 1 in such a way that the greater the value, 

the more sensitive the respective parameter is.  

Step 2: Initial Monte Carlo simulation 

Once the first step was done, it was possible to define all of the 

parameters that will be used in step 2. For this step, the Monte Carlo method was 

employed to evaluate the results from the model by varying all the uncertain 

parameters simultaneously (step 1), taking values within their recommended 
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range (Table 1). Values for the sensitive parameters were selected randomly 

according to their respective probability distribution. As there is no prior 

information with respect to the probability distribution of the parameters, 

uniform distributions were assumed for all the parameters by taking into account 

minimum and maximum values for each parameter, according to intervals 

detailed in Table 1. Studies carried out by Beven & Freer (2001), Benaman & 

Shoemaker (2004), Arabi et al. (2007) and Wei et al. (2008) also used the same 

assumption. 

Once all the runs were performed for step 2, a cumulative density 

function can be generated (Benaman & Shoemaker, 2004). This function 

describes the variation in output as a result of all the uncertain parameters, which 

are varied at the same time within their suggested ranges. In this case, the output 

variable analyzed was mean daily streamflow.  

Finally, it is necessary to verify if the output variable analyzed is close to 

the median of the results obtained through Monte Carlo simulation as well as to 

determine if the probability distribution has a reasonable range with respect to 

the model output variable. If so, it can be assumed that the parameter ranges 

suggested in Table 1 were realistic for this watershed. Otherwise, some 

parameters may have their ranges unrealistic for this watershed, therefore, 

another analysis may have to be performed following steps 3 – 4 described 

below. 

Step 3: Range adjustment using interval-spaced sensitivity 

This step is necessary when some parameter bounds need to be 

narrowed, since the combination of different parameters provides a considerable 

number of unrealistic results.  

Interval-spaced sensitivity was performed to assess the effect of different 

model parameters on the mean daily streamflow values. For this analysis, each 

parameter of concern is evaluated while keeping the remaining parameters at 
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their base value. Base values can be selected by different approaches: (a) 

previous manual or automatic calibration; (b) values obtained from either 

literature or field measurements carried out in the same watershed. Each 

parameter analyzed had its range divided into equal intervals. The choice 

relative to the number of intervals is subjective, however, Arabi et al. (2007) 

recommended using 20-50 intervals for each parameter range. Following this 

mathematical process a graph can be produced, which allows evaluating if the 

parameter range is generating unrealistic results. Since model parameters have 

different ranges, the following equation was applied to compute normalized 

values for the x-axis for each parameter (Arabi et al., 2007).  

ii
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where Ni is the normalized value of the parameter i, which is determined as a 

function of absolute value AVi and its upper (UBi) and lower (LBi) bounds 

(Table 1). 

Nash-Sutcliffe (CNS) and its logarithmic version (log(CNS)) (Nash & 

Sutcliffe, 1970) efficiency coefficients were used in this study as cutoff criteria 

in order to distinguish between behavior and non-behavior range. Different 

statistics were applied because each parameter has a different behavior 

associated with the hydrograph. CNS is strongly affected by errors in prediction 

of peak discharges, whereas, log (CNS) is strongly affected by error in prediction 

of minimum discharges which occur during dry periods: 

( )
( )





=

=

−

−
−= j

1t

2
OO

j

1t

2
SO

NS

Mj

jj

QQ

QQ
1C                    (20) 



42 
 

( )
( ) ( )( )
( ) ( )( )





=

=

−

−
−= j

1t

2

OO

j

1t

2
SO

NS

QlogQlog

QlogQlog
1Clog

j

jj

                           (21) 

where 
jOQ corresponds to the observed streamflow in time j, 

MOQ is the mean 

observed streamflow, 
jSQ represents the simulated streamflow in time j,  

MSQ  is 

the mean simulated streamflow, ( )
jOQlog  is the logarithm of the observed 

streamflow in time j, ( )
jSQlog  is the logarithm of the simulated streamflow in 

time j, ( )OQlog  corresponds to the mean logarithm of the observed 

streamflows. 

Once the efficiency coefficients are computed for each parameter, ranges 

(upper and lower bound) can be adjusted.                                                                                                                                   

Step 4: Final Monte Carlo Simulation 

This step involves Monte Carlo analysis in order to assess the influence 

of the narrowed parameter range over the model outputs. This part of the 

analysis is similar to Step 2; however, a GLUE likelihood measure is computed 

for each model run using equation 2 according with procedures described in 

Arabi et al. (2007) and Blasone et al. (2008). In addition, new parameter values 

were taken simultaneously for all the parameters that had a considerable 

sensitivity.  
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TABLE 1 Parameters analyzed in the initial sensitivity analysis and range 
adjustment 

 
Parameter Description Range Reference 

� Initial abstraction coefficient 0 - 0.5 Mishra et al. 
(2006) 

�0 
Current soil moisture (m3 m-3, 

estimated as % of Am) 10 - 95 - 

KSS 
Hydraulic conductivity of sub-
surface reservoir (mm day-1) 0 - 182.4 Rawls et al. 

(1993) 

KB 

Hydraulic conductivity of 
shallow saturated zone reservoir 

(mm day-1) 

0 - 6 
 

- 
 

KCR 
Maximum flow returning to soil 

by capillary rise (mm day-1) 0 - 5 Collischonn 
(2001) 

ACC 

Minimum soil water availability 
to generate sub-surface flow 
(mm, estimated as % of Am) 

0 - 30 - 

AC 

Minimum soil water availability 
to generate base flow (mm, 

estimated as % of Am) 
0 - 30 - 

ACR 

Soil water availability limit so 
that capillary rise occurs (mm, 

estimated as % of Am) 
0 - 50 - 

AL 

Lower limit of soil water 
availability below which a 

decrease of evapotranspiraton 
occurs (mm, estimated as % of 

Am) 

10 - 70 - 

IC Interception coefficient 0 - 0.5 - 
PS Pore-size index 0.3 - 0.7 - 

CS 
Response time parameter of the 

surface reservoir CS < CSS Mello et al. 
(2008) 

CSS 
Response time parameter of the 

sub-surface reservoir CS < CSS 
Mello et al. 

(2008) 

QR 

 
Reference discharge (m3 s-1), 

used in the Muskingum-Cunge 
routing method 

1 - 25 - 

n 
Manning’s roughness coefficient,  

used in the Muskingum-Cunge 
routing method 

0.02 - 0.04 Collischonn 
(2001) 
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5.3 Basic characteristics of the study watershed and database 
The Jaguara Experimental Watershed (JEW) was used as a case study 

area to apply the LASH model and the above-mentioned procedures related to 

sensitivity analysis, adjustment of parameter ranges, and uncertainty analysis. 

This experimental watershed is located in southern Minas Gerais State, Brazil 

(Figure 1), and has an area of about 32 km2. The following morphometric 

characteristics were computed for the JEW: total perimeter (31.62 km), 

compacity coefficient (1.573), and shape factor (0.327). The JEW has been 

monitored since 2005 as part of a project developed by the Soil and Water 

Engineering Research Team from Federal University of Lavras (Brazil) which is 

supported by CEMIG/ANEEL (Minas Gerais State Energy Company/National 

Electric Energy Agency). The annual mean temperature in this region is 

approximately 19oC, varying from 14 to 22oC. According with Köppen’s 

classification, the climate is characterized as Cwa, which means the occurrence 

of a high concentration of precipitation during both spring and summer (from 

October to March), whereas, autumn and winter are dry and cool. The mean 

annual precipitation is about 1400 mm, however, values ranging from 900 to 

2100 mm have been recorded (Mello et al., 2008). 
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FIGURE 1 Location of the Jaguara Experimental Watershed (JEW) and its 

channel network, outlet, weather station, and points of 
measurement of soil moisture.  

   
Variables with respect to weather were monitored every 30 minutes in 

the JEW through a complete and compact weather station for the period of 

monitoring. Such variables included temperature, relative humidity, wind speed, 

and solar radiation. The discharge data set was obtained from an automatic 

gauge station located at the JEW’s outlet and a stage-discharge rating curve. 

An image from the satellite ALOS from May, 2008 which provides 

multispectral and 10-m resolution images, was acquired in order to classify the 

land-uses in the JEW. This allowed us to determine that the watershed was 

occupied by eucalyptus (7.68%), coffee (4.11%), bare soil (9.63%), maize 
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(22.85%), native vegetation (13.13%), and pasture (42.60%). The land-use map 

derived from the satellite data of the JEW is presented in Figure 2. 

 

 
 
FIGURE 2 Land-use map of the JEW, which was obtained from an ALOS 

image taken in May, 2008.  
 

The digital elevation model (DEM) of the JEW was obtained with 30-

meter resolution, which enabled generation of a slope map and delineation of the 

channel network. The slope gradients of this watershed ranged from 0 to 46.9%, 

with a mean value of 11.6%. According to relief classification recommended by 

Ramalho Filho & Beek (1995), this mean value can be classified as undulating 
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relief. The soil map of the JEW is presented in Figure 3 and its percentage 

distribution is: Oxisols (59.8%), Cambisols (23.4%) and Fluvic Neosols (16.8%)  

(Araújo, 2006). The Oxisols have a deep soil layer and their occurrence was 

observed in sites with slope gradients less than 18%. A high clay concentration 

and high porosity are the main physical characteristics of these Oxisols. The 

Cambisols of this region were shallow soils and were found on sites with slope 

gradients between 18% and 35%. In addition, they had a high concentration of 

fine silt, which makes them susceptible to surface crusting.  These soils also did 

not have a good soil cover. The Fluvic Neosols were found along the drainage 

network where the landscape has nearly level topography, since their origin is 

associated with deposition of sediments from flooding.  
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FIGURE 3 Soil map of the JEW, adapted from Araújo (2006). 

 
Field trials were carried out in the JEW in order to quantify the spatial 

variation of saturated soil water content and permanent wilting point moisture 

content (Figure 1). Several points of measurement were sampled throughout the 

JEW and used to apply geostatistical procedures; thereafter, a semi-variogram 

and a kriging map were obtained for each variable.  

A few other parameters were obtained based on the land-use map and 

information available in the literature as follows: leaf area index (m2 m-2), height 

(m), albedo (dimensionless), surface resistance (s m-1), and rooting depth (mm). 
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Temporal variation of variables like leaf area index, height and albedo were used 

since maize, coffee and pasture have seasonal variation.  

 

6 RESULTS AND DISCUSSION 

 

 

6.1 OAT sensitivity analysis 

The Morris method (Morris, 1991) was applied to determine which 

model parameters should be considered as most sensitive. The greater the 

rescaled sensitivity index (dr), the more sensitive a parameter. This way, the 

LASH model parameters are outlined in Table 2 in a descending order with 

respect to sensitivity in mean daily streamflow. Even though the methodology 

suggested by Morris (1991) is unsophisticated, it allowed us to identify the most 

sensitive parameters for the LASH model. 

Table 2 shows that all of the parameters used in the sensitivity analysis 

were important except n and QR which are part of the Muskingum-Cunge 

routing method. This indicates that the model is not sensitive to the Muskingum-

Cunge routing method for this watershed. A reasonable explanation for the non-

sensitivity of these two parameters is that the channels in the JEW are narrow 

and steep, thus the channel network does not have a significant influence on 

water accumulation and propagation (Collischonn, 2001).  

The parameters KB and AC were the most sensitive parameters in the 

model, proving that the JEW is governed by base flow process. In other studies 

(Collischon et al., 2007; Mello et al., 2008), AC was considered to have a low 

sensitivity and, therefore, it was kept as a constant value. However, in this 

watershed our study showed that this parameter was greatly sensitive and should 

be taken into account during the calibration step, especially in watersheds that 

are governed by base flow. Since AC is computed as function of Am and the 
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latter variable is calculated in a spatially distributed approach throughout the 

watershed (based on different values of saturation soil moisture and wilting 

point soil moisture), AC might have been estimated better in this study than in 

the above-mentioned studies. As the JEW is composed mostly by deep soils with 

slope gradients less than 18% and the mean annual precipitation is greater than 

1,400 mm, the aquifer recharge process is highly significant. By analyzing the 

contribution of each flow component for the studied period, we found results as 

follows: base flow (62.51%), surface runoff (25.10%), and sub-surface flow 

(12.39%).  Therefore, one can infer that base flow is predominant in comparison 

to direct surface runoff and sub-surface flow, thus justifying why the parameter 

(KB) associated with the former component was the most sensitive. 

The parameter related to surface runoff (�) also had a high sensitivity. 

This behavior goes along with results presented in other papers (Mello et al., 

2008; Beskow et al., 2009a). Variation in values for this parameter was expected 

to occur when simulating different watersheds, since this parameter is strongly 

affected by the following factors (Mishra et al., 2003; Beskow et al., 2009a): (a) 

climatic conditions such as temperature and solar radiation, which are important 

for evapotranspiration calculation; (b) pluvial behavior of the study watershed 

due to its influence on antecedent soil moisture content. 

The soil moisture content (�0) represents the hydrological initial 

condition of watersheds, and was found to have considerable sensitivity. The 

establishment of realistic ranges for this parameter depends on when the 

simulation starts. As in this case, the simulation began in January, which is the 

most humid month, soil moisture was high. On the other hand, if we had 

considered July (the driest month) as the beginning, ranges for this parameter 

would have been much different. Ribeiro Neto (2006) recommends setting 

constant values of �0 for long-term hydrologic simulation models due to the 

difficulty of soil moisture monitoring at the watershed scale. However, based on 
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the results we found in this chapter, we suggest including �0 as a calibration 

variable for improvement of the model performance in future simulation using 

LASH if this input is unavailable. 

In the version of the model described by Mello et al. (2008), who have 

used this approach spatially distributed by sub-basins, the capillary rise 

component was not included. Nevertheless, analyzing the results in Table 2 we 

found that the parameter ACR presented a considerable sensitivity for this 

watershed. It is advisable to take into account capillary rise, since this may be an 

important component if the watershed has savannahs, riparian forests or springs, 

thus causing rise of water from shallow aquifer to the soil layer. 

Two statistics of precision are presented in Table 2 (CNS and log (CNS)), 

which are goodness-of-fit measures and refer to the minimum values found in 

the interval-spaced sensitivity analysis. These statistics can be used as a cutoff 

criterion in this study to eliminate portions of the parameter ranges in which 

either CNS or log (CNS) is negative. There were only two parameters (KB and AC) 

that had minimum values of log (CNS) below zero, which indicates that their 

parameter ranges are producing unrealistic outputs and then they need to be 

narrowed. 
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TABLE 2 Sensitivity analysis of the LASH model. 

 

Parameter Component dr 
Min 
(CNS) 

Min [log (CNS)] 

KB Base flow 0.26 0.22 -43.28 
AC Base flow 0.16 0.43 -3.61 
�0 Initial soil water availability 0.14 0.16 0.09 
� Surface runoff 0.14 0.09 0.56 

ACR Capillary rise 0.08 0.56 0.50 
AL Evapotranspiration 0.07 0.63 0.72 
IC Interception 0.05 0.62 0.72 
PS Sub-surface 0.03 0.63 0.71 
KSS Sub-surface 0.02 0.62 0.63 
ACC Sub-surface 0.02 0.64 0.69 
KCR Capillary rise 0.01 0.66 0.72 
CS Surface runoff 0.01 0.39 0.59 
CSS Sub-surface 0.01 0.64 0.69 

n Routing in the channel 
network 0.00 0.66 0.73 

QR 
Routing in the channel 

network 0.00 0.66 0.73 

 

6.2 Initial Monte Carlo simulation 

After performing the prior step (sensitivity analysis), we chose all of the 

parameters presented in Table 2, except QR and n, to carry out this analysis for 

mean daily streamflow as the output variable studied in the Monte Carlo based 

simulations.  

The choice for the number of Monte Carlo simulations is quite 

subjective; nevertheless, this step simply attempt to find out if the parameter 

ranges should be narrowed. This way, it is not necessary to run as many 

iterations as for the uncertainty analysis. In order to perform the same kind of 

analysis, Benaman & Shoemaker (2004) used 500 Monte Carlo based runs by 

varying simultaneously 36 input parameters for the SWAT model in simulating 

streamflow and sediment transport at the watershed scale. In the present study, 
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only 13 parameters of the LASH model were evaluated, and 500 iterations were 

found to be a reasonable number. 

A 12 month simulation period was used to produce Figure 4. It 

represents the cumulative probability distribution of daily streamflow using 500 

Monte Carlo runs which involved variation of the model input parameters 

simultaneously (using ranges established in Table 1).  

The mean observed streamflow is presented in Figure 4 through a solid 

vertical line. A dashed line was drawn in order to emphasize the streamflow 

corresponding to the median of the cumulative probability distribution. 

Comparing these two lines one can observe that the line representing observed 

streamflow is distant from the median of the cumulative probability distribution. 

Therefore, we concluded that the streamflow results are biased to low.  Most of 

the runs (about 95%) provided mean daily streamflow less than the observed 

streamflow. This occurred because of uncertainties concerning some parameters, 

whose initial ranges should be narrowed to facilitate a better automatic 

calibration. Otherwise, the automatic calibration process would take many 

parameter sets and would produce unrealistic results. 
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FIGURE 4 Cumulative probability distribution of the mean daily streamflow for 

500 Monte Carlo runs. 
 

6.3 Range adjustment using interval-spaced sensitivity 

Thirteen parameters from Table 2 were used to assess interval-spaced 

sensitivity based on 50 runs for each parameter within its respective range 

(Table 1). A manual calibration was applied to determine the base values for the 

model parameters used in this study. The most difficult decision in this step was 

to define a cutoff criterion (threshold, T), since it is subjective. We used an 

assumption recommended by Arabi et al. (2007), in which statistics CNS and log 
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(CNS) � 0 were considered unacceptable and used this as a threshold to reduce 

parameter ranges. Based on the results presented in Table 2, through the 

columns Min (CNS) and Min (log (CNS)), it was possible to determine which 

parameters that had range reduction. Figure 5 shows the four most sensitive 

parameters and how their ranges were narrowed using the threshold T. In 

addition to the threshold used (T � 0), Table 3 also illustrates the parameter 

ranges that would need to have been narrowed if other T values had been 

applied. 

Two parameters presented a large range that had a major influence on 

the model output. These would cause too many parameter sets to be unrealistic 

for this watershed in case of using suggested ranges for calibration, and in 

addition, the optimization method would be inefficient. Because only one 

parameter is changed at a time, we should be careful with the choice of the 

threshold for reduction of ranges. According to Benaman & Shoemaker (2004), 

too high values should not be set as threshold because realistic portions of 

parameter ranges may be removed if all parameters are considered at once.  

Benaman & Shoemaker (2004) and Arabi et al. (2007) used similar 

methodologies for adjustment of parameter ranges of the SWAT model. In both 

studies, results allowed them to conclude that the streamflow-related parameters 

did not need a range reduction. As the sediment-related parameters were found 

to be more sensitive, they had their ranges reduced, thus eliminating portions of 

the parameter ranges which were causing many unrealistic predictions. 
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TABLE 3 Adjustment of parameter ranges using different thresholds. 

 
Parameter Suggested 

range 
New range1 New range2 New range3 

KB 0 - 6 1.3 - 6 1.45 - 6 1.7 - 6 
AC 0 - 30 0 - 11 0 - 10 0 - 9.5 
� 0 - 0.5 - 0.01 - 0.5 0.015 - 0.4 
�0 10 - 90 - 14 - 95 25 - 93 

1 T � 0; 2 T � 0.15; 3 T � 0.3. 
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FIGURE 5 Spaced-interval sensitivity analysis changing (a) KB, (b) AC, (c) 

antecedent soil moisture, and (d) initial abstraction coefficient. The 
x-axis shows normalized values of each parameter (equation 19).  

 

6.4 Uncertainty analysis 
Figure 6 shows the cumulative GLUE distribution for mean streamflow 

using both the suggested parameter ranges and the new parameter ranges. Each 

line represents 5000 Monte Carlo runs. Comparing the difference between the 
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two lines it was found that the reduction of ranges caused a considerable impact 

on the results even though the mean observed data does not correspond exactly 

to the 50th percentile of the cumulative probability distribution. This proves that 

range adjustment should be applied to make the output more accurate.  

 

 
 
FIGURE 6 Cumulative Generalized Likelihood Estimation distribution using 

both initial parameter ranges and narrowed parameter ranges. Each 
line except the vertical one represents 5000 Monte Carlos runs 
taking values randomly from their respective ranges. 

 

According to Blasone et al. (2008), it is usual to establish uncertainty 

bounds for the GLUE analysis, which were here defined as 5th and 95th 

percentiles of the distribution. The 5th and 95th percentiles were 0.194 and 0.423 

m3 s-1, respectively, when the initial parameter ranges were used. In contrast, 

0.242 and 0.472 m3 s-1 were the values found for the same percentiles when the 
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narrowed ranges were applied instead. These bounds included most of the 

iterations, which indicates that the variation of the model parameters was 

capable of accounting for the total output uncertainty, therefore, measurement 

and model structure errors were balanced (Blasone et al., 2008). The final GLUE 

simulation presented results much better than compared to those from the initial 

GLUE simulation. The median was equal to 0.352 m3 s-1, differing only by 9.5% 

from the mean observed streamflow value, which demonstrates acceptable 

results from the GLUE methodology. 

Uncertainty analysis has been successfully applied in many other studies 

by using hydrologic models. Muleta & Nicklow (2005) and Arabi et al. (2007) 

used the GLUE methodology in order to analyze uncertainties with respect to 

streamflow and sediment yield estimates simulated through the SWAT model. 

They found that sediment yield predictions had more uncertainties compared to 

streamflow estimates. Blasone et al. (2008) performed uncertainty analysis for 

the MIKE-SHE model and concluded that uncertainties in parameters might not 

address the total uncertainty of spatially-distributed variables. These researchers 

point out that this occurs when a bias is observed in predictions due to 

uncertainties which can arise from both model structure and measurement error, 

as occurred in their study for groundwater elevation. Wei et al. (2008) computed 

model predictive uncertainties for the RHEM model to assess erosion risk for 

different scenarios. The authors were able to provide different conservation 

plans for decision makers instead of a single value concerning predicted soil 

loss. The uncertainties related to the VIC-3L model parameters and their effect 

on simulated streamflow values were evaluated successfully by Huang & Liang 

(2006).  

The four most sensitive parameters found in this study cannot be easily 

measured in the field. Huang & Liang (2006) recommended for parameters like 

these, that they should be estimated through model calibration. Using a 
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conservative threshold (� 0), only the parameters KB and Ac had their ranges 

narrowed. However, if results from GLUE were not satisfactory, other 

thresholds would have to be used, for instance CNS and log (CNS) � 0.15 or � 0.3 

(Table 3), in order to reduce parameter ranges more and to proceed with a new 

GLUE analysis. 

Before narrowing the suggested parameter ranges, the initial Monte 

Carlo simulation resulted in a mean streamflow equal to 0.23 ± 0.01 m3 s-1 for a 

95% confidence interval, which means that 95% of the 5,000-iteration sets will 

result in mean streamflow between 0.22 and 0.24 m3 s-1. The final Monte Carlo 

simulation produced a mean streamflow of 0.31 ± 0.01 m3 s-1 when the reduced 

parameter ranges were taken. These results clearly indicate that the reduction of 

bounds influenced considerably on the mean streamflow values, thus improving 

mean streamflow predictions by 35% and reducing uncertainties linked to the 

input parameters.  

According to Muleta & Nicklow (2005), this type of analysis can be 

more efficient if a given watershed has more data available to be applied to. It is 

important to highlight that this analysis should be done for other watersheds 

before assuming the same parameters are the most sensitive as well as their 

ranges, since parameter ranges depend on specific characteristics of the 

watershed. Moreover, since this model is being applied for the first time, the 

data from other watersheds should be used in future for comparison. 
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7 CONCLUSIONS 

 

 

A new spatially distributed hydrologic model was described and tested 

for the first time in a Brazilian experimental watershed. It uses a simple 

approach and was developed to be applied to watersheds which have limited 

data available, since the model needs only a few input maps. 

In this chapter, our goal was neither to calibrate nor validate LASH, but 

attempt to assess its sensitivity (Morris method), to narrow its parameter ranges 

and to analyze uncertainties with respect to the output variable using the GLUE 

method, due to a set of parameters which have broad ranges. Even with this 

preliminary analysis, it was found that the model was able to predict streamflow 

at the JEW’s outlet adequately, since statistics applied presented satisfactory 

results.    

The sensitivity analysis was performed for the LASH with data from a 

medium-sized Brazilian watershed, indicating that the most sensitive parameters 

were KB, AC, �0, and �. In addition to these four parameters, some others must be 

taken into account during the calibration process. This analysis is important 

since it can reduce both the number of runs during the calibration step and 

uncertainty associated with parameter ranges. 

Using a conservative threshold (CNS or log (CNS) � 0) the range of two 

parameters was reduced, thus improving considerably the uncertainty analysis 

through GLUE methodology and making results more accurate for the study 

watershed. Moreover, it will be easier to choose which parameters and their 

respective ranges that should be considered to perform the calibration of LASH 

for other watersheds. These factors will help speed up the optimization efforts. 
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CHAPTER 3 

 

LASH MODEL: CALIBRATION AND VALIDATION TO A BRAZILIAN 

WATERSHED 

 

1 ABSTRACT5 

 

 

Conceptual rainfall-runoff models at the watershed scale are useful tools 
for assisting in managing and planning water resources, making it possible to 
estimate hydrologic variables, such as streamflow and sediment yield, and to 
predict hydrologic impacts due to land-use changes. The objective of this study 
was to calibrate and to validate the LAvras Simulation of Hydrology (LASH) 
model to the Jaguara Experimental Watershed (JEW - Brazil, drainage area of 
32 km2) for streamflow on a daily basis. LASH is a continuous, distributed, 
semi-physically based model for simulation of different hydrologic components 
on a daily basis, namely surface runoff, sub-surface flow, base flow, capillary 
rise, evapotranspiration, interception of precipitation by vegetation, and soil 
water availability. The Shuffled Complex Evolution (SCE-UA) global search 
method was used with the LASH model in order to optimize model parameters 
found to be the most sensitive or not directly measurable. Values of climatic 
variables such as precipitation, temperature, relative humidity, wind speed, and 
solar radiation were provided by an automatic weather station located in the 
JEW, while discharge data were obtained from an automatic gauge station set up 
at the JEW’s outlet. A satellite image allowed us to classify land-uses in the 
watershed, a DEM made it possible to detect differences in relief, and a soil map 
let us account for the spatial distribution of values of maximum soil water 
availability. The LASH model was calibrated over a 2-year period for the JEW, 
thereafter, the parameters obtained through the calibration were kept constant for 
the validation step using a different period of time from that analyzed during the 
calibration. The Nash-Sutcliffe coefficient (CNS) values found were 0.820 and 
0.764 during calibration and validation, respectively, whereas, log (CNS) values 
equal to 0.821 and 0.770 were obtained for the same periods. The simulated 
discharge (Q90%) was 0.131 m3 s-1, while the observed Q90% value was 0.122 m3 

���������������������������������������� �������������������
5 Guidance Committee: Carlos Rogério de Mello – UFLA (Major Professor), Lloyd Darrell Norton 

– USDA–ARS–NSERL/Purdue University and Antônio Marciano da Silva – UFLA. 
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s-1, thus, there was an overestimating of only 7%. Yet, the model resulted in CNS 
values of 0.807, 0.821 and 0.983 for minimum discharge, maximum discharge 
and mean discharge, respectively. Based on these results, it was concluded that 
the model has a great potential for being applied in generating minimum and 
maximum discharge, as well as flow-duration curves. Therefore, the model can 
reliably be successfully applied to this medium-sized watershed or other similar 
sized watersheds having as goal to provide design values for various hydraulic 
structures as well as soil conservation. Furthermore, the application of the LASH 
model can allow engineers to design irrigation systems and to estimate 
ecological discharge over different periods of year, thus taking into account the 
sustainable development in similar tropical and subtropical watersheds.�
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2 RESUMO6 
 

�

Modelos hidrológicos conceituais de chuva-vazão, aplicados a bacias 

hidrográficas, são ferramentas úteis no que diz respeito à gestão e ao 

planejamento de recursos hídricos, possibilitando simular variáveis hidrológicas 

como, por exemplo, vazão de escoamento total e produção de sedimentos, e 

ainda predizer impactos hidrológicos decorrentes de alterações no uso do solo. 

Este estudo foi realizado com o objetivo de calibrar e validar o modelo Lavras 

Simulation of Hydrology (LASH), no que se refere à vazão média diária, com 

base em dados da bacia hidrográfica experimental da Jaguara (JEW – Brasil, 

com área de drenagem de 32 km2). O LASH é um modelo hidrológico 

distribuído, de simulação contínua e com embasamento semifísico para predição 

de diferentes componentes hidrológicos com incremento de tempo diário, a 

saber: escoamento superficial direto, escoamento subsuperficial, escoamento de 

base, ascensão capilar, evapotranspiração, interceptação da chuva por parte da 

cobertura vegetal e disponibilidade de água no solo. Um método de otimização 

global conhecido como Shuffled Complex Evolution (SCE-UA) foi 

implementado no modelo LASH, no intuito de otimizar os parâmetros do 

modelo que são considerados mais sensíveis ou os que não são diretamente 

mensuráveis. Os valores das variáveis climáticas precipitação pluvial, 

temperatura, umidade relativa do ar, velocidade do vento e radiação solar foram 

obtidos por meio de uma estação climática automática localizada na bacia 

estudada, enquanto os dados de vazão foram adquiridos por meio de um 

linígrafo automático instalado na seção de controle da bacia. Por meio de uma 

imagem de satélite foi possível classificar os usos do solo da bacia. O modelo 

���������������������������������������� �������������������
6 Comitê Orientador: Carlos Rogério de Mello – UFLA (Orientador), Lloyd Darrell Norton – 

USDA–ARS–NSERL/Purdue University e Antônio Marciano da Silva – UFLA. 
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digital de elevação possibilitou detectar diferenças no relevo da bacia e o mapa 

de solos permitiu levar em conta a distribuição espacial dos valores de 

disponibilidade máxima de água no solo. O modelo LASH foi calibrado com 

base em um período de 2 anos para a JEW e, posteriormente, os parâmetros 

obtidos por meio da etapa de calibração foram mantidos constantes para a fase 

de validação. Um período de tempo diferente daquele utilizado na calibração foi 

considerado na etapa de validação. Os valores encontrados de CNS foram 0,820 e 

0,764, durante a calibração e a validação, respectivamente, enquanto os valores 

de log (CNS) foram iguais a 0,821 e 0,770, para os mesmos períodos de análise. 

O valor simulado de Q90% foi 0,131 m3 s-1 e o observado, 0,122 m3 s-1, dessa 

forma superestimando Q90% somente em 7%. Considerando as vazões mínimas, 

máximas e médias, o modelo resultou em valores de CNS iguais a 0,807, 0,821 e 

0,983, respectivamente. Diante dos resultados apresentados, pôde-se concluir 

que o modelo LASH apresenta um grande potencial para a geração de séries de 

vazões máximas e mínimas, bem como curvas de permanência. Portanto, este 

modelo pode ser utilizado com sucesso para esta bacia de tamanho médio, a fim 

de fornecer valores de projeto para várias estruturas hidráulicas, assim como 

para a conservação de solo. Além disso, a aplicação do modelo LASH pode 

permitir que engenheiros projetem sistemas de irrigação e estimem a vazão 

ecológica ao longo de diferentes épocas do ano, assim levando em consideração 

o desenvolvimento sustentável de bacias hidrográficas tropicais e subtropicais.��

 
�

�

�

�

�
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3 INTRODUCTION 

 

 

Hydrologic modeling has been extensively used to quantify the impact of 

different land-use scenarios on water resources in ungauged watersheds. 

Traditionally, most hydrologic models have been structured with distributed 

approach to account for the spatial variation of physical processes such as 

infiltration, interception, surface runoff, etc. This type of model is usually 

composed of a large number of parameters and presents a high level of 

complexity (Blasone et al., 2008). In addition, there are parameters whose 

measurement is both difficult and unfeasible at the watershed scale (Duan et al., 

1994; Gan & Biftu, 1996). According to Lin & Radcliffe (2006), hydrologic 

models have been calibrated through optimization methods for some decades. 

Under these circumstances, some calibration parameters are required in order to 

make application of models easier.  

Most developing countries like Brazil have a scarcity of data at small to 

medium watershed scales, except when watersheds are gauged for research 

purposes (Beskow et al., 2009b). Therefore, in case of scarcity of data, it is 

unfeasible to apply a complex hydrologic model which is driven with a large 

amount of data, such as SWAT (Arnold et al., 1998; Gassman et al., 2007), 

WEPP (Flanagan & Nearing, 1995), or AGNPS (Young et al., 1987). To 

overcome this drawback, hydrologic models based on simple approaches and a 

small amount of available data are preferable. The LASH model (described in 

Chapter 2) employs a simple approach and was especially designed to predict 

streamflow at watersheds in regions where there is scarcity of data concerning 

weather, soil, land-use, and discharge. 

In order to test the quality of a watershed model for a given application, 

White & Chaubey (2005) recommended running a sensitivity analysis, 
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calibration, and validation of the model. Sensitivity analysis expresses the 

influence of different parameters on the response of an output variable in that the 

greater the difference in output response, the more sensitive the respective 

parameter (White & Chaubey, 2005). As reported by Benaman & Shoemaker 

(2004), sensitivity analysis is used to identify which parameters might cause a 

significant effect on the output of interest. Moreover, sensitivity analysis is 

extremely useful for establishing the parameters that should be taken into 

account during the calibration step (Blasone et al., 2008). This analysis has 

become usual prior to the calibration step in studies related to hydrologic 

modeling (Francos et al., 2003; Benaman & Shoemaker, 2004; Muleta & 

Nicklow, 2005; White & Chaubey, 2005; Griensven et al., 2006; Arabi et al., 

2007; Blasone et al., 2008).  

A calibration effort is required to search for a set of parameters which 

represents a process appropriately and generates satisfactory results regarding 

output of interest for a specific watershed. This task is achieved by either 

maximizing or minimizing efficiency measures such as root mean square error, 

Nash-Sutcliffe coefficient, etc. 

According to Arabi et al. (2006), the calibrated model should be run with 

a set of measured data not used in the calibration stage. This step is known as 

validation and is useful for verifying whether predictions are acceptable even on 

different data sets. 

Manual calibration can be employed; however, the quality of the results 

depends on the modeler’s ability in handling the hydrologic model and its 

fundamental approaches taken (Eckhardt & Arnold, 2001). Furthermore, 

Eckhardt et al. (2005) emphasized that this kind of calibration is subjective, time 

consuming and potentially biased, and procedures of automatic calibration can 

overcome these problems. 
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Among other automatic optimization methods found in literature, the 

Shuffled Complex Evolution (SCE-University of Arizona (UA)) developed by 

Duan et al. (1992) has been widely employed and found to be robust and 

computationally efficient. The SCE-UA method has been successfully applied to 

several hydrologic models (Duan et al., 1992; Gan & Biftu, 1996; Yapo et al., 

1996; Eckhardt & Arnold, 2001).     

This study was aimed at (a) calibrating different LASH parameters for 

an experimental watershed by using its DEM, soil, channel network and land-

use maps as well as discharge data monitored at the watershed outlet during two 

years; (b) validating this model for the same watershed by applying a period of 

time different from that used in the calibration stage; (c) investigating whether 

the SCE-UA optimization method is efficient for the specific case of the LASH 

model. 

 

4 MATERIAL AND METHODS 

 

 

4.1 The LASH model and database 

The LAvras Simulation of Hydrology (LASH) is a time continuous, 

spatially distributed, semi-physically based model for simulation of different 

hydrologic components. It is capable of simulating the following hydrologic 

components on a daily basis: evapotranspiration, interception of precipitation by 

vegetation, capillary rise, soil water availability, surface runoff, sub-surface 

flow, and base flow. 

The LASH is composed of three fundamental modules. Its first module 

simulates surface runoff flow (DS), sub-surface flow (DSS), base flow (DB), and 

capillary rise (DCR) to compute water balance. There is a module destined to 

compute the flow within each cell to the stream network taking into account the 
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lag effect (concept of linear soil reservoir). The last module employs the 

Muskingum-Cunge Linear Model to propagate the flows through the channel 

network. Details about the methods used in the LASH will not be discussed here 

because they were described in Chapter 2. 

LASH was written in Delphi (Windows Environment) and provides a 

graphical user interface (GUI). Its GUI allows users to import maps from 

various Geographical Information Systems (GIS), thus making the use of the 

model easier. Furthermore, LASH has an automatic optimization routine 

embedded in it which is based on the Shuffled Complex Evolution method 

(SCE-UA) (Duan et al., 1992), allowing users to calibrate as many parameters as 

necessary.  

All the physical processes simulated by the model are based on the soil 

water balance equation, which is updated at each time step (daily) for each grid 

cell in the watershed according with Equation 1. The number of grid cells 

depends on both the cell size and how large the watershed is.    
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where j and i are indexes associated to time step and grid cell, respectively; j
ti

A  

is the soil water availability (mm) for the grid cell i at the end of the time step j; 
1−j

ti
A represents the soil water availability (mm) for the grid cell i at the start of 

the time step j; �t is the time step (daily); Pi corresponds to the precipitation 

(mm day-1) minus interception of rainfall by land cover; ETi is the 

evapotranspiration (mm day-1); 
iSD is the surface runoff (mm); 

iSSD represents 

the sub-surface flow (mm day-1); 
iBD is the base flow (mm day-1); and

iCRD

corresponds to the capillary rise depth (mm day-1). The variable 1−j
ti

A  is 

computed for each time step for each cell. The latter variable allows the 
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computation of components like surface runoff flow, sub-surface flow, base 

flow, capillary rise flow, and real evapotranspiration in time j. 

All the input maps used by the model are derived from the Digital 

Elevation Model (DEM), land-use, soil or channel network maps. In addition to 

these maps, LASH also needs two other files in table format. The first table 

contains information on climate as well as observed discharge (m3 s-1) over time. 

The following climatic data are necessary in the model to compute 

evapotranspiration (from the Penman-Monteith equation): minimum temperature 

(ºC), maximum temperature (ºC), relative humidity (%), wind speed (m s-1), and 

global solar radiation (MJ m-2 day-1). Rainfall is a fundamental input variable, 

since it is the main input for the simulation of the surface runoff component, and 

calculation of water balance as well. Since there is an optimization method in the 

LASH, observed discharge at each time step also has to be given to the model so 

that it is able to fit a simulated hydrograph to the observed data by either 

minimizing or maximizing a given objective function (e.g., root mean square 

error, Nash-Sutcliff coefficient, etc.). Another table is used to inform the model 

of the variation in parameters connected to the land-use over time, for instance, 

leaf area index (m2 m-2), plant height (m), albedo (dimensionless), surface 

resistance (s m-1), rooting depth (mm), and crop coefficient (dimensionless). 

Leaf area index is a critical variable for simulation by the interception module, 

while rooting depth is used in the calculation of the water balance, and the 

remainder of these variables are necessary for computing evapotranspiration. 

Details about evapotranspiration calculation can be found in Chapter 2. 

 

4.2 The Jaguara Experimental Watershed (JEW) 

4.2.1 Description 

The LASH model was calibrated and validated for the Jaguara 

Experimental Watershed (JEW). This watershed is located in southern Minas 
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Gerais State, southeastern Brazil and its total drainage area amounts to 32 km2. 

The channel network, location of the outlet, weather station, and points of 

measurement of soil physical parameters in the JEW as well as the land-use map 

and soil map were presented in Chapter 2. Other general issues, such as the 

research team responsible for the monitoring of this watershed, climatic 

characteristics in the region, existing hydro-climatic monitoring and satellite 

imagery used for creating the land-use map, were also discussed in Chapter 2. 

The Digital Elevation Model (DEM) of the JEW (Figure 1) was 

extracted by means of interpolation of a contour line map with points of known 

altitude, which was obtained from Brazilian Institute of Geography and Statistics 

(IBGE). It was interpolated with basis on 30-meter resolution cells by using GIS 

techniques available in ArcGIS. Values of altitude (meters above sea level) 

ranged from 956 to 1073. This is an important input map to compute time of 

concentration on a grid cell basis, since various equations employ difference in 

altitude as an independent parameter for computing time of concentration. 
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FIGURE 1 Digital Elevation Model (DEM) of the Jaguara Experimental 

Watershed (JEW). 
 

The flow direction map is derived as a function of the DEM. The former 

map represents the direction of flow from every cell in the DEM by determining 

the direction of steepest descent. Eight different directions can be assigned to 

cells in the flow direction map because the approach for this purpose considers 

the eight adjacent cells. Figure 2 displays the flow directions all over the 

watershed. This information is essential for LASH model to accumulate the flow 

from each cell towards the outlet (Figure 3).    
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FIGURE 2 Flow directions in the Jaguara Experimental Watershed (JEW). 
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FIGURE 3 Flow accumulation map in the Jaguara Experimental Watershed 

(JEW). 
 

4.2.2 Data extracted from literature 

The parameters used in the LASH model for each land-use class are 

outlined in Table 1. It should be noted that some parameters such as leaf area 

index and plant height had their values modified over time for some land-use 

classes. This is fundamental for the model to be able to capture different 

conditions of land covers, especially crops due to their time dependent variation 

in these parameters. 
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TABLE 1 Parameters associated with the land-use classes in the JEW (from 
references) 

Land-use Leaf Area 
Index Height Albedo Surface 

Resistance 
Rooting 
Depth 

      

 m2 m-2 m - s m-1 mm 
 

Eucalyptus 3.5(1) 5(6) 0.13-
0.18(7) 100(8) 1500(10) 

Coffee 1.82-
3.62(2) 

1.13-
1.62(2) 

0.15-
0.2(8) 40(6) 500(11) 

Bare soil 0 0 0.10-
0.35(8) 545.3(9) 500(12) 

Maize 0.17-
6.02(3) 0-1.52(3) 0.15-

0.20(8) 40(6) 500(11) 

Native 
vegetation 6.25(4) 10(6) 0.13-

0.18(7) 100(8) 2000(10) 

Pasture 1.86-
3.99(5) 0.5(6) 0.20-

0.26(8) 70(6) 600(11) 

1 Almeida & Soares (2003); 2 Favarin et al. (2002); 3 Manfron et al. (2003); 4 Marques Filho et al. 
(2005); 5 Fagundes et al. (2006); 6 Collischonn (2001); 7 Miranda et al. (1996); 8 Shuttleworth 
(1993); 9 Correia et al. (2004); 10 Lima (1996); 11 Allen et al. (1998); 12 Viola (2008). 

 

4.2.3 Sensitivity analysis and adjustment of parameters 
Before calibrating a model, it is important to define which parameters 

deserve special attention and should be optimized. Such an analysis was made in 

Chapter 2 for the same watershed. Based on those results, we concluded that the 

most sensitive parameters of the model were KB, AC, �0, and �. However, other 

parameters less sensitive than these four above-mentioned are not easily 

measured at the watershed scale and can only be obtained through calibration. 

Under these circumstances, the following parameters were chosen to be 

optimized:  KB, �, KSS, KCR, CS, and CSS. 

It should be emphasized that the parameter ranges need to be established 

in order to provide constraints for the optimization algorithm to search for an 

ideal set of parameters. Otherwise, many unrealistic predictions could be made, 
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thus making the optimization routine inefficient. Also in Chapter 2, several 

simulations were carried out to determine the reasonable bounds for each model 

parameter to obtain realistic results (Table 2). 
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TABLE 2 Suggested range of parameter values for use in the LASH model. 

 
Parameter Description Range Reference 

� Initial abstraction coefficient 0 - 0.5 Mishra et al. 
(2006) 

�0 
Current soil moisture (m3 m-3, 

estimated as % of Am) 10 - 95 - 

KSS 
Hydraulic conductivity of sub-
surface reservoir (mm day-1) 0 - 182.4 Rawls et al. 

(1993) 

KB 

Hydraulic conductivity of shallow 
saturated zone reservoir (mm day-

1) 

1.3 - 6 
 

Chapter 2 
 

KCR 
Maximum flow returning to soil 

by capillary rise (mm day-1) 0 - 5 Collischonn 
(2001) 

ACC 

Minimum soil water availability 
to generate sub-surface flow (mm, 

estimated as % of Am) 
0 - 30 - 

AC 

Minimum soil water availability 
to generate base flow (mm, 

estimated as % of Am) 
0 - 11 Chapter 2 

ACR 

Soil water availability limit so 
that capillary rise occurs (mm, 

estimated as % of Am) 
0 - 50 - 

AL 

Lower limit of soil water 
availability below which a 

decrease of evapotranspiraton 
occurs (mm, estimated as % of 

Am) 

10 - 70 - 

IC Interception coefficient 0 - 0.5 - 
PS Pore-size index 0.3 - 0.7 - 

CS 
Response time parameter of the 

surface reservoir CS < CSS Mello et al. 
(2008) 

CSS 
Response time parameter of the 

sub-surface reservoir CS < CSS 
Mello et al. 

(2008) 

QR 

Reference discharge (m3 s-1), used 
in the Muskingum-Cunge routing 

method 
1 - 25 - 

n 
Manning’s roughness coefficient, 

used in the Muskingum-Cunge 
routing method 

0.02 - 0.04 Collischonn 
(2001) 
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4.3 The Shuffled Complex Evolution method (SCE-UA) 
Calibration methods are normally designed for optimization of important 

model parameters so that predictions are acceptable by some statistical measure. 

Several calibration techniques have been developed throughout the world. 

The set of parameters searched for a given automatic optimization 

technique depends basically on the following factors (Gan & Biftu, 1996; Yapo 

et al., 1996): (i) the theoretical and structural basis of the model; (ii) the 

characteristics of the calibration algorithm; (iii) the amount and quality of the 

data to be used for calibration and validation efforts; and (iv) the objective 

functions used in the calibration step. 

Local search algorithms have been used for automatic optimization of 

many rainfall-runoff models (RRM); however, this kind of procedure has shown 

some shortcomings regarding calibration of RRMs due to convergence problems 

(Duan et al., 1992). On the other hand, there are other optimization procedures 

classified as global which can be either deterministic or probabilistic. The 

former type demands the continuity of the objective function, whereas, the latter 

computes the objective function at different points which are chosen randomly 

within the parameter range (Gan & Biftu, 1996). 

The Shuffled Complex Evolution method (SCE-UA) was developed at 

the University of Arizona and is described by Duan et al. (1992). The SCE-UA 

is classified as both a global and probabilistic optimization algorithm and can be 

applied to models in various fields of knowledge. Duan et al. (1993) reported 

that this method is structured by taking into account four basic ideas, which are 

fundamental for global optimization issues, which are as follows: combination 

of random and deterministic approaches; the concept of clustering; the concept 

of a systematic evolution towards global improvement; and the concept of 

competitive evolution. 
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In a nutshell, the SCE-UA method is divided into some steps, as follows 

(Duan et al., 1992, 1993, 1994). An initial sample is generated randomly within 

the feasible space of each parameter to be optimized taking into account both the 

upper and lower bound. All the points are sorted according with the objective 

function used. Thereafter, the points are grouped into different complexes, 

which are evolved separately according to the Competitive Complex Evolution 

(CCE) algorithm - based on the Nelder & Mead (1965) - Simplex Downhill 

Search Scheme. The complexes are then shuffled and other complexes are 

created based on information provided by previous complexes. The last step is to 

check the convergence criteria in such a way that the evolution and shuffling 

procedures should be repeated until the necessary convergence criteria are 

achieved. 

The SCE-UA method contains some parameters which have influence on 

its performance (Duan et al., 1994). Therefore, the following parameters have to 

be chosen correctly: (a) p, the number of complexes; (b) m, the number of points 

in a complex (� 2); (c) q, the number of points in a subcomplex (2 � q � m); (d) 

pmin, the minimum number of complexes (1 � pmin � p) ; (e) �, the number of 

consecutive offspring generated by each subcomplex (� 1); (f) �, the number of 

evolution steps taken by each complex (� 1). The number of parameters (n) is 

related with the complexity of the problem (Duan et al., 1992, 1993). 

Duan et al. (1994) recommended some default values and equations to 

compute such parameters: (a) m = 2n + 1; (b) q = n + 1; (c) � = 1; (d) � = m. 

 

4.4 Calibration and validation procedures 

Various statistical coefficients, which have been widely employed in 

hydrologic modeling, are computed by LASH to assess the fit between 

simulated and observed data. These were Root Mean Square Error (RMSE) 

(Mishra et al., 2006), Nash-Sutcliffe coefficient (CNS) and logarithm of the 
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Nash-Sutcliffe coefficient (log (CNS)) (Nash & Sutcliffe, 1970), and ratio 

between measured and estimated volumes (�V) (Collischonn, 2001).  
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where 
tOQ corresponds to the observed streamflow in time t, 

MOQ is the mean 

observed streamflow, 
tSQ represents the simulated streamflow in time t,  

MSQ  is 

the mean simulated streamflow, ( )
tOQlog  is the logarithm of the observed 

streamflow in time t, ( )
tS

Qlog  is the logarithm of the simulated streamflow in 

time t, ( )OQlog  corresponds to the mean logarithm of the observed 

streamflows. 

Objective functions play a fundamental role in the evaluation of model 

performance because they allow capturing different behaviors on hydrographs. 

For example, CNS is strongly affected by errors in prediction of peak discharges, 

whereas, log (CNS) is strongly affected by errors in prediction of minimum 

discharges which occur during drought periods, and �V indicates the accuracy 

of the model in estimating different volumes associated with the water balance. 

CNS values can range between -
 and 1; however, Gottschalk & 

Motoviloc (2000) suggested the following classification for this coefficient: (a) 

CNS = 1, perfect fit; (b) CNS > 0.75, good and adequate fit; (c) 0.36 < CNS < 0.75, 
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acceptable fit. According to Zaapa (2002), models can be used for simulation if 

CNS > 0.5. 

The RMSE statistic was the objective function used as criterion of 

evaluation of the SCE-UA optimization algorithm. In addition, all of the above-

mentioned statistical coefficients were used to assist in analyzing the 

performance of the model during both calibration and validation efforts. The 

maximum number of loops was considered as a constraint when the model was 

optimized. 

As several ‘goodness-of-fit’ measures are considered, there might be 

different acceptable sets of parameters for the same watershed; therefore, a 

thorough analysis should be carried out. The greatest CNS or log (CNS) value does 

not mean that the respective set of parameters is the best possible for a 

watershed because this will depend on the purpose of the simulation. The 

analysis of the CNS is more suitable when engineers have interest in obtaining 

simulated discharge values from a hydrologic model for designing hydraulic 

structures in a given watershed, since CNS is closely associated with the accuracy 

of peak discharge estimates. On the other hand, if the goal is to have a good 

discharge series for estimating the ecological discharge (water rights) along 

different river stretches, log (CNS) should be preferred as objective function 

because this coefficient is ‘sensitive’ to discharge estimates during low flow 

periods. LASH provides useful outputs (two Excel files) to assist users in 

choosing the adequate parameters. The first file provides break-point simulated 

discharge values for each set of parameters taken by the model, thus allows 

modelers to assess hydrographs individually. The second file gives the user 

several ‘goodness fit’ measures for each iteration, which can be analyzed 

together in order to search for the best possible parameters for the purpose of 

interest. 
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5 RESULTS AND DISCUSSION 

 

 

5.1 Optimized parameters 

The optimization of hydrologic models aims to reduce uncertainties with 

respect to their calibration parameters, applying mathematical procedures to 

search for a set of parameters which is able to capture the behavior of observed 

streamflow data adequately.  

All of the optimized LASH model parameters and their respective values 

are listed in Table 3. 

 

TABLE 3 Description of the model parameters chosen for optimization, 
suggested ranges and optimized values for the JEW. 

 
Parameter Description Range Optimized 

value 
� Initial abstraction coefficient 0 - 0.5 0.105 

KB 
Hydraulic conductivity of shallow 

saturated zone reservoir (mm day-1) 0 - 6 3.18 

KSS 
Hydraulic conductivity of sub-surface 

reservoir (mm day-1) 0 - 182.4 182.15 

KCR 
Maximum flow returning to soil by 

capillary rise (mm day-1) 0 - 5 4.36 

CS 
Response time parameter of the surface 

reservoir - 3,313.9 

CSS 
Response time parameter of the sub-

surface reservoir - 59,934.5 

 

Beskow et al. (2009a) applied dynamic modeling to predict direct 

surface runoff values on a small watershed located in Southeastern Brazil 

(Minas Gerais State), employing both the CN-MMS method which was adapted 

by Mishra et al. (2003) and the CN-SCS method (Soil Conservation Service, 

1972), which have the initial abstraction coefficient (�) as a calibration 
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parameter. They concluded that both methods allowed simulating direct surface 

runoff in the watershed effectively; however, the CN-MMS presented results 

better than the CN-SCS method. However, the CN-SCS method did not present 

satisfactory calibration when simulating precipitation events with 5-day 

antecedent precipitation (P5), classified as AMC III. Because the CN-SCS 

method is divided into only three classes of antecedent soil moisture content 

(AMC I, AMC II and AMC III), this method may have its application 

constrained by antecedent hydrologic conditions (Mishra et al., 2006). On the 

other hand, the CN-MMS method yielded good results even during wetter 

conditions (AMC III). According to Mishra et al. (2006), this adaptation is due 

to the incorporation of a parameter associated with antecedent soil moisture 

content for computation of initial abstraction based on both antecedent 

precipitation and potential soil water storage, thus making this model more 

similar to the physical reality of surface runoff than CN-SCS method. 

The initial abstraction coefficient (�) was found to be a sensitive 

calibration parameter in a previous sensitivity analysis (Chapter 2), having an 

optimized value of 0.105 for the entire JEW. Beskow et al. (2009a) obtained a 

mean value of 0.136 for this parameter for a sub-watershed (4.7 km2) in the 

JEW. Mishra et al. (2006) applied the CN-MMS method on several watersheds 

from the U.S.A., with drainage area ranging from 0.17 and 72 ha, and obtained 

values between 0 and 0.21. Mello et al. (2008) employed the same methodology 

in a hydrologic model and obtained values of � which ranged from 0.001 to 0.5 

(in various sub-watersheds) for a 2,080-km2 watershed in the Grande River 

Basin, located in Southeastern Brazil. This method was also adopted by Viola et 

al. (2009) for the Aiuruoca River Basin (2,094 km2, Brazil), who found values of 

� between 0.01 and 0.2. As shown in these studies, it is not suitable to set this 

parameter to a constant value without taking into account the antecedent soil 

moisture content. These results indicated that the parameter � is indispensable 
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for an acceptable model performance with respect to direct surface runoff, thus 

going along with results and conclusions by Mishra et al. (2006), Mello et al. 

(2007) and Beskow et al. (2009a). According to Mishra et al. (2003) and Jain et 

al. (2006), the reference value of � is 0.2 in the CN-SCS method (Soil 

Conservation Service, 1972), however, values considerably different were found 

in this and other studies. Variation in � values is expected to occur due to some 

factors that have influence on � (Mishra et al., 2003): (a) difference of 

climatologic factors such as temperature and solar radiation, which influence the 

calculation of evapotranspiration; (b) precipitation pattern in a given region, 

since it is responsible for initial soil moisture content conditions. This leads us to 

recommend that � be a calibration parameter in other studies with LASH model 

as well as other hydrologic models using this parameter.  

Viola et al. (2009) found 0.01-82.65 mm day-1 and 0.1-2.5 mm day-1, for 

the parameters KSS and KB, respectively, for Aiuruoca River Basin using a semi-

distributed version (by sub-watersheds) of the LASH model. This version was 

also employed by Mello et al. (2008) for another Brazilian basin (Grande River), 

who obtained as optimized values 12-182.4 mm day-1 and 0.9 mm day-1 for KSS 

and KB, respectively. 

The values of optimized parameters found in this study as well as ones 

obtained by Mello et al. (2008) and Viola et al. (2009) are within suggested 

parameter ranges available in literature, which are in accordance with reasonable 

constraints for real world watersheds. Because the parameters KSS and KB are 

closely associated with soil type, variation in their values for different 

watersheds is expected to occur. The Jaguara Experimental Watershed (JEW), 

which was used as a case study area in this work, contained mostly Oxisols 

(59.8% of the area, Chapter 2). In contrast, Cambisols were the most common 

type of soil in the watersheds investigated by Mello et al. (2008) and Viola et al. 

(2009). The former soil type has a deep soil layer, a high clay concentration 
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highly aggregated with high porosity, while the latter has a shallow soil layer 

and a moderate to low permeability (Araújo, 2006). The KSS and KB values 

obtained in this study were greater than those published in the two other articles, 

thus indicating that LASH model could properly handle differences due to 

varying soil characteristics. 

 

5.2 Calibration and validation 

A sensitivity and uncertainty analysis was developed for all the LASH 

parameters in Chapter 2. That study determined the most sensitive parameters of 

this model; however, not all the parameters found to be the most sensitive were 

changed during calibration. Furthermore, additional parameters other than those 

identified as the most sensitive in sensitivity analysis were chosen to be 

optimized due to the empiricalism involved in their estimation. According, only 

6 parameters were chosen to be optimized (KB, KSS, KCR, �, CS and CSS), while 

the remainder of them were kept at their recommended values.  

The LASH model was calibrated over a 2-year period, from January 

2006 through December 2007, for the Jaguara Experimental Watershed (JEW). 

The parameters obtained from the calibration were kept constant for the 

validation step using a different period of time (from March 2008 through June 

2009) from that analyzed during the calibration period. Observed and simulated 

streamflows at the watershed outlet were compared on a daily basis using Root 

Mean Square Error (Equation 2) as the objective function in the calibration step. 

This statistical coefficient has been employed in hydrologic modeling for 

calibration purposes in several studies (Eckhardt & Arnold, 2001; Eckhardt et 

al., 2005). Figure 4 shows the observed and simulated hydrographs at the JEW 

outlet obtained in the model calibration period, whereas, Figure 5 represents the 

validation period.  
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FIGURE 4 Observed and simulated daily streamflows at the outlet of the JEW and rainfall data over the calibration 

period (from January 2006 to December 2007). 
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FIGURE 5 Observed and simulated daily streamflows at the outlet of the JEW and rainfall data over the validation period 

(from March 2008 to June 2009). 
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A visual analysis on Figure 4 and Figure 5 allows concluding that the 

model was able to simulate overall the general behavior of the observed 

streamflow. Some statistics are presented in Table 4 for both calibration and 

validation period. 

 

TABLE 4 Goodness-of-fit measures obtained by LASH model during 
calibration and validation periods for the JEW. 

 
Statistical measure Calibration Validation 

Root Mean Square Error (RMSE) 0.371 0.623 
Nash-Sutcliffe coefficient (CNS) 0.820 0.764 

Logarithmic version of the Nash-Sutcliffe 
coefficient (log (CNS)) 

0.821 0.770 

Ratio between measured and estimated volumes 
(�V) -0.049 -0.011 

 

The CNS coefficient and its logarithmic transformation have been widely 

applied to verify the performance of hydrologic models. Although various other 

statistical coefficients have been applied, American Society of Civil Engineers - 

ASCE (1993) recommends modelers to use the Nash-Sutcliffe coefficient (CNS) 

as a measure for model goodness-of-fit. The CNS values of 0.820 and 0.764 were 

found during calibration and validation, respectively (Table 4), thus indicating 

the values can be classified as “Adequate and Good” according to Gottschalk et 

al. (1999) and Gottschalk & Motoviloc (2000). Considering CNS is the most 

important statistical measure for hydrologic modeling and calibration and 

validation efforts were successfully achieved, it is expected that LASH model is 

able to generate an acceptable prediction of streamflow at the JEW outlet. These 

results also indicate that the model can be used as a useful tool for planning and 

environmental management in this watershed as well as for similar sized 

watersheds sites in the region. 
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When considering log (CNS) (Table 4) as goodness-of-fit measure, values 

of 0.821 and 0.770 were obtained for calibration and validation, respectively. 

According to the classification proposed by Gottschalk et al. (1999) and 

Gottschalk & Motoviloc (2000), these values are considered “Adequate and 

Good”. The coefficient log (CNS) is highly influenced by recession periods of 

hydrographs. Therefore, based on the accuracy obtained through this efficiency 

statistic, one can infer that the model was capable of capturing adequately the 

behavior also during dry periods. Under these aspects, it is possible to conclude 

that the model has great potential to be applied for generating minimum 

discharge series as well as flow-duration curves, which will be presented and 

discussed.  

The ratio between measured and predicted volumes (�V) is also termed 

as a percent bias (PBIAS). Yapo et al. (1996) stated that this measure represents 

the tendency of the model for predicting streamflows greater or less than 

observed values. The best value is 0.0, positive values correspond to an 

overestimation bias, whereas, a tendency of underestimation occurs whenever 

negative values are found. For the calibration and validation stages (Table 4), 

�V was -4.9% and -1.1%, respectively. This indicates that the model had a slight 

tendency to underestimate streamflow; however, these values are considered low 

and near the optimal value, and came within results presented in other studies 

(Gan & Biftu, 1996; Yapo et al., 1996; Benaman et al., 2005). 

The good model performance in terms of efficiency statistics can be 

attributed to the distributed approach of the LASH model. The Digital Elevation 

Model (DEM) for instance, if spatially distributed, makes LASH capable of 

distinguishing nearly level topography from steeper sites. Spatial distribution is 

also essential to identify various combinations of soil type and land-use which 

cause different behaviors in surface runoff. The land-use map allows the LASH 

model to capture magnitudes of evapotranspiration and interception over time in 
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different parts of the watershed, resulting in a greater accuracy in the 

computation of water balance as a whole. 

Applications of some hydrologic models at different timesteps are listed 

in Table 5. Special attention should be given to the timesteps and watershed 

scales employed. According to Benaman et al. (2005), when models are run on a 

daily basis, it is more difficult to capture daily results accurately since 

precipitation and discharge data suffer considerable time shifts, especially in 

medium-sized watersheds like the JEW. All the watersheds studied, except the 

one simulated by Licciardello et al. (2007), were larger than the JEW (32 km2). 

Nevertheless, Licciardello et al. (2007) ran AGNPS on a monthly basis, thus 

getting acceptable results for a small watershed. Because small watersheds have 

a shorter response time, they are more influenced by time shifts in the 

precipitation and discharge data, and as a result, it is usually difficult to capture 

daily results for this size watershed. Benaman et al. (2005) confirmed this 

difficulty for a small watershed (Town Brook, 37 km²) applying the SWAT 

model. The authors reported large discrepancies at the Town Brook 

subwatershed, emphasizing a limitation of the SWAT model for simulating 

smaller watersheds when integrated into larger systems. 

In all the studies listed in Table 5, the models generated results that were 

considered as good and useful for hydrologic simulation in the respective 

regions. Despite the above-mentioned difficulties of simulating small 

watersheds, the results obtained using the LASH model for the JEW during 

calibration and validation periods were similar or even superior in terms of 

efficiency statistics, suggesting a better performance. Some advantages of the 

LASH model should be emphasized: (a) it is based on a simpler approach than 

other hydrologic models; (b) the model is driven with few maps and a small 

amount of climatic data sets, thus making it possible its application on 

watersheds with limited data available, like most watersheds in developing 
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countries; (c) six calibration parameters are enough to optimize it for a given 

watershed, thus resulting in less model runs need to be executed by the 

algorithm for optimization. 

 

TABLE 5 Overview of hydrologic model applications (streamflow) and their 
respective goodness-of-fit measures, using different spatial and 
temporal scales.  

 

Reference Model Timestep 
Watershed 

Size; 
Country 

CNS 
Calibration/ 
Validation 

Licciardello et al. 
(2007) 

AGNPS Monthly 1.3 km2; 
Italy 

0.77/0.85 

Eckhardt & 
Arnold (2001) 

SWAT Daily 81 km²; 
Germany 

0.70/0.73 

Mello et al. (2008) LASH 
(semi-

distributed) 

Daily 2,080 km2; 
Brazil 

0.81-
0.837/0.774-

0.935 
Thanapakpawin et 

al. (2007) 
DHSVM Daily 3,853 km²; 

Thailand 
0.79/0.74 

Eckhardt et al. 
(2005) 

SWAT Daily 134 km²; 
Germany 

0.86/0.69 

Notter et al. 
(2007) 

NRM3 
Streamflow 

Daily 87 km²; 
Africa 

0.693/0.513 

Benaman et al. 
(2005) 

SWAT Monthly 1,178 km²; 
USA 

0.63-
0.78/0.62-0.76 

 

5.3 Complementary analyses 
Flow-duration curves have been widely employed for water resources 

management in order to estimate the frequency in which a given discharge is 

exceeded, thus allowing engineers to provide reference values, especially 

minimum discharges. The observed and simulated flow-duration curves are 

presented in Figure 6. This Figure indicates a good fit between the observed and 

simulated flow-duration curves. The Q90% reference value, which corresponds to 
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the discharge exceeded in 90% of time, is often used in Brazil for water 

resources management purposes (ecological discharge). In this study, the 

simulated Q90% was equal to 0.131 m3 s-1, while the observed Q90% value was 

0.122 m3 s-1, thus overestimating Q90% by 7%. This result clearly indicates the 

acceptable accuracy of the model as a useful tool for water resources 

management, especially for medium-sized watersheds whose discharge data sets 

are not commonly available. 

 

 
 
FIGURE 6 Observed and simulated flow-duration curves for the JEW. 

 

Hydrologic models are also important for predicting extreme discharges 

(maximum and minimum) as well as mean discharge at the watershed scale in 

the long-term. This way, this kind of model has been indispensable for 
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evaluation of capabilities of watersheds (e.g. water yield in different seasons) 

and for generating input for design of hydraulic structures. The prediction of 

peak discharges is usually the most common application of flood estimation on 

small and medium-sized rural watersheds (Pilgrim & Cordery, 1993). These 

authors cited that peak discharges are required for both soil conservation 

purposes and design of some hydraulic structures such as spillways of farm, 

small dams, small and medium-sized bridges, and culverts. In addition to these 

aspects stated, another fundamental issue is connected to the economic 

importance of flood estimation. Pilgrim & Cordery (1993) reported that flood 

estimation for small rural watersheds is greatly important in terms of national 

expenditure since mean annual expenditure on works of some hydraulic 

structures (small bridges, farm dams, etc.) make up 46% of the total. These 

authors pointed out that small rural and urban watersheds (46% + 26% of the 

total) are more important relative to the overall economic importance than large 

watersheds, which amount to only 28% of expenditures. 

The variation of discharge values over time is displayed in Figure 7. In 

this Figure, it is possible to notice a good performance of the model since the 

simulated values are close to the measured ones. As it can be observed, the 

model underestimated peak discharge in a few days of the calibration and 

validation periods and produced a small overestimation of base flow during 

certain wet periods. This behavior is common for hydrologic models and can be 

attributed to the setup and data set used to run the model (Mello et al., 2008). An 

underestimate of peak discharge was also obtained by Green et al. (2006), Notter 

et al. (2007) and Mello et al. (2008).  
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FIGURE 7 (a) Annual maximum discharges and (b) annual minimum and mean 

discharges from 2006 through 2009 at the JEW’s outlet.  
 

Coupled with this visual analysis, it is suitable to use statistical 

coefficients for examining the model performance. The model resulted in 

correlation coefficients between measured and calculated discharges of 0.999, 

0.992 and 0.996 for minimum discharge, maximum discharge and mean 

discharge, respectively; and Nash-Sutcliffe coefficient equal to 0.807, 0.821 and 
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0.983 for the same variables. Viola et al. (2009) employed a previous version of 

the LASH model, which uses a sub-basin based approach, for simulating 

streamflow in a large watershed (2094 km2) located in Southeastern Brazil 

(Minas Gerais State). Similar results were found in this study, having a 

correlation coefficient of 0.87 and 0.94 for minimum discharge and maximum 

discharge, respectively. These results proved that the model was capable of 

predicting extreme values accurately. In case of peak discharges, it can be 

successfully used for this medium-sized watershed having as goal to provide 

design criteria for various hydraulic structures as well as soil conservation 

implementation, thus keeping costs of these structures down. Another 

fundamental application in hydrology is the minimum discharge, whose value 

can be used as a criterion for ecological discharge as well as a constraint for 

design of pumping and irrigation systems. The results obtained for minimum 

discharge can be considered acceptable; therefore, the application of the LASH 

model allows engineers to get design values for irrigation systems and for 

estimating ecological discharge over different times of the year, thus taking into 

account the sustainable development in the studied watershed.   

 

5.4 Optimization procedures  

5.4.1 Objective functions 
The first version of the LASH model employs RMSE as the default 

objective function in the optimization algorithm, but this model will be 

constantly updated and other functions will be implemented. This research did 

not have as goal to investigate the effect of objective functions on the calibration 

results; however, we recommend evaluating other statistical measures for 

performing calibration in future studies that involve LASH model.  

Yapo et al. (1996) evaluated two different objective functions, DRMS 

(Daily Root Mean Square) and HMLE (Heteroscedastic Maximum Likelihood 
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Error), when calibrating the Soil Moisture Accounting model of the National 

Weather Service River Forecast System (NWSRFS-SMA) and found that they 

can result in simulated hydrographs considerably different during calibration 

efforts. They stated that HMLE causes a greater error variance for large 

streamflow events in comparison with DRMS. On the other hand, if calibration 

is performed by means of the objective function HMLE, Yapo et al. (1996) 

reported that the model performance is more consistent over all flow ranges. 

Nevertheless, these researchers concluded that neither DRMS nor HMLE is 

better or worse and, as a result, the choice between them should be based on the 

intended purpose. 

Eckhardt & Arnold (2001) and Eckdardt et al. (2005) used Mean Square 

Error (MSE) as calibration criterion, which has interpretation similar to RMSE. 

Eckhardt & Arnold (2001) stressed that peak streamflows give the largest 

differences in estimation and, when using the MSE statistic the minimization of 

large differences, between simulated and observed streamflow, gets more 

importance than minimization of small differences. Since MSE is similar to the 

Root Mean Square Error (RMSE = DRMS), the previous interpretation is also 

valid for RMSE, which was chosen as objective function to calibrate the LASH 

model in this study. 

 

5.4.2 Efficiency 

According to Duan et al. (1994), some parameters of the SCE-UA 

method must be chosen so that it works ideally, as stated in Material and 

Methods section, however, the parameter number of complexes (p) depends on 

the complexity of the problem. The value of p was set to four for calibration 

purposes due to the quantity of calibration parameters (six for the JEW), which 

was the same as that used for evaluation of the SIXPAR model (a simplified 

research version of the Soil Moisture Accounting model (SMA)) by Duan et al. 



102 
 

(1992). Following recommendations by Duan et al. (1993, 1994), the number of 

points in a complex was assigned to 2n + 1, in which n is the number of 

calibration parameters. Therefore, 52 points was the initial population size (4 

complexes x 13 points per complex = 52 points). Variation in p has never been 

investigated for LASH model, thereby, we suggest carrying out future 

simulations in order to analyze its influence on the calibration results. 

Using the LASH model coupled with the Shuffled Complex Evolution 

(SCE-UA) global search procedure for the JEW, it was concluded that about 

1,000 model runs were sufficient to achieve the convergence criteria. The 

convergence of three parameters of the LASH using the SCE-UA method is 

displayed in Figure 8. It can be seen that these parameters tend to converge to 

constant values as number of evaluation functions increases, thus proving the 

capability of the SCE-UA method in finding the global optimum of the LASH 

model parameters to JEW. An analysis similar to the one conducted in this study 

was made by Sorooshian et al. (1993) to investigate whether or not both SCE-

UA method (10 independent trials) and MSX method  (100 independent trials) 

would converge to global optimum values of the NWSRFS-SMA model. They 

stressed that the global optimum was found with a 100% success rate through 

the SCE-UA method. Unlike the latter method, the MSX method could not 

locate the global optimum in none of the 100 Simplex trials. 
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FIGURE 8 Convergence of three LASH model parameters for the JEW, using 

the SCE-UA method. 
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Cumulative distribution functions (CDF) are presented in Figure 9 for 

the goodness-of-fit statistics used in this study. In this Figure, each CDF 

corresponds to the chance of obtaining the respective statistical measure less 

than a specific value during the calibration phase. The calibration stage was 

terminated when RMSE achieved a value of 0.371 m3 s-1 and, for the same 

statistic, 95% is the chance of getting values less than 0.45 m3 s-1. For Nash-

Sutcliffe (CNS) and its logarithmic version (log (CNS)), the chance of resulting in 

values less than 0.70 is only about 3.5% and 5.2%, respectively. If ratio between 

measured and estimated volumes (�V) is analyzed, the probability of obtaining 

�V between -10% and 10% is 89%. Figure 9 shows a good performance of the 

LASH model, since it can be observed that a great part of each CDF gives 

satisfactory goodness-of-fit measures, that is, the optimization algorithm tends to 

search for realistic parameter values towards optimum global values. The 

justification of these good results is that a sensitivity and uncertainty analysis 

was performed prior to the calibration efforts (Chapter 2), which indicated the 

most sensitive parameters and allowed reducing parameter ranges. Such analysis 

helped to eliminate some uncertainties with respect to the calibration parameters, 

mainly the parameter KB, thus reducing the number of iterations and producing 

LASH’s output closer to that measured. 

Eckhardt & Arnold (2001) calibrated the SWAT model for a 81-km2 

watershed in Germany, choosing 18 parameters for optimization, whereas, 143 

others were simultaneously adjusted by means of ratios. In this simulation, the 

optimization algorithm of SWAT had to be run automatically about 18,000 

times until the stopping criterion was achieved. 
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FIGURE 9 Cumulative distribution function (cdf) of the (a) RMSE, (b) Nash-

Sutcliffe (CNS), (c) logarithmic version of the Nash Sutcliffe (log 
(CNS)); and (d) ratio between measured and estimated volumes (�V) 
statistics for calibration on the JEW. 

 

Duan et al. (1992) compared three existing global search procedures, 

Adaptive Random Search (ARS) (Pronzato et al., 1984), Combined 

ARS/Simplex Method (Nelder & Mead, 1965), and Multistart Simplex (MSX) 

(Johnston & Pilgrim, 1976), to the Shuffled Complex Evolution (SCE-UA) 

method (Duan et al., 1993) in order to automatically calibrate six parameters of 
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the SIXPAR hydrologic model. They mentioned that this model was only 

developed for verifying problems that can arise in automatic calibration 

procedures; therefore, it is not intended for application to watersheds. These 

researchers found that the SCE-UA method was greatly more efficient than ARS 

and ARS/Simplex methods, and three times more efficient than the MSX 

method, thus requiring about one third of the model runs needed by the MSX 

procedure to obtain the same success ratio. When a 1% failure rate was 

considered acceptable, 3,300 function evaluations were necessary setting the 

number of complexes to eight (8 complexes x 13 points per complex = 104 

points = initial population size), while about 2,000 iterations would have to be 

made to achieve 1 failure in 100 if the number of complexes was four (4 

complexes x 13 points per complex = 52 points = initial population size).  

Data from eight watersheds in Nepal, China, Tanzania and United States 

(drainage area between 2,344 and 23,805 km2) were used by Gan & Biftu (1996) 

in order to evaluate three optimization algorithms (SCE-UA, MSX, and 

Simplex) coupled with the following hydrologic models: (i) Sacramento model 

(SMA) (Burnash et al., 1973); (ii) Nedbor-Afstromnings model (NAM) (Danish 

Hydraulic Institute, 1982); (iii) Xinanjiang model (XNJ) (Zhao et al., 1980); and 

(iv) Soil Moisture and Accounting Model (SMAR) (O’Connell et al., 1970; 

Kachroo, 1992). Relative to the number of parameters, SMAR, SMA, XNJ and 

NAM contained 9, 21, 15 and 15 calibration parameters, respectively. However, 

in the study conducted by Gan & Biftu (1996), 9, 13, 15 and 13 parameters were 

optimized, respectively, for the same models. In general, they ranked 

optimization methods in such a way that SCE-UA was better than MSX, which 

in turn was better than the local Simplex in searching for parameter values. 

When comparing performance in terms of computational efficiency, the methods 

were ranked as Simplex, SCE-UA, and MSX. Considering average number of 

iterations to calibrate a watershed, the local Simplex needed about 5,000 or 10 to 
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12 calibration runs (with 450 to 500 iterations each), whereas SCE-UA required 

about 10,000 iterations and MSX reached the maximum allowable number of 

iterations (50,000) in all the cases. If only the number of iterations was analyzed, 

one can be led to conclude that local Simplex is the most efficient 

computationally. However, the local Simplex demands much more calibration 

time than SCE-UA and even MSX, since the modeler must assess the results as 

well as the change in parameter values and choose which parameter should be 

optimized next. 

This model calibration required fewer model runs in comparison with the 

three above-mentioned studies, mainly if compared to the simulation applying 

SWAT by Eckhardt & Arnold (2001). This clearly indicates that optimization 

routines are strongly influenced by the number of parameters to be calibrated. 

The LASH model, as used in the present study, has only one third of the number 

of calibration parameters compared to the SWAT model. LASH model was 

developed especially due to the limited existing data availability in developing 

countries, thereby, it has an approach quite simple and is intended to be 

calibrated with only a few parameters. The idea associated with the small 

number of calibration parameters in LASH model goes along with Jakeman & 

Hornberger (1993), who investigated how many parameters are appropriate to 

represent rainfall-runoff watershed models. They found that only 4 to 7 

parameters can be reliably estimated from rainfall-runoff data for watersheds in 

temperate climates in different spatial scales. Regarding the SCE-UA method, 

Gan & Biftu (1996) performed an analysis to determine if this algorithm is able 

to deal with many calibration parameters and claimed that it can optimize 9 to 15 

parameters easily. 
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5.4.3 Manual calibration x automatic calibration  
Watershed models can be optimized through two different types of 

procedures: manual calibration methods and automatic calibration methods. An 

automatic calibration method is employed in the LASH model.   

Manual calibration is subjective to some extent and quite time-

consuming because the modeler has to change parameter values and to run the 

model many times, like a process of trial and error (Eckhardt & Arnold, 2001). 

Moreover, when using this kind of procedure, modelers must have considerable 

expertise in dealing with the specific hydrological simulation model, otherwise, 

they may unintentionally choose inappropriate parameter values. On the other 

hand, Yapo et al. (1996) reported that when using an automatic calibration 

method, it is necessary to: (i) get an optimization algorithm; (ii) establish the 

upper and lower bound for each parameter (feasible parameter space); (iii) 

choose a proper goodness-of-fit measure; (iv) have a calibration dataset. 

According to Eckhardt et al. (2005), we can assume that automatic 

calibration procedures are able to yield similar or better results than those of a 

manual calibration. With this study we recommend making use of automatic 

calibration methods since they allow us to save time and to continue activities in 

the meantime. 

 

 

 

 

 

 

 

 

 



109 
 

6 CONCLUSIONS 

 

 

The LASH model employs a simple approach and, consequently, is 

driven with a small amount of data, making its application possible in 

developing countries like Brazil, where there is a scarcity of data at the 

watershed scale. Moreover, the LASH model has fewer calibration parameters 

than other hydrologic models available in literature such as SWAT, thus making 

its calibration easier and faster. 

LASH model was applied on a medium-sized Brazilian watershed 

(Jaguara Experimental Watershed – JEW), which has a limited database. This 

model was able to predict streamflow at the JEW’s outlet adequately in both 

calibration and validation stages in accordance with some goodness-of-fit 

measures previously stated (Nash-Sutcliffe coefficient and its logarithmic 

version, RMSE, etc.). Furthermore, the simulated hydrographs (calibration and 

validation) showed a good agreement with the observed hydrographs, thus 

demonstrating that the model could capture both peak discharges and minimum 

discharges during recession periods.  

The Shuffled Complex Evolution (SCE-UA) method was found to be an 

efficient algorithm for finding ‘optimal’ parameter values. The high efficiency 

of the SCE-UA method was confirmed in the LASH model due to the low 

probability of getting a low value of CNS, for instance, less than 0.70. In 

addition, this method had a fast convergence, mainly if compared to 

optimization algorithms implemented in other hydrologic models. 

The results found in this study proved that the model was capable of 

predicting both extreme discharges and mean discharges and provided flow-

duration curves with good accuracy, constituting in an important tool for water 

resources management in the JEW and similar watersheds in the region. �
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Although the LASH model has presented high performance for the JEW, 

we suggest modelers apply this simple model and to verify its applicability on 

watersheds in different parts of the world due to differences likely found in 

topography, weather, soil, and land-use. 
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