

AVALIAÇÃO AGRONÔMICA DE UM BIOSSÓLIDO INDUSTRIAL E DE SEUS EFEITOS SOBRE ATRIBUTOS DO SOLO

ISABEL CRISTINA DE BARROS TRANNIN

ISABEL CRISTINA DE BARROS TRANNIN

AVALIAÇÃO AGRONÔMICA DE UM BIOSSÓLIDO INDUSTRIAL E DE SEUS EFEITOS SOBRE ATRIBUTOS DO SOLO

Tese apresentada à Universidade Federal de Lavras como parte das exigências do Programa de Pós-Graduação em Agronomia, área de concentração em Solos e Nutrição de Plantas, para a obtenção do título de "Doutora".

Orientador

Prof. José Oswaldo Siqueira

LAVRAS MINAS GERAIS - BRASIL 2004

Ficha Catalográfica Preparada pela Divisão de Processos Técnicos da Biblioteca Central da UFLA

Trannin, Isabel Cristina de Barros

Avaliação agronômica de um biossólido industrial e de seus efeitos sobre atributos do solo / Isabel Cristina de Barros Trannin.—Lavras: UFLA, 2004. 171 p.: il.

Orientador: José Oswaldo Siqueira. Tese (Doutorado) - UFLA. Bibliografia.

1. Lodo de esgoto. 2. Resíduo orgânico. 3. Valoração agronômica. 4. Fertilidade do solo. 5. Nutrição do milho. 6. Microbiologia e bioquímica do solo. 7. Enzimas do solo. 8. Física do solo. 9. Química do solo. 10. Lixiviação. 11. Especiação iônica. 12. Sódio. 13. Nitrato. I. Universidade Federal de Lavras. II. Título.

CDD-631.86 -631.417 -631.43

ISABEL CRISTINA DE BARROS TRANNIN

AVALIAÇÃO AGRONÔMICA DE UM BIOSSÓLIDO INDUSTRIAL E DE SEUS EFEITOS SOBRE ATRIBUTOS DO SOLO

Tese apresentada à Universidade Federal de Lavras como parte das exigências do Programa de Pós-Graduação em Agronomia, área de concentração em Solos e Nutrição de Plantas, para a obtenção do título de "Doutora".

APROVADA em 19 de novembro de 2004

Profa. Fátima Maria de Souza Moreira

UFLA/DCS

Prof. Luiz Roberto G. Guilherme

UFLA/DCS

Prof. Romildo da Silva

UFLA/DBI

Pesq. Antônio Marcos Coelho

EMBRAPA/CNPMS

Prof. José Oswaldo Siqueira

UFLA (Orientador)

LAVRAS MINAS GERAIS - BRASIL À memória de meu pai, José Maria e à minha mãe, Alice, pelo exemplo de coragem, responsabilidade, honestidade e, acima de tudo, pelo amor e dedicação aos seus filhos,

OFERECO.

Aos meus irmãos, por tudo o que vivemos, especialmente a Luci, pelo apoio em todos os momentos,

Ao meu marido, Eduardo, por me mostrar que a vida é bela quando se ama incondicionalmente,

Ao amigo Mauricio Ribeiro, pessoa tão querida e importante em minha vida que, no momento certo, soube despertar em mim a coragem de partir em busca de realizações pessoais e profissionais,

DEDICO.

O correr da vida embrulha tudo. A vida é assim: esquenta e esfria, aperta e dal afrouxa, sossega e depois desinquieta. O que ela quer da gente é coragem! (Guimarães Rosa)

AGRADECIMENTOS

Ao Programa de Pós-Graduação do Departamento de Ciência do Solo da Universidade Federal de Lavras (UFLA), pela realização do curso.

À Coordenadoria de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), pela concessão da bolsa de estudos.

A Rhodia-ster S.A., nas pessoas de Augusto Correa e Maurício Petenusso, responsáveis pelo Convênio FAEPE-UFLA/Rhodia-ster S.A.

Ao professor José Oswaldo Siqueira, pela orientação, incentivo, confiança e, acima de tudo, por sua amizade e respeito profissional.

À professora Fátima Maria de Souza Moreira, pela co-orientação, apoio e empenho dedicados ao meu ingresso no Doutorado.

Ao professor Luiz Roberto Guimarães Guilherme, pela amizade, pelos ricos momentos de convívio durante o curso e importante contribuição a este trabalho.

Ao pesquisador Antônio Marcos Coelho, pelas valiosas sugestões e enriquecimento desta tese.

Ao professor Romildo da Silva, por sua amizade e pela participação e contribuição.

Ao professor Nilton Curi, pela classificação do solo estudado e, principalmente, por sua amizade, incentivo e confiança.

À professora Rosângela Borém, pelo companheirismo e contribuição profissional;

A todos os professores do Departamento de Ciência do Solo da UFLA, especialmente, José Maria de Lima, Moacir de Souza Dias Junior, Alfredo Scheid Lopes, Janice de Carvalho, Maria da Glória, Valdemar Faquin, Mozart Ferreira, Marx Leandro Naves Silva, Antônio Eduardo Furtini, João José

Marques; Vicente Gualberto e Carlos Alberto Silva, pelos ensinamentos e convívio enriquecedor.

Ao laboratorista Manuel Aparecido da Silva e aos funcionários José Roberto Fernandes (Pezão) e Daniel da Silva, que colaboraram além de suas atribuições com este estudo.

Aos laboratoristas Roberto, João Gualberto, Humberto, Marlene, Ana, Adalberto, Carlinhos, Dulce e Delane e às secretárias Maria Alice, Vera, Roberta e Maritza, pela agradável convivência e auxílios prestados.

À estagiária Adriana Guirado Artur, por sua dedicação e amizade.

Às amigas de faculdade, Lucilene de Abreu e Maristela Altenfelder, para as quais não existiram barreiras temporais, espaciais, de idéias ou ideais capazes de diminuir o respeito e o carinho que sempre nos uniram.

Aos amigos queridos e sempre presentes, Isabela e Eduardo Mariano.

À amiga Sandra, que Isabela gentilmente me emprestou como mãe, pelo apoio e carinho recebidos,

Ao meu irmão, Marcos Koiti Kondo, amigo de todas as horas, com quem pude dividir momentos maravilhosos nestes anos de curso.

À Gislene Aparecida dos Santos (Gigi), amiga inseparável, fato que motivou os apelidos "biotita e gnaisse".

Ao Renato Ferreira de Souza, por sua amizade incondicional, pelo companheirismo e cumplicidade.

Aos amigos João Bosco Gomes, Cleusa Guimarães e Clara Guimarães Gomes, pelos valiosos e inesquecíveis momentos de convivência familiar.

Ao Alexandre Barberi, pela amizade sincera e por sua imensa generosidade.

À amiga Flávia de Alcântara, por tudo o que aprendemos juntas.

Aos queridos amigos de curso, Marcos Carolino de Sá, Romilson Miranda, Rogério Melloni, Mateus Ribeiro Filho, Antônio Carlos Vitorino

(Totó), Cláudio Soares, Júlio Bertoni, Wagner Pontes (Cafu), Rubens Ribeiro, Marley Lamounier, Maria Aparecida Pierangeli (Dedé), Mari Campos, Daniela Zuliani, Alexandre Matsuda, Alexandre Araújo, Alex, Adélia Pozza, Alessandra, Antônio Marcos, Ivânia Araújo, Elka Élice, Mathilde, Ivan Bedin, Jonas Chiaradia, Tadeu, Wellington Rocha, Giuliano Marchi, Juliano Malty, Adriana Lima, Rafaela, Júlio Nóbrega, Maurício Parry; Antônio Claret, Leyser de Oliveira, Maísa Honório, Silvana da Silva, Walfrido Albernaz, Lucas de Azevedo, Rodrigo Martins, Meire Adélia, Carolina Lisboa, Liziane Brito, Arystides e tantos outros que tornaram minha passagem por Lavras mais feliz.

Aos amigos da cantina, Angélica, Saulo, Maria (Lia) e Carlinhos.

Ao Anderson Viana e Orlando Marques, da Copiadora do DCE, pela amizade e momentos de descontração.

A todos que contribuíram para a realização deste trabalho.

Muito obrigada!

SUMÁRIO

Página
RESUMOi
ABSTRACTii
CAPÍTULO 1 1
1.1 Introdução geral
1.2 Referencial teórico
1.2.1 A legislação brasileira e o gerenciamento de resíduos 4
1.2.2 Tratamento de esgotos e geração de biossólidos5
1.2.3 Utilização agrícola de biossólidos no Brasil7
1.2.4 Valoração agronômica dos biossólidos
1.2.5 Características do biossólido e critérios para definição de doses 14
1.2.6 Efeitos da aplicação de biossólidos nos atributos químicos do solo 15
1.2.7 Efeitos da aplicação de biossólidos nos atributos físicos do solo 19
1.2.8 Efeitos da aplicação de biossólidos nos atributos biológicos do solo. 20
1.2.9 Potencial poluente e riscos do uso agrícola de biossólidos24
1.3 Referências bibliográficas
CAPÍTULO 2 Avaliação agronômica de um biossólido industrial para a
cultura do milho
Resumo43
Abstract
2.1 Introdução
2.2 Material e métodos
2.3 Resultados e discussão
2.3.1 Fertilidade do solo
2.3.2 Estado nutricional do milho
2.3.3 Produtividade do milho

2.3.4 Valor agronômico	65
2.4 Conclusões	67
2.5 Referências bibliográficas	68
CAPÍTULO 3 Atributos químicos, físicos e biológicos de solo tratad	lo
com doses crescentes de biossólido industrial e cultivado com milho	73
Resumo	73
Abstract	74
3.1 Introdução	75
3.2 Material e métodos	79
3.2.1 Experimento e amostragens de solo	79
3.2.2 Análises dos atributos químicos do solo	80
3.2.3 Análises dos atributos físicos do solo	81
3.2.4 Análises dos atributos biológicos do solo	81
3.2.5 Análises estatísticas	83
3.3 Resultados e discussão	83
3.3.1 Efeitos sobre os atributos químicos do solo	83
3.3.2 Efeitos sobre os atributos físicos do solo	93
3.3.3 Efeitos sobre os atributos biológicos do solo	97
3.4 Conclusões	112
3.5 Referências bibliográficas	113
CAPÍTULO 4 Lixiviação de espécies químicas de solo tratado con	n
doses crescentes de biossólido industrial	123
Resumo	123
Abstract	124
4.1 Introdução	125
4.2 Material e métodos	128
4.3 Resultados e discussão	133
4.3.1 Alterações nos atributos químicos do solo	133

.

4.3.2 Variação temporal dos componentes químicos nas soluções	
lixiviadas	137
4.3.3 Concentrações dos componentes químicos no lixiviado	140
4.3.4 Espécies químicas presentes no lixiviado	146
4.3.5 Riscos relacionados às principais espécies químicas do lixiviado	150
4.4 Conclusões	154
4.5 Referências bibliográficas	155
CONSIDERAÇÕES FINAIS	161
ANEXOS	163

RESUMO GERAL

TRANNIN, Isabel Cristina de Barros. Avaliação agronômica de um biossólido industrial e de seus efeitos sobre atributos do solo. Lavras: UFLA, 2004. 171p. (Tese – Doutorado em Solos e Nutrição de Plantas).

A utilização agrícola de resíduos orgânicos como biossólidos tem sido muito incentivada nos últimos tempos. No entanto, como estes resíduos apresentam composição química variada, o valor agronômico e os potenciais impactos sobre os atributos do solo precisam ser avaliados caso a caso. No presente estudo avaliaram-se os efeitos da aplicação, por dois anos consecutivos. de doses crescentes (0, 6, 12, 18 e 24 Mg ha-1 em base seca) de um biossólido gerado por indústria de fibras e resinas PET, em Poços de Caldas, MG, no cultivo de milho em Cambissolo distrófico mantido sob Brachiaria sp. nos últimos 10 anos. O biossólido melhorou a fertilidade do solo. o estado nutricional e a produtividade do milho. A produtividade equivalente à obtida com adubação mineral (7.895 kg grãos ha⁻¹) foi alcançada com 10 Mg ha⁻¹ de biossólido suplementado com K2O nos dois anos e 30% do P2O5 recomendado no segundo ano. Com base na equivalência em NPK, o valor do biossólido foi estimado em R\$43,70 Mg⁻¹ em base seca e R\$8,74 Mg⁻¹ em base úmida, sendo economicamente viável seu transporte até 66 km da fonte geradora. Após dois anos de aplicação do biossólido e cultivo de milho, observou-se aumento do C orgânico no solo, do C e N da biomassa microbiana e da respiração basal e redução dos vaiores de qCO2 com a elevação das doses. Estes resultados indicam que a aplicação de até 24 Mg ha⁻¹ favoreceu a microbiota do solo. As atividades da urease, da \beta-glicosidase e da hidrólise da FDA também aumentaram, sendo observado efeito inibitório da fosfatase ácida com o aumento das doses de biossólido. Verificou-se também aumento da estabilidade de agregados e da porosidade e redução da densidade do solo com a aplicação de biossólido. Em ensaio de lixiviação constatou-se que a aplicação de até 144 Mg ha-1 do biossólido ao solo aumentou a concentração de espécies químicas no lixiviado, destacando-se NO₃, Zn⁺² e Na⁺ que apresentaram potencial poluente de solo e de águas subsuperficiais. Entretanto, os riscos potenciais ao ambiente e à saude pública podem ser minimizados se a aplicação em solo obedecer aos critérios técnicos e limites estabelecidos para o uso agronômico de biossólidos.

Comitê orientador: José Oswaldo Siqueira – UFLA (Orientador) e Fátima M. de Souza Moreira – UFLA (Co-orientadora).

GENERAL ABSTRACT

TRANNIN, Isabel Cristina de Barros. Agronomic evaluation of an industrial biosolid and its related effects on soil attributes. Lavras: UFLA, 2004. 171p. (Thesis – PhD. in Soils and Plant Nutrition)

Agricultural utilization of organic residues such as biosolids has been incentived lately. Because these residues usually exhibit varied chemical composition, their agronomic value and potential impacts on soil attributes need to be evaluated on a case by case basis. In the present study the effects of increasing rates (0, 6, 12, 18 and 24 Mg ha-1 dry matter) of an industrial biosolid generated by PET fiber and resins located in Poços de Caldas, MG, were assessed for two consecutive years of application and corn cultivation in a dystrophic Cambisol maintained under Brachiaria sp. for the last ten years. Biosolid application enhanced soil fertility and corn nutritional status and productivity. Equivalent productivity to that obtained with mineral fertilization (7.895 kg of grains ha⁻¹) was reached with 10 Mg ha⁻¹ of biosolid amended with K₂O in the two years of trial and with 30% of recommended P₂O₅ in the second year. Basing upon this mineral fertilization equivalence the biosolid economic value was esteemed to be R\$43,70 and R\$8,74 per ton of biosolid on dry matter and humid basis, respectively. These results indicate that the use of this residue is economically feasible up to a distance of 66 km from its generating source. It was observed that after two years of biosolid application and corn cultivation, there was an increase in the soil organic carbon, biomass C and N, basal respiration, urease, β-glucosidase and fluorescein diacetate hydrolysis activities, whereas qCO2 and acid phosphatase activity was reduced by biosolid increasing rates. It was also observed that soil aggregate stability and porosity were enhanced and soil density decreased by biosolid application. Leaching assay showed that application of biosolid up to 144 Mg ha-1 increased concentration of various chemical species in the leachates mainly of NO₃, Zn⁺² and Na⁺. These species may represent potential soil and water pollutants and therefore environmental and public health risks. However, these risks can be minimized when residue application follow technical criteria and established limits for the agronomic use.

Guidance Committee: José Oswaldo Siqueira – UFLA (Major Professor) and Fátima M. de Souza Moreira – UFLA.

CAPÍTULO 1

1.1 INTRODUÇÃO GERAL

O desenvolvimento descontrolado das atividades econômicas para atender à demanda do crescimento populacional não foi acompanhado pela construção equilibrada de infra-estruturas de saneamento dos resíduos gerados, o que tem contribuído para aumentar as pressões sobre os recursos naturais e o ambiente. Por outro lado, também é crescente a demanda da sociedade por melhores condições ambientais e qualidade de vida, situação que tem exigido das autoridades públicas a definição de políticas adequadas e de aspectos regulatórios que atendam às leis ambientais em vigor.

No Brasil, as questões ambientais ganharam destaque após a ECO 92, com a consequente criação da Agenda 21 e após a aprovação da Lei nº 9.433 de janeiro de 1997, que criou o Sistema Nacional de Gerenciamento de Recursos Hídricos e da Lei de Crimes Ambientais, nº 9.605, de fevereiro de 1998. Com o estabelecimento destas leis, tornou-se imperiosa a necessidade de tratar os esgotos domiciliares e industriais, principais poluidores dos recursos hídricos. Para atender às exigências preconizadas nesta legislação e minimizar os impactos ambientais e econômicos do lançamento direto de esgotos em cursos d'água, um número cada vez maior de empresas públicas e privadas tem investido em sistemas de coleta e de tratamentos de esgotos, a partir dos quais outro resíduo é gerado, o lodo de esgoto, também denominado de biossólido. Embora não se disponha de dados consistentes referentes à produção atual, há perspectiva de incremento da produção de biossólidos sem a devida definição de destino final, caracterizando-se como uma das mais graves questões ambientais em nosso país.

Apesar de ainda insuficientes, esforços têm sido feitos para viabilizar a disposição adequada no ambiente, assim como o desenvolvimento de alternativas seguras para a reciclagem e a agregação de valores a estes resíduos, de tal modo que estes tenham aplicação e valor econômico e, ao mesmo tempo, contribuam para proteger a saúde pública e o ambiente e garantam a sustentabilidade das atividades produtivas. Entre as alternativas de disposição, a utilização agrícola dos biossólidos, como já praticada em países desenvolvidos, assume importância estratégica no contexto ambiental e de desenvolvimento sustentado.

Geralmente, os biossólidos são ricos em matéria orgânica e nutrientes, apresentando grande potencial de uso como fertilizantes e condicionadores do solo e, quando atendem aos requisitos necessários em relação à concentração de metais pesados e patógenos, podem ser empregados como insumo agrícola. Resultados de pesquisa e experiências práticas em todo o mundo têm demonstrado os beneficios do uso controlado de biossólidos na agricultura. Estes incluem aumento de produtividade, melhoria na qualidade dos produtos, redução de custos e impactos positivos sobre os atributos físicos, químicos e biológicos do solo. No entanto, a utilização agrícola exige a adequação do produto como insumo, a determinação de restrições e recomendações técnicas, alternativas tecnológicas e esclarecimento aos usuários. Além disso, o plano de aplicação do biossólido deve assegurar que os riscos desta prática não serão maiores que os dos insumos de uso freqüente na agricultura.

O Brasil, até o momento, não possui uma legislação específica para disposição final de biossólidos. Porém, existem diversas leis e normas que devem ser seguidas para o descarte ou aplicação de resíduos no ambiente. Como a utilização de biossólido na agricultura é relativamente recente em nosso país, as informações sobre eventuais alterações nos atributos do solo com a adoção desta prática ainda são escassos e restritos a biossólidos de origem domiciliar.

Por isso, existe uma grande demanda por estudos com biossólidos de origem industrial, que têm sido gerados em volumes cada vez maiores por empresas dos mais variados setores. Como a composição química dos biossólidos, especialmente dos industriais, é extremamente variável em função da matéria-prima utilizada e do processo de tratamento de esgoto empregado, estes resíduos precisam ser avaliados caso a caso, não só quanto ao valor agronômico, mas também quanto aos riscos e possíveis impactos sobre os atributos do solo, para que sejam utilizados de forma eficiente e segura na utilização agrícola.

Este estudo teve como objetivo avaliar o biossólido gerado por uma unidade industrial de fibras e resinas de polietileno tereftalato (PET) da Rhodiaster S.A., em Poços de Caldas, MG, quanto à viabilidade agronômica para a cultura do milho, aos efeitos sobre os atributos do solo e seu potencial poluente. No segundo capítulo é analisada a viabilidade de utilização agronômica do biossólido, por meio de duas aplicações anuais sucessivas e do efeito destas na fertilidade do solo, nutrição e produtividade do milho. O terceiro capítulo aborda os efeitos da aplicação do biossólido, da adubação mineral e do cultivo do milho, por dois anos consecutivos, sobre os atributos químicos, físicos e biológicos de um solo mantido sob vegetação de Brachtaria sp. nos últimos 10 anos. No quarto capítulo são avaliados o potencial poluente do biossólido e os riscos de sua aplicação por meio de ensaio de lixiviação e caracterização e quantificação das espécies químicas lixiviadas do solo tratado com doses crescentes do biossólido.

A contribuição deste estudo está no intuito de fornecer à indústria geradora do biossólido uma alternativa de disposição viável e segura do ponto de vista ambiental e gerar informações sobre os fatores favoráveis e limitantes envolvidos na utilização agronômica deste resíduo, para que esta prática possa ser realizada de forma sustentável.

1.2 REFERENCIAL TEÓRICO

1.2.1 A legislação brasileira e o gerenciamento de resíduos

A crescente degradação e a escassez dos recursos naturais causadas, principalmente, pela disposição inadequada de resíduos no ambiente e a busca de alternativas para reverter essa situação estão entre os temas mais discutidos neste início de século.

No Brasil, as questões ambientais passaram a receber major atenção das autoridades e conquistaram espaço na mídia, após a "Conferência das Nações Unidas sobre Meio Ambiente e Desenvolvimento Sustentável", a ECO 92 e. consequentemente, a criação da Agenda 21. Em seu capítulo 21, esta Agenda trata do "manejo ambientalmente saudável dos resíduos sólidos e questões relacionadas aos esgotos", contendo orientações básicas para a gestão de resíduos, a minimização da produção, o incentivo ao aproveitamento das tecnologias de reutilização e reciclagem e o tratamento e disposição ambientalmente saudáveis. Além da Agenda 21, a aprovação da Lei nº 9.433 em janeiro de 1997, instituiu a Política Nacional de Recursos Hídricos, criando o Sistema Nacional de Gerenciamento de Recursos Hídricos, que exige atuação efetiva do setor de saneamento na preservação dos mananciais hídricos. No ano seguinte, foi aprovada a Lei de Crimes Ambientais, nº 9.605, que estabelece pesadas sanções para os responsáveis pela disposição inadequada de resíduos no ambiente. Estas leis passaram a exigir o gerenciamento efetivo dos resíduos domiciliares e industriais e maior fiscalização por parte dos órgãos de controle ambiental. De acordo com elas, o tratamento de esgotos deve estar entre as medidas prioritárias para reduzir a poluição dos recursos hídricos.

Apesar disso, dados recentes da Secretaria Nacional de Saneamento (SNSA, 2004) mostram que, embora 67% da população brasileira disponham dos serviços de coleta de esgoto, somente 25% do esgoto coletado recebem

algum tipo de tratamento antes de ser lançado no ambiente, geralmente, em cursos d'água. Este panorama insere o Brasil no grupo de países menos desenvolvidos, nos quais, quatro entre cinco casos de doença têm como causa a contaminação da água e a falta de tratamento adequado de esgotos. Por outro lado, o número cada vez maior de municípios que estão adotando sistemas de tratamento de esgotos torna as perspectivas favoráveis ao controle desta situação.

No setor industrial, o gerenciamento de resíduos é hoje um dos principais problemas enfrentados pelas empresas, para as quais o licenciamento ambiental tem papel tão importante quanto à qualidade de seus produtos, pois assegura a produção com o mínimo de impacto ao meio ambiente. Ao atuar sem o licenciamento ambiental, a empresa torna-se alvo dos órgãos regulatórios e de fiscalização, os quais têm plenos poderes para autuar os estabelecimentos, aplicando multas ou sanções mais graves e para interditar a atividade, caso as irregularidades persistam. Além disso, atividades que não são seguras do ponto de vista ambiental têm seus dirigentes responsabilizados civil e criminalmente. Portanto, o tratamento e a disposição adequada dos resíduos tornaram-se mais que uma necessidade, uma obrigação perante a lei e a sociedade. Para obter a certificação ISO 14.001, de Sistema de Gestão Ambiental, as empresas precisam adotar medidas que priorizem a redução da produção de resíduos e que promovam o tratamento e a reciclagem ou aproveitamento destes de modo seguro.

1.2.2 Tratamento de esgotos e geração de biossólidos

Segundo Andreoli et al. (2003), os processos utilizados para o tratamento de esgotos podem ser genericamente divididos em: 1) tratamento preliminar para a remoção do material grosseiro e inerte; 2) tratamento primário, com remoção de sólidos sedimentáveis por meio de gravidade, que dá origem a

um lodo de baixa estabilidade, denominado lodo primário: 3) tratamento secundário que, pela atividade microbiológica, produz o lodo biológico ou secundário: 4) tratamento terciário ou avançado, com remoção de elementos químicos dos efluentes; 5) desinfecção, para controle de organismos patogênicos, última etapa do tratamento do material líquido nas estações de tratamento de esgotos (ETEs); 6) processamento, por meio de estabilização (tratamento biológico aeróbio ou anaeróbio) de lodos primários ou pouco estabilizados; de adensamento, com remoção de umidade; de condicionamento, que melhora a drenabilidade dos lodos; de secagem e de higienização, para minimizar a ocorrência de organismos patogênicos no resíduo e adequá-lo à disposição e descarte. Os processos de tratamento de esgotos são, na maioria, biológicos, utilizando o potencial de microrganismos aeróbios, anaeróbios ou facultativos para a biodegradação da fração orgânica dos residuos (Ferreira et al., 1999a). Os tratamentos têm por finalidade degradar parcialmente ou estabilizar a matéria orgânica (Fernandes, 2000), reduzir contaminantes químicos e biológicos (Soccol & Paulino, 2000) e o volume de material e. diferem entre si, em função do nível tecnológico empregado e da eficiência de remoção da carga poluidora. Dos tratamentos de esgotos, outros resíduos são gerados, entre estes, o lodo de esgoto, também denominado de biossólido que, segundo Andreoli & Pegorini (1998), representa de 1 a 2% do volume do esgoto tratado e é responsável por 20 a 60 % dos custos de operação de uma ETE.

O termo biossólido foi criado no final da década de 1980, nos Estados Unidos, com o objetivo de distanciar o lodo de esgoto do material que o originou e amenizar o preconceito relacionado a sua utilização agrícola (Luduvice, 1998). Assim, a Agência de Proteção Ambiental dos Estados Unidos (USEPA), por meio da regulamentação EPA - Part 503 de 1993, define o biossólido como "resíduo orgânico produzido por processos de tratamento dos esgotos municipais ou industriais e que pode ser reciclado". Por convenção, o termo

biossólido foi adotado pela comunidade científica brasileira para designar o lodo de esgoto que passou por algum processo de estabilização biológica e que é passível de utilização agronômica, sem causar impacto negativo ao meio ambiente. Neste aspecto, a norma NBR 10.004 classifica os resíduos quanto aos seus riscos potenciais ao meio ambiente e à saúde pública, indicando quais resíduos devem ter manuseio e destinação mais rigidamente controlados (ABNT, Esta classificação fundamenta-se em listagem de reconhecidamente perigosos e de padrões de concentração de poluentes, que os divide em: Classe I - perigosos: resíduos que, em função de suas características de inflamabilidade, corrosividade, reatividade, toxicidade e patogenicidade, podem apresentar risco à saúde pública e efeitos adversos ao meio ambiente, quando manuseados ou dispostos de forma inadequada; Classe II - não inertes: resíduos que podem apresentar propriedades como combustibilidade, biodegradabilidade ou solubilidade em água e Classe III - inertes: resíduos que, submetidos ao teste de solubilização não tenham seus constituintes solubilizados. Em função dos critérios adotados, os biossólidos geralmente se enquadram na Classe II, não sendo perigosos como define a Classe I, nem inertes como os resíduos da Classe III, mas devem ser avaliados caso a caso, em função de suas características para a determinação adequada e segura de disposição.

1.2.3 Utilização agrícola de biossólidos no Brasil

Entre as alternativas de disposição de biossólidos estão o descarte em aterros sanitários, a incineração, o co-processamento, o reuso industrial, o escoamento oceânico, o tratamento no solo - landfarming; a aplicação em reflorestamentos e recuperação de áreas degradadas e a utilização agrícola (Andreoli et al., 2001). No entanto, a proibição da disposição oceânica, a crescente limitação de áreas disponíveis à construção de aterros sanitários e os

custos elevados do processo de incineração são fatores que tornam a alternativa de utilização agrícola a mais promissora sob os aspectos ambiental e econômico (Pegorini et al., 2003). Além disso, a aplicação agrícola de biossólidos é uma prática antiga e muito utilizada em países desenvolvidos. Segundo Kirkham (1982), o uso de biossólidos como fertilizantes vem sendo estudado nos Estados Unidos desde 1925, o que gerou inúmeras publicações sobre o assunto e a criação da Norma 40 CFR Part 503 pela USEPA (1993). Como o Brasil, até o momento, não possui legislação específica sobre o assunto, a Companhia de Tecnologia de Saneamento Ambiental do Estado de São Paulo (CETESB), por meio da Norma P. 4.230, de 1999 e a Companhia de Águas e Esgoto de Brasilia (CAESB) adotaram a norma da USEPA para o uso agrícola de biossólidos. No estado do Paraná, a Companhia de Saneamento do Paraná (SANEPAR), em ação conjunta com vários órgãos de pesquisa, estabeleceu critérios locais para a disposição agrícola de biossólidos (SANEPAR, 1997). Entretanto, o Conselho Nacional de Meio Ambiente (CONAMA) vem discutindo a regulamentação nacional da disposição do biossólido na agricultura prevista para entrar em vigor em 2005. Enquanto isso não acontece, fundamentados nas normas adotadas. vários órgãos de pesquisa estão desenvolvendo estudos sobre a viabilidade agronômica e os efeitos da aplicação de biossólidos em solos agrícolas nas diferentes regiões do país, empregando diversas culturas e diferentes biossólidos.

Entre os estudos desenvolvidos no estado do Paraná destacam-se os realizados com o biossólido alcalino gerado em sistema de tratamento aeróbio de esgoto urbano pela ETE-Belém, de Curitiba (Tabela 1.2.1). Lourenço et al. (1996) verificaram que a aplicação deste biossólido aumentou a produtividade de feijão e milho em sistema de bracatinga e apresentou efeito residual para as culturas subsequentes. No caso do feijão, a produtividade máxima foi atingida com 52,5 Mg ha⁻¹ e, para o milho, com 66 Mg ha⁻¹ de biossólido. Biscaia &

Miranda (1996), estudando a aplicação deste biossólido na cultura do milho, obtiveram produtividades médias superiores a 5.000 kg ha⁻¹, sendo a máxima de 7.620 kg ha⁻¹ atingida com 60 Mg ha⁻¹. Deschamps & Favaretto (1997) observaram que a aplicação do biossólido resultou em maior crescimento de feijão e girassol, que apresentaram produtividades equivalentes às alcancadas com a adubação mineral. Deschamos & Favaretto (1999) verificaram que o desenvolvimento e a produtividade do milho cultivado em solo tratado por dois anos consecutivos com 32 Mg ha-1 de biossólido foram equivalentes aos da adubação mineral, sendo observado efeito residual para o milho em sistemas de preparo convencional, mínimo e plantio direto. Segundo Andreoli & Pegorini (2000), os cereais estão entre as culturas que melhor respondem à aplicação de biossólidos. Além disso, os cereais se destacam pela segurança, considerando que o uso destes residuos não é recomendado para olerícolas e outras culturas de contato primário (SANEPAR, 1997). Outras aplicações, como em fruticultura. no reflorestamento e na recuperação de áreas degradadas, também são alternativas interessantes dentro de critérios específicos de utilização. Em pastagens, por exemplo, Fernandes et al. (2001) recomendam a entrada de animais anós dois meses de incorporação do resíduo ao solo.

No estado de São Paulo, as pesquisas estão sendo realizadas principalmente com os biossólidos gerados em sistema de tratamento anaeróbio de lodo ativado de esgoto urbano pelas ETEs de Franca e de Barueri. Bettiol et al. (1983), em experimento conduzido em condições controladas, verificaram que as culturas de milho, arroz e soja, tratadas com 9 Mg ha¹ em base seca do biossólido da ETE de Barueri, apresentaram produções de matéria seca equivalentes às obtidas com a adubação mineral (Tabela 1.2.1). Soqueiras de cana-de-açúcar tratadas com biossólido proveniente desta ETE também apresentaram maior produtividade de colmos e de açúcar (Silva et al., 1998). Melo et al. (2003), mesmo não obtendo maior produtividade de milho em

relação à adubação mineral, após 3 anos de aplicação de 2,5 a 10 Mg ha⁻¹ base seca deste biossólido em dois Latossolos, concluíram que sua aplicação foi viável por diminuir os custos com fertilizantes. Gonçalves et al. (2000) também observaram que este biossólido pode ser utilizado com sucesso no cultivo de eucalipto. Martins et al. (2003) constataram que a aplicação do biossólido gerado na ETE de Vila Leopoldina, SP, durante quatro anos em Latossolo, aumentou a produtividade e a absorção de Zn, Fe e Mn pelo milho, principalmente quando a aplicação foi parcelada, mas estes micromutrientes mantiveram-se dentro dos níveis adequados.

No Distrito Federal, alguns estudos têm sido feitos com o biossólido gerado do tratamento de esgoto urbano pela Companhia de Águas e Esgoto de Brasília (CAESB). Silva et al. (2002a) constataram que a aplicação de 54 a 216 Mg ha-1 deste biossólido úmido em um Latossolo do cerrado foi 25% mais eficiente no fornecimento de P que o superfosfato triplo, manteve os teores de metais abaixo dos limites permitidos e apresentou efeito residual durante 3 anos para a cultura do milho, sendo a produtividade máxima, 6,289 kg ha⁻¹, atingida com 189 Mg ha-1 (Tabela 1.2.1). Em continuidade a este estudo Silva et al. (2002b) observaram que, devido ao alto teor de umidade do biossólido (> 80 dae kg-1), sua aplicação torna-se economicamente inviável a distâncias superiores a 122 km da fonte geradora. Silva & Lemainski (2003) observaram que a aplicação de 7,5 a 45 Mg ha⁻¹ deste biossólido em condições de campo semelhantes às do estudo anterior, não alterou de forma significativa o teor de metais, nem o mimero de ovos viáveis de helmintos após 64 dias e manteve as produtividades de milho e soja equivalentes às obtidas com a adubação mineral, sendo a máxima de milho, 7.600 kg ha⁻¹, atingida com 35,6 Mg ha⁻¹ e de soja 3.500 kg ha⁻¹, com 29 Mg ha⁻¹. Além disso, a substituição do fertilizante mineral pelo biossólido apresentou relação beneficio/custo de R\$1,91, evidenciando sua viabilidade econômica para a utilização agrícola.

TABELA 1.2.1 Principais efeitos da aplicação de biossólidos gerados de esgoto urbano no desenvolvimento e produtividade das culturas

Cultura	Dose de biossólido	Solo	Efeito	Referência
Arroz, milho e soja	9 Mg ha ⁻¹ base seca	Latossolo	Produção de matéria seca não diferiu da adubação mineral	
Feijão e milho em sistema bracatinga	17,5 a 70,0 Mg ha ⁻¹ 85 dag kg ⁻¹ de água	Cambissolo	Maior produtividade e efeito residual para culturas subsequentes. Produtividade máxima do feijão e do milho com aplicação de 52,5 e 66 Mg ha ⁻¹	Lourenço et al., 1996
Milho	2 a 60 Mg ha ⁻¹ base seca	Cambissolo	Produtividade média > 5.000 kg ha ⁻¹ , sendo a máxima 7.620 kg ha ⁻¹ atingida com 60 Mg ha ⁻¹ .	
Feijão e girassol	4,8 a 9,7 Mg ha ⁻¹ hase seca	Cambissolo	Produção de matéria seca e produtividade equivalente às obtidas com a adubação mineral nitrogenada	
Cana-de-açúcar	0 a 30 Mg ha ⁻¹	Nitossolo	Maior produtividade de colmos e de açticar	Silva et al., 1998
Milho	32 Mg ha ⁻¹ 90 dag kg ⁻¹ de água	Cambissolo	Desenvolvimento e produtividade equivalentes à adubação mineral. Efeito residual em preparo convencional, mínimo e plantio direto	
Milho	54 a 216 Mg ha ⁻¹ , 90 dag kg ⁻¹ de água	Latossolo	Efeito residual após 3 anos. Produtividade máxima, 6.289 kg ha ⁻¹ (189 Mg ha ⁻¹). Biossólido foi 25% mais eficiente que superfosfato triplo como fonte de P	Silva et al., 2002
Milho	20 a 80 Mg ha ⁻¹ 60 dag kg ⁻¹ de água	Latossolo	Maior produtividade e produção de matéria seca, e teores foliares de micronutrientes dentro dos níveis adequados durante 4 anos de aplicação	- -
Milho e soja	7,5 a 45 Mg ha ⁻¹ 86 dag kg ⁻¹ de água	Latossolo	Produtividade equivalente à adubação mineral. Não teve efeito no teor de metais e ovos viáveis de helmintos. Relação beneficio/custo de R\$1,91	Silva & Lemainski, 2003
Milho	2,5 a 10 Mg ha ⁻¹ base seca	Latossolo	Produtividade equivalente à adubação mineral Redução dos custos com fertilizantes minerais, após 3 anos de aplicação.	Melo et al., 2003

_

Os resultados destas pesquisas demonstraram que a aplicação de biossólidos como substitutos parciais da adubação mineral e, em alguns casos, da calagem, promoveu melhor desenvolvimento e aumento de produtividade de diferentes culturas. Apesar disso, a variabilidade da composição química e do teor de umidade destes resíduos dificulta a padronização da recomendação de doses e torna necessária a avaliação de fatores limitantes para que a utilização agronômica seja feita dentro de parâmetros técnicos e de segurança à saúde pública e ao ambiente.

1.2.4 Valoração agronômica dos biossólidos

A utilização agronômica de biossólidos tem como beneficios a agregação de valor e a transformação de um resíduo em insumo, além de contribuir para a diminuição da pressão sobre os recursos naturais. Frank (1998) verificou que a aplicação de biossólidos pode reduzir em 40% o consumo de fertilizantes fosfatados, tornando-se uma boa estratégia para a conservação dos recursos naturais e para a economia com fertilizantes minerais. Portanto, se determinado biossólido atende às exigências ambientais com relação às concentrações limites de agentes patogênicos, metais pesados e compostos poluentes, a valoração do mesmo dependerá dos teores e das formas em que seus nutrientes se encontram.

De acordo com Raij (1998), a valoração do biossólido deve ser feita com base na substituição parcial ou total da adubação mineral das culturas, cujos rendimentos devem ser equivalentes ou superiores aos obtidos com fertilizantes minerais. No entanto, por causa do alto teor de umidade dos biossólidos, aplicações de grandes quantidades são necessárias para que a equivalência nutricional aos fertilizantes minerais seja alcançada, tornando os custos com transporte e distribuição os fatores mais limitantes para a viabilidade econômica da utilização agrícola destes resíduos (Silva et al., 2002b). Dessa forma, na

valoração de um biossólido, deve-se levar em conta a distância máxima entre a ETE geradora e o local de aplicação do biossólido em que o transporte é economicamente viável. De acordo com Silva et al. (2002b), a distância máxima a ser percorrida deve corresponder àquela em que o valor fertilizante do biossólido é igual ao de seu frete.

Como ainda não existe no Brasil indústria estruturada para a produção e comercialização de biossólidos, a valoração destes residuos é, certamente, um dos primeiros passos necessários para o estabelecimento de um mercado. Uma das técnicas de valoração mais utilizadas é o método da produtividade relativa, ou seja, a produtividade alcançada com o biossólido em relação à obtida com adubação mineral (Corrêa & Corrêa, 2001). Uma de suas variantes é a valoração pelo método de mercado de bens substitutos, que pode ser empregado sempre que o recurso a ser valorado possa ser substituído por um insumo comercializado, para o qual é possível obterem-se preços de mercado e utilizálos para estimar o valor econômico do recurso em questão (Spaninks & Van Beukering, 1997; Seroa da Mota, 1998). Este método concentra-se no valor monetário de biossólidos como fontes de N, P e matéria orgânica, utilizando-se de valores de fertilizantes químicos, estercos e compostos, cujos mercados já estão consolidados no país.

Por outro lado, Kvarnstrom & Nilsson (1999) sugerem que o preço do biossólido deve ser determinado em função da demanda do produto e não do valor intrínseco de fertilização. Seus resultados mostram que apenas aqueles municípios com demanda igual ou maior que a capacidade de produção de biossólidos são capazes de cobrar pelo produto gerado nas ETEs municipais. Nos demais, o biossólido é entregue gratuitamente e, em alguns casos, com frete subsidiado, como estratégia de indução de demanda. Assim, apesar dos valores significativos em nutrientes e matéria orgânica que os biossólidos contêm, a consolidação de seu mercado, seja qual for o processo de produção, exige o

crescimento da demanda por esses produtos. Para isso, o desenvolvimento e a divulgação de tecnologias para a utilização agrícola de biossólidos são ações essenciais para a promoção do aumento dessa demanda e, portanto, para viabilizar a produção destes resíduos em grande escala.

1.2.5 Características do biossólido e critérios para definição de doses

No processo de utilização agrícola, o conhecimento da composição química do biossólido é de fundamental importância, pois serve de base para a análise de seu potencial como condicionador e fertilizante, para a definição de doses e para avaliar a viabilidade técnica e de segurança ambiental (Bettiol & Camargo. 2000). A composição dos biossólidos de origem domiciliar está intimamente relacionada ao nível sócio-cultural da população, pois, em última análise, os residuos que dão origem aos biossólidos dependem dos hábitos alimentares, saneamento básico, saúde e, ainda, do estágio de desenvolvimento industrial do município (Carvalho, 1982). Quanto aos biossólidos industriais, estes são extremamente diversos, com características próprias em função da matéria-prima utilizada, do processo industrial empregado e do sistema de tratamento aplicado (Ferreira et al., 1999a). No entanto, os biossólidos gerados de esgoto urbano contêm cerca de 400 g kg⁻¹ de matéria orgânica, 40 g kg⁻¹ de nitrogênio, 20 g kg⁻¹ de fósforo e 4 g kg⁻¹ de potássio e os demais macro e micronutrientes e elementos potencialmente tóxicos em proporções variáveis (Bettiol & Camargo, 2003).

A determinação da dose de aplicação do biossólido na agricultura pode ser feita com base na recomendação de adubação nitrogenada; no poder de neutralização, quando tratados com calcário; nos teores de nutrientes e de metais pesados no biossólido e nos teores máximos cumulativos de metais no solo, devendo-se adotar o critério mais restritivo (Andreoli et al., 2001; Bettiol & Camargo, 2000). De maneira geral, a dose e a freqüência de aplicação devem ser

calculadas de forma que a produção e a qualidade do produto agrícola não decresçam; que os solos não acumulem metais pesados, matéria orgânica e patógenos e que os nutrientes e sais presentes no lodo não excedam a exigência da cultura, para não causar fitotoxicidade, salinização e poluição das águas subsuperficiais em consequência de sua lixiviação (PROSAB, 1999; Bettiol & Camargo, 2000; Andreoli et al., 2001). Neste aspecto, o teor de N disponível tem sido o critério mais adotado para o cálculo da dose a ser aplicada, por ser o nutriente de maior proporção e de maior capacidade de mineralização presente nos biossólidos (Melo et al., 2001). A partir do conhecimento da taxa de mineralização e das formas orgânicas e inorgânicas do N presente no biossólido, realiza-se o cálculo do N disponível, sendo facultativo o uso de taxas de mineralização previamente definidas pela literatura de 30%, 20% e 10% para biossólido gerado de digestão aeróbia, anaeróbia e compostado, respectivamente (CETESB, 1999).

Mesmo considerando todos os critérios descritos, é preciso ter cuidado ao transpor os limites estabelecidos para países de clima temperado às condições predominantes no Brasil, que possui solos com elevada acidez, baixo teor de matéria orgânica, elevada atividade biológica e argilas de baixa atividade, sendo importante a realização de estudos sobre a utilização de biossólidos em solos de clima tropical.

1.2.6 Efeitos da aplicação de biossólidos nos atributos químicos do solo

O potencial agronômico dos biossólidos está fundamentado em seus elevados teores de matéria orgânica e de nutrientes e sua aplicação é de extrema importância para a manutenção da fertilidade de solos altamente intemperizados, ácidos e contendo minerais de baixa capacidade de troca catiônica, como os encontrados nas regiões tropicais e subtropicais (Melo & Marques, 2000). No Brasil, alguns trabalhos já demonstraram que a aplicação de biossólido aumenta

o teor de matéria orgânica e, consequentemente, a CTC do solo (Melo et al., 1994; Neto et al., 2003; Santos et al., 2003). Entretanto, Oliveira (2000) observou que a contribuição da fração orgânica dos biossólidos para a CTC depende da natureza dos compostos orgânicos presentes, sendo pequena quando predominam substâncias apolares, como óleos, graxas, resinas e ceras, que são insolúveis em água e não formam cargas.

Em geral, a aplicação de biossólidos promove aumento do pH (Oliveira, 2000; Reis & Rodella, 2002), diminuição da acidez potencial (Bataglia, et al., 1983; Dias, 1994; Marques, 1997) e do alumínio trocável, devido ao aumento dos cátions trocáveis Ca, Mg e K (Berton et al., 1989) e, em alguns casos, de Na, que causa aumento da ordem de 0,048 unidades de pH para cada mmol_e Na kg⁻¹ presente no resíduo (Johns & McConchie, 1994). No entanto, a produção de ácidos orgânicos durante o processo de biodegradação da fração orgânica (Camargo et al., 1999) e a nitrificação (Boeira et al., 2002) podem contribuir para a acidificação de solos tratados com biossólidos.

Devido ao elevado teor de N-orgânico dos biossólidos, quase sempre estes são utilizados como substitutos de fertilizantes nitrogenados, sendo complementados pela adubação mineral de P e K para atender às exigências nutricionais das culturas (Melo & Marques, 2000). A mineralização do N é altamente dependente da composição do resíduo e das características químicas e físicas do solo e está diretamente relacionada à qualidade do material orgânico indicada, por exemplo, pela relação C/N (Mengel, 1996). Geralmente, a relação C/N do biossólido é muito baixa, da ordem de 12 a 5, havendo rápida mineralização do N-orgânico à NH₄⁺ (Feigin et al., 1991). Por meio da nitrificação, o NH₄⁺, já presente no resíduo, bem como o que derivou do N-orgânico, é oxidado a nitrito (NO₂⁻) e rapidamente a nitrato (NO₃⁻), que é um fator limitante à aplicação de biossólidos em solos agrícolas, devido à sua alta mobilidade no solo e à possibilidade de lixiviação e poluição das águas

subsuperficiais. Boeira et al. (2002) observaram que a aplicação de biossólido de origem urbana, por quatro anos consecutivos em Latossolo, em dose equivalente à adubação mineral recomendada, superou a necessidade de nitrogênio do milho e apresentou risco de lixiviação de NO₃. Para prevenir problemas causados por excesso de NO₃, Stevenson (1986) recomenda que as aplicações sucessivas de resíduos orgânicos sejam feitas com doses anuais decrescentes até o quinto ano, quando se estabelece equilíbrio dinâmico entre mineralização-imobilização do N e, a partir desse momento, é possível manter a aplicação de doses constantes. Por outro lado, Boeira (2004) aponta dados da literatura que informam que a liberação de N mineral em solo tratado com biossólido diminui para 10% no segundo, 6% no terceiro e 3% no quarto ano após a aplicação, mas alerta que, embora os efeitos residuais sejam positivos nos anos subseqüentes à aplicação, as quantidades de NO₃ passíveis de lixiviação não são desprezíveis do ponto de vista de segurança ambiental.

Quanto ao fósforo, a quantidade adicionada ao solo via biossólidos, geralmente, não tem sido excessiva. Mesmo assim, Marques (1997) observou que o teor de P-resina aumentou linearmente com a dose de biossólido da ETE de Barueri (SP) aplicada a um Latossolo Vermelho distrófico textura média, o que também foi verificado por Silva et al. (1998) em Nitossolo, ambos cultivados com cana-de-açúcar em condições de campo. Por outro lado, Goh & Condron (1989) detectaram deficiência de P em plantas de azevém cultivadas em solo de Nova Zelândia tratado por mais de 80 anos com biossólido urbano e atribuíram este resultado ao fato de cerca de 40% do P-total do solo encontrar-se na fração P-orgânico, muito estável no solo e indisponível às plantas. Latterell et al. (1982) observaram deficiência de P em plantas de milho após 5 anos de aplicação de biossólido e também constataram aumento de P-orgânico no solo até 60 cm de profundidade. Johns & McConchie (1994) detectaram aumento na concentração de P em solução de subsolo em condições de clima temperado.

Hook (1981) também verificou aumento do teor de P na solução do subsolo, mas este foi inferior a 5% do total aplicado, indicando que uma quantidade desprezível ultrapassou a camada de 1,50 m. No entanto, é preciso considerar que a maioria dos solos brasileiros apresenta alto grau de intemperismo e é rica em óxidos de Fe e Al, com alta capacidade de adsorção de P, diminuindo os riscos de lixiviação deste nutriente no perfil.

Aumento gradual na disponibilidade de Ca, Mg, K e S tem sido observado em solos tratados com biossólidos (Seki, 1995; Marques, 1997). Johns & McConchie (1994) verificaram que a aplicação de biossólido aumentou os teores de S-SO₄-2 até a profundidade de 50 cm do solo e na solução lixiviada. Considerando que os biossólidos, geralmente, apresentam baixos teores de K, a suplementação mineral potássica torna-se imprescindível quando estes resíduos são ricos em Na, especialmente no caso do milho que, de acordo com Ayers & Westcot (1991), é sensível ao excesso desse elemento. Nestes casos, os teores foliares de K podem diminuir com a aplicação de doses elevadas de biossólido devido ao aumento dos teores de Na no solo, que exerce efeito antagônico à absorção de K pelas plantas (Marshner, 1995). Segundo Lima (1997), o teor foliar de Na de 2,5 g kg⁻¹ de massa seca é o máximo tolerado por espécies sensíveis, enquanto no solo, de acordo com Ayers & Westcot (1991), a porcentagem de sódio trocável (PST) tolerada por estas espécies é de 15%.

Apesar do biossólido tratado com calcário contribuir para a elevação do pH do solo, este aumento tem sido pequeno, da ordem de 0,1 a 0,8 unidade e representa pouca importância prática quanto à disponibilidade de micronutrientes e metais pesados em solos ácidos e de baixa fertilidade natural (Speir et al., 1999). De fato, Defelipo et al. (1991) constataram que, mesmo com a elevação do pH, a aplicação do biossólido gerado pela Siderúrgica Mendes Júnior aumentou a disponibilidade dos micronutrientes Cu, Fe, Mn e Zn em dois Latossolos cultivados com sorgo. Como medida de precaução, Basta & Sloam

(1999) não recomendam o uso de biossólidos ácidos em solos com reação também ácida, por aumentar os riscos de lixiviação e fitotoxicidade de metais.

Estes resultados indicam que, em geral, a aplicação de biossólido tem efeito positivo sobre a fertilidade, devido ao aumento do teor de matéria orgânica e de nutrientes no solo, mas também pode causar problemas agrícolas e ambientais relacionados ao excesso de NO₃. Na e de metais pesados, cujos teores no solo precisam ser monitorados para garantir a segurança do uso agronômico de biossólidos.

1.2.7 Efeitos da aplicação de biossólidos nos atributos físicos do solo

Os biossólidos atuam como fonte de carbono e energia para a população microbiana do solo, que tem papel fundamental no estabelecimento de ciclos biogeoquímicos e está envolvida na formação da estrutura do solo (Harris & Birch, 1989; Dufranc et al., 2004). Desta forma, a adição de matéria orgânica, via biossólido, pode ter efeito positivo na estrutura do solo, por promover aumento da porosidade (Ortega et al., 1981; Mathan, 1994; Melo et al., 2004), melhorar o estado de agregação das partículas e diminuir a densidade do solo (Aggelides & Londra, 2000).

Gonçalves & Ceretta (1999) consideram que, em solos sob condições tropicais, é dificil obter aumentos significativos nos teores de matéria orgânica, o suficiente para atuar sobre os atributos físicos do solo em curto espaço de tempo. De fato, Melo et al. (2004) observaram aumento da matéria orgânica, diminuição da densidade do solo e aumento da macroporosidade em dois Latossolos de Jaboticabal (SP), somente após 5 anos de aplicação de 50 Mg ha¹ de biossólido. Marciano et al. (2001) observaram que, quando o solo apresenta originalmente boa estrutura, as melhorias nos atributos físicos podem ser inconsistentes, mesmo com a aplicação de doses elevadas de biossólido. Furrer & Stauffer (1983), por exemplo, não verificaram alterações na estabilidade de

agregados e na porosidade com a aplicação de doses elevadas de biossólido de esgoto urbano em solos bem estruturados e argilosos.

Jorge et al. (1991) observaram que a aplicação de 10 e 20 Mg ha⁻¹ ano⁻¹ de biossólido de esgoto da ETE de Barueri e calcário em Latossolo Vermelho argiloso promoveu alterações na relação entre macro e microporos sem, no entanto, alterar significativamente a porosidade total e a densidade do solo avaliado quatro anos após a aplicação. Navas et al. (1998) obtiveram incremento da porosidade total de 38% para 49% em solo tratado com 320 Mg ha⁻¹ de biossólido. Sort & Alcañiz (1999) não verificaram alteração na microporosidade pela aplicação de 400 Mg ha⁻¹ de biossólido durante quatro anos. Lindsay & Logan (1998) verificaram que a aplicação de 60 Mg ha⁻¹ de biossólido promoveu redução da densidade do solo somente após quatro anos de aplicação. Estes resultados indicam que os efeitos da aplicação de biossólido nos atributos físicos do solo dependem do tipo de solo e, principalmente, da quantidade e qualidade do biossólido aplicado.

1.2.8 Efeitos da aplicação de biossólidos nos atributos biológicos do solo

O solo é um corpo vivo, onde prolifera uma das maiores e mais diversas populações de organismos macro e microscópicos, responsáveis pela decomposição e mineralização de substâncias orgânicas por meio de imimeros processos bioquímicos (Moreira & Siqueira, 2002). Os microrganismos utilizam parte dos compostos orgânicos contidos nos resíduos como fonte de nutrientes e energia para a formação de sua biomassa (Gama-Rodrigues, 1999). Portanto, a biomassa microbiana está diretamente relacionada ao conteúdo e qualidade da matéria orgânica (Tótola & Chaer, 2002), sendo que o C da biomassa microbiana (Cmic) pode representar de 2% a 5% do C orgânico (Corg) (Jenkinson & Ladd, 1981) e o N da biomassa microbiana (Nmic) de 1% a 5% do N total do solo (Smith & Paul, 1990). Assim, além de atuar como estoque lábil

de nutrientes, a microbiota desempenha papel ativo na prevenção de lixiviação, por meio da imobilização de nutrientes em sua biomassa (Feigl et al., 1995) e é muito sensível às alterações promovidas no solo. Ela constitui um bom indicador das intervenções antrópicas e das mudanças na qualidade da matéria orgânica do solo (Dick et al., 1996) e pode ser empregada na avaliação dos efeitos da aplicação de biossólidos em solos agrícolas.

Os quocientes microbianos (Cmic/Corg e Nmic/Ntotal) têm sido interpretados como índices da qualidade nutricional da matéria orgânica (Gama-Rodrigues & De-Polli, 2000). Assim, a adição ao solo de resíduos cuja matéria orgânica é de baixa qualidade nutricional mantém a biomassa microbiana sob condições de estresse, por sua incapacidade de utilizar, de forma eficiente, o C e o N orgânico e, nesse caso, os quocientes microbianos diminuem em relação ao solo sob condições naturais (Gama-Rodrigues & De-Polli, 2000). As relações C/N (Cmic/Nmic e Corg/Ntotal) expressam a eficiência da biomassa em imobilizar C ou N e também podem ser usadas como índices de qualidade nutricional da matéria orgânica na avaliação dos efeitos da aplicação de resíduos orgânicos sobre a biota do solo. Quanto menores estas relações, melhor será a qualidade nutricional do resíduo (Gama-Rodrigues & De-Polli, 2000).

Outro indicador microbiológico das modificações ocorridas no solo é a atividade microbiana medida pela respiração (Anderson & Domsch, 1990). No entanto, a interpretação de seus valores deve ser realizada com cautela, pois, segundo Tótola & Chaer (2002), uma alta taxa de respiração, indicativo de alta atividade biológica, pode ser reflexo tanto de distúrbio ecológico, como de alto nível de produtividade do ecossistema, considerando que esta reflete a rápida decomposição de resíduos orgânicos em nutrientes minerais. Desse modo, a adição de resíduos orgânicos ao solo pode ter efeito estimulatório na respiração, devido ao aumento de C orgânico e disponibilidade de nutrientes que irão favorecer a microbiota do solo ou efeito inibitório pela presença de compostos

tóxicos (Fließbach et al., 1994). Assim, para estabelecer relações mais consistentes entre biomassa e atividade microbiana, Anderson & Domsch (1993) propuseram uma medida da atividade metabólica específica, dada pela razão entre o C-CO₂ liberado na respiração e o Cmic, denominada quociente metabólico (qCO₂), que indica a energia necessária para manter a comunidade microbiana em determinada condição. Segundo Tótola & Chaer (2002), os microrganismos do solo despendem mais energia em condições de estresse, havendo maior liberação de C-CO₂ em relação à quantidade de C incorporado na biomassa e, portanto, maior será o qCO₂.

Como resultado da atividade microbiana ocorre a produção de várias enzimas extracelulares, capazes de transformar substratos orgânicos, liberando monômeros, que são absorvidos e metabolizados nas células, produzindo biomassa, CO₂, H₂O e elementos minerais (Stevenson, 1986). Assim, a atividade enzimática, total ou específica, também tem sido empregada para avaliar a atividade microbiana do solo, servindo como indicador de alterações nos processos funcionais (Bandick & Dick, 1999). Entre as várias classes de enzimas, as mais estudadas são as hidrolases (β-glucosidase, fosfatase e urease) e as oxi-redutases (desidrogenases e catalases) (Gianfreda & Bollag, 1996). A urease é uma enzima comum na natureza produzida por microrganismos e plantas, cuja função é hidrolisar compostos nitrogenados, liberando NH3⁺ e CO2 (Dick et al., 1996). Outro grupo de enzimas bastante estudado é o das fosfatases, secretadas por plantas e microrganismos do solo quando os teores de P solúvel encontram-se em níveis limitantes ao crescimento dos mesmos (Nahas et al., 1994). A β-glicosidade é liberada principalmente pela biota do solo e tem como função hidrolisar compostos carbonados, fornecendo substrato para a obtenção de energia ao desenvolvimento de plantas e microrganismos (Gianfreda & Bollag, 1994). A hidrólise da fluoresceína diacetato (FDA) realizada por proteases, lipases e esterases produzidas por células microbianas viáveis é

segundo Diack (1997), um ótimo indicador da atividade heterotrófica global do solo. De acordo com Martens et al. (1992), a adição de resíduos orgânicos como esterco, restos culturais e biossólidos, estimula a atividade enzimática do solo. Altas correlações têm sido encontradas entre atividade enzimática e respiração microbiana, biomassa e Corg do solo (Frankenberger & Dick, 1983).

O cálculo da atividade enzimática específica, dada pela razão entre a atividade enzimática total e o Cmic, pode ser usado como índice da atividade metabólica específica, ou seja, da proporção da população produtora de uma determinada enzima na biomassa microbiana (Waldrop et al., 2000).

Alguns estudos mostram que as respostas dos atributos biológicos e bioquímicos do solo à aplicação de resíduos orgânicos são muito variáveis, em função do tipo e das características químicas dos materiais orgânicos e do solo, além da presença de cobertura vegetal. García-Gil et al. (2000) observaram que a aplicação de 80 Mg ha-1 de biossólido originado de esgoto domiciliar em solo arenoso durante nove anos aumentou em 46% o C da biomassa e em mais de 100% a atividade da β-glicosidase, mas reduziu em 62% a atividade da fosfatase ácida, devido ao aumento de P solúvel. A atividade da urease também reduziu em 28% por causa dos altos teores de metais pesados e de NH4⁺ daquele resíduo. Gagnon et al. (2000) verificaram aumento linear na atividade da fosfatase ácida em resposta às doses de 8 a 65 Mg ha-1 do biossólido gerado por indústria de celulose a um solo orgânico utilizado em horticultura, mesmo após três anos da aplicação. Chantigny et al. (2000) constataram que a aplicação de 50 Mg ha⁻¹ de biossólido, também gerado por indústria de celulose, a um solo argiloso aumentou em 100% o C da biomassa e em 40% a hidrólise da FDA, que manteve atividade superior ao controle, três anos após a aplicação. Por outro lado, Debosz et al. (2002) verificaram que os efeitos da aplicação de 4,2 Mg ha⁻¹ de biossólido de esgoto domiciliar sobre C e N da biomassa, respiração, qCO2. hidrólise da FDA e atividade da β-glicosidase foram transientes.

Na avaliação dos possíveis impactos da aplicação de biossólidos sobre os atributos biológicos, a simbiose entre fungos micorrízicos arbusculares (FMAs) e espécies vegetais é outro aspecto que merece atenção, considerando a relação inversa entre fertilidade do solo e micotrofismo (Siqueira et al., 1994; Smith & Read, 1997). Além disso, a presença de metais pesados ou outros compostos orgânicos tóxicos no biossólido pode ter efeito inibitório sobre os FMAs (Koomen et al., 1990). Contudo, Silva Neto (2001) verificou que a adição de biossólido ao substrato de mudas de maracujazeiro não afetou a colonização micorrízica e que os FMAs controlaram a absorção de metais e elementos tóxicos pelas plantas.

Os estudos revisados indicaram que os atributos biológicos e bioquímicos do solo são sensíveis à presença de poluentes e de outros fatores limitantes nos resíduos e devem ser empregados nas avaliações dos efeitos do uso agrícola de biossólidos. Além disso, estes atributos estão diretamente relacionados com a mineralização da fração orgânica dos biossólidos e, consequentemente, com a melhoria da fertilidade do solo.

1.2.9 Potencial poluente e riscos associados ao uso agrícola de biossólidos

Apesar de apresentarem vários beneficios à produção agrícola, os biossólidos podem conter poluentes, como metais pesados, compostos orgânicos persistentes e organismos patogênicos, que limitam seu uso agrícola por oferecerem riscos à saúde e ao meio ambiente (Ferreira et al., 1999b). Também é preciso considerar os riscos associados à salinização do solo e à lixiviação de espécies químicas, especialmente de nitrato, de metais pesados e compostos orgânicos dissolvidos, que podem causar a poluição das águas subsuperficiais.

O biossólido, mesmo aquele de origem exclusivamente domiciliar, normalmente apresenta metais em teores mais elevados que os do solo. Zinco, Cu, Mn, Fe, Mo e Ni, embora sejam micronutrientes essenciais, em altos teores

podem apresentar toxicidade e causar sérios problemas ao ambiente (Guilherme et al., 2002). Os metais pesados Cd e Pb também podem estar presentes em teores consideráveis e, devido à toxicidade elevada e por serem biocumulativos, exigem maiores cuidados e monitoramento (Berton, 2000; Guilherme et al., 2002). Devido à gravidade de suas conseqüências ao ambiente e à saúde humana, em todos os países onde o biossólido é aplicado na agricultura existem normas que estabelecem limites para os teores de metais no biossólido. Na Tabela 1.2.2 são apresentados os teores máximos de metais pesados permitidos em biossólido destinado ao uso agrícola, estabelecidos pela legislação de diversos países e os adotados por alguns estados brasileiros.

TABELA 1.2.2 Limites para teores de metais em biossólido destinado ao uso agrícola, conforme legislação de diversos países e os adotados por alguns estados brasileiros

Metal		País/Estado brasileiro											
	1	2	3	4	5	6	7	8	9	10	11	12	
	·				mg	kg ⁻¹ de	matéria	seca-					
As	_	_		•	-	-	-	-	-	-	75	-	
Cd	8,0	15	10	30	10	20	20	20	1,25	12	85	20	
Cr	100	1000	900	1000	500	2000	1000	-	75	500	3000	1000	
Cu	1000	3000	800	1000	600	1500	1000	1000	75	750	4300	1000	
Pb	120	300	900	1000	500	1500	800	750	100	600	840	750	
Hg	0,8	8	8	10	_	-	10	10	0,75	10	57	16	
Mo	-,-	_	_	-	_	-	_	1-	•	-	75	-	
Ni	30	500	200	200	100	25	200	300	30	100	420	-	
Se	-	•		•	-	_	100	_	-	-	100	-	
Źn	4000	10000	2500	3000	2000	2500	3000	2500	300	2500	7500	2500	
Ag	_	-	-	-	-		-	-	-	-	-	-	
Cŏ	-	50	-	100	-	-	-	-	-	-	-	-	
Mn	_	-	_	500	_	-	-	_	-	-	-	-	

¹¹ Fonte: Rocha & Shirota (1999): 1 = Dinamarca, 2= Suécia, 3= Alemanha, 4= Suíça, 5= Holanda, 6= Escócia, 7= França, 8= Itália, 9= Países Baixos, 10= Bélgica; 11= Estados Unidos (USEPA, 1993), adotados pela CETESB (1999) para o Estado de São Paulo e pela CAESB para o Distrito Federal, 12= estado do Paraná (SANEPAR, 1997); (-) não determinado.

A disponibilidade e a mobilidade dos metais dependem muito da reação do solo e, de maneira geral, aconselha-se que o pH seja mantido acima de 5,5 para evitar que os metais potencialmente tóxicos tornem-se disponíveis em

quantidades que representem riscos ambientais (Bettiol & Camargo, 2003; Berton, 2000). Por outro lado, a mobilidade de metais no solo pode ser acelerada pela formação de complexos facilmente transportáveis entre metais e ligantes da matéria orgânica dissolvida (Andersson et al., 2000). De acordo com Christ & David (1996), em solos tratados com resíduos orgânicos, a atividade microbiana pode favorecer a produção e a lixiviação de grandes quantidades de carbono orgânico dissolvido (COD).

Outros poluentes presentes nos biossólidos são os compostos orgânicos, como hidrocarbonetos aromáticos, fenóis, pesticidas, polibromenatos, bifenil (PBB), policlorinato bifenil (PCB) e outros materiais persistentes e altamente tóxicos. Contudo, devido ao conhecimento limitado sobre vias e limites de contaminação e conseqüências à saúde humana, poucos são os países que os consideram em suas restrições ao uso agrícola (Rocha & Shirota, 1999).

Com relação aos aspectos sanitários, atenção especial deve ser dada aos biossólidos originados de esgotos domiciliares, os quais podem conter patógenos como coliformes fecais, Salmonella, vírus e helmintos (Soccol & Paulino, 2000). No entanto, Fernandes (2000) afirma que os tratamentos com cal ou a compostagem de lodos após a fase de estabilização são eficazes na redução de patógenos em níveis seguros para o uso agrícola. No que diz respeito à normatização, este é um processo em discussão no Brasil. A SANEPAR (1997), com base em dados de pesquisa, fixou os seguintes parâmetros para a qualidade sanitária de biossólidos: ovos de helmintos ≤ 0,25 ovo g⁻¹ de lodo seco e coliformes fecais ≤ 10³ NMP g⁻¹ de lodo seco. A CETESB (1999), com base na Norma 40 CFR part 503 da USEPA (1993), distingue duas classes de biossólidos: Classe A, que podem ser utilizados sem restrições, inclusive na horticultura e devem apresentar coliformes fecais < 10³ NMP g⁻¹ de lodo seco ou Salmonella < 4 NMP, vírus entéricos < 1 PFU e ovos viáveis de helmintos < 1 ovo em 4 g de lodo seco e Classe B, de uso restrito a reflorestamentos, grandes

culturas ou outras, onde o risco possa ser mais controlado, tendo como exigência a presença de coliformes fecais < 2.10⁶ NMP g⁻¹ de lodo seco.

Quanto aos riscos associados à salinização do solo, é preciso considerar que a mineralização do biossólido pode provocar a elevação dos teores de sais solúveis e, consequentemente, da condutividade elétrica da solução do solo em níveis superiores aos aceitáveis pelas plantas, principalmente em regiões de baixa pluviosidade (Bettiol & Camargo, 2003). Dentre os sais presentes no biossólido, os de sódio podem causar desequilíbrios nutricionais e dificuldades na absorção de água e mutrientes, ocasionadas pelo aumento da pressão osmótica da solução do solo (Marschner, 1995). Além disso, este elemento pode substituir o cálcio e o magnésio do complexo de troca, causando dispersão da argila, destruição dos agregados e, portanto, da estrutura dos solos, diminuindo a permeabilidade e o coeficiente de infiltração.

Com a mineralização do biossólido adicionado ao solo, o nitrogênio orgânico é convertido em amônio e nitrato. Os colóides do solo podem reter o amônio, mas o nitrato, quando excede a exigência da cultura, normalmente é lixiviado para fora da zona radicular porque a capacidade dos solos em retê-lo é baixa (Bettiol & Camargo, 2003). O nitrato excedente no solo pode, por meio da lixiviação, contaminar águas subsuperficiais ou, por desnitrificação, provocar o desprendimento de óxido nitroso (Vieira & Cardoso, 2003). Desta forma, o nitrogênio é um dos elementos que mais exigem monitoramento em solos tratados com biossólido.

Quanto ao fósforo, mesmo em altos teores no biossólido e no solo, é praticamente nulo o risco de fitotoxicidade, considerando que nossos solos apresentam deficiência deste nutriente e o retêm com grande energia (Fernandes et al., 1998). Assim, a poluição das águas subsuperficiais por esse elemento também é muito difícil de ocorrer. Entretanto, Bettiol & Camargo (2003) alertam para a possibilidade de arraste superficial de solo contendo fósforo por

meio de processos erosivos que, em certas situações, poderá ser liberado nos corpos d'água superficiais e provocar entrofização.

Uma alternativa para a avaliação do potencial poluente dos biossólidos, quando aplicados ao solo, são os ensaios de lixiviação e a caracterização das espécies químicas predominantes na solução lixiviada e dos riscos que estas oferecem à saúde e ao ambiente (El-Fadel et al., 2002). Entre os métodos de especiação iônica de sistemas aquosos diluídos, tem-se o emprego do programa computacional Visual MINTEQ (USEPA, 1999), que é um dos modelos de equilibrio geoquímico mais utilizados. Jordão et al. (2003), utilizando este modelo para a especiação iônica de Cd e Ni em Latossolo Vermelho acriférrico tratado com o biossólido de Barueri, verificaram que as formas livres destes metais predominaram, mas em baixas concentrações e atividades, devido aos elevados teores de óxidos de Fe do solo e dos valores de pH (5,9 a 7,2) e, portanto, não representaram riscos ao uso daquele resíduo.

A revisão de literatura evidencia que a utilização agrícola dos biossólidos, embora apresente muitas vantagens como aumento de produtividade das culturas, economia com fertilizantes minerais e melhoria dos atributos do solo, também pode representar riscos ambientais e à saúde humana. Por isso, são imprescindíveis os estudos de avaliação agronômica, o monitoramento dos efeitos sobre os atributos do solo e a identificação dos fatores limitantes ao uso agrícola dos biossólidos. A literatura internacional sobre o assunto é relativamente abundante, especialmente nos Estados Unidos e nos países europeus. A literatura nacional dispõe de algumas importantes contribuições, mas ainda insuficientes para fornecer bases seguras à normatização e fiscalização da aplicação de biossólidos na agricultura brasileira. Dessa forma, torna-se indispensável o envolvimento dos órgãos de pesquisa e de instituições de ensino nos estudos sobre os efeitos da aplicação de biossólidos em solos tropicais, bem como de seus eventuais impactos no ambiente.

1.3 REFERÊNCIAS BIBLIOGRÁFICAS

AGGELIDES, S. M.; LONDRA, P. A. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and clay soil. Bioresource Technology, Essex, v. 71, n. 3, p. 253-259, Feb. 2000.

ANDERSON, T. H.; DOMSCH, K. H. Application of eco-physiological quotients (qCO₂ and qD) on microbial biomass from soils of different cropping hostories. Soil Biology and Biochemistry, Oxford, v. 22, n. 2, p. 251-255, 1990.

ANDERSON, T. H.; DOMSCH, K. H. The metabolic quocient for CO₂ (qCO₂) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, Oxford, v. 25, n. 3, p. 393-395, Mar. 1993.

ANDERSSON, S.; NILSSON, S. I.; SAETRE, P. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology and Biochemistry, Oxford, v. 32, n. 1, p. 1-10, Jan. 2000.

ANDREOLI, C. V.; LARA, A. I.; FERNANDES, F. (Org.). Reciclagem de biossólidos: transformando problemas em soluções. 2. ed. Curitiba: SANEPAR, Finep, 2001. 288 p.

ANDREOLI, C. V.; PEGORINI, E. S. Gestão de biossólidos: situação e perspectivas. In: I Seminário sobre Gerenciamento de Biossólidos do Mercosul. Curitiba: SANEPAR/ABES, 1998. p. 11-18.

ANDREOLI, C. V.; PEGORINI, E. S. Gestão pública do uso agrícola do lodo de esgoto. In: BETTIOL, W.; CAMARGO, O. A. (Ed.). Impacto ambiental do uso agrícola do lodo de esgoto. Campinas, SP, 2000. p. 281-312.

ANDREOLI, C. V.; PEGORINI, E. S.; GONÇALVES, D. F. Processo de implementação da reciclagem agrícola de biossólidos em Curitiba, Paraná. In: In: CONGRESSO INTERAMERICANO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 27., 2003, Porto Alegre/RS. Anais... Porto Alegre, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Fórum nacional de normatização: NBR 10.004 Resíduos sólidos. Rio de Janeiro, 1987. 63 p.

- AYERS, R. S.; WESTCOT, D. W. A qualidade da água na agricultura. Campina Grande: UFPB. Tradução de GHEYI, H. R.; MEDEIROS, J. F.; DAMACENO, F. A. V., 1991. 218 p. (Estudos FAO: Irrigação e Drenagem, 29, Revisado).
- BANDICK, A. K.; DICK, R. P. Field management effects on soil enzyme activities. Soil Biology and Biochemistry, Oxford, v. 31, n. 11, p. 1471-1479, Oct. 1999.
- BASTA, N. T.; SLOAM, J. J. Bioavaibility of heavy metal in strongly acidic soils treated with exceptional quality biosolids. **Journal of Environmental Quality**, Madison, v. 28, n. 2, p. 633-638, Mar./Apr. 1999.
- BATAGLIA, O. C.; BERTON, R. S.; CAMARGO, A. O.; VALADARES, J. M. A. S. Resíduos orgânicos como fontes de nitrogênio para capim-braquiária. Revista Brasileira de Ciência do Solo, Campinas, v. 7, n. 3, p. 277-284, set/dez. 1983.
- BERTON, R. S. Riscos de contaminação do agroecossistema com metais pesados. In: BETTIOL, W.; CAMARGO, O. A. (Ed.). Impacto Ambiental do uso agrícola do lodo de esgoto. Jaguariúna: Embrapa Meio Ambiente, 2000. p. 259-268.
- BERTON, R. S.; CAMARGO, O. A.; VALADARES, J. M. A. S. Absorção de nutrientes pelo milho em resposta à adição de lodo de esgoto em cinco solos paulistas. Revista Brasileira de Ciência do Solo, Campinas, v. 13, n. 2, p. 187-192, maio/ago. 1989.
- BETTIOL, W.; CAMARGO, O. A. (Ed.). Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna, SP: EMBRAPA Meio Ambiente, 2000, 312 p.
- BETTIOL, W.; CAMARGO, O. A. Lodo de esgoto na agricultura: potencial de uso e problemas. Instituto de Educação Tecnológica IETEC, 2003. Disponível em: <www.ietec.com.br>. Acesso em: 09 2004.
- BETTIOL, W.; CARVALHO, P. C. T. Utilização de lodo de esgoto primário e fertilizante organo-mineral IPT na cultura de milho. Fertilizantes, São Paulo, v. 4, n. 1, p. 14-15, 1982.
- BETTIOL, W.; CARVALHO, P. C. T.; FRANCO, B. J. D. C. Utilização do lodo de esgoto como fertilizante. O Solo, Piracicaba, v. 75, n. 1, p. 44-54, jan./jun. 1983.

- BISCAIA, R. C. M.; MIRANDA, G. M. Uso de lodo de esgoto calado na produção do milho. Sanare, Curitiba, v. 5, p. 90-92, 1996.
- BOEIRA, R. C. Uso de lodo de esgoto como fertilizante orgânico: disponibilização de nitrogênio em solo tropical. Jaguariúna: Embrapa Meio Ambiente, 2004. 3 p. (Comunicado Técnico, 12).
- BOEIRA, R. C.; LIGO, M. A. V.; DYNIA, J. F. Mineralização de nitrogênio em solo tropical tratado com lodos de esgoto. Pesquisa Agropecuária Brasileira, Brasília, v. 37, n. 11, p. 1639-1647, nov. 2002.
- CAMARGO, F. A. de O.; GIANELLO, C.; TEDESCO, M. J.; VIDOR, C. Nitrogênio orgânico do solo. In: SANTOS, G. de A.; CAMARGO, F. A. de (Ed.). Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais. Porto Alegre: Genesis. 1999. p. 117-137.
- CARVALHO, P. C. T. Utilização do lodo de esgoto na agricultura. In: COLÓQUIO REGIONAL SOBRE MATÉRIA ORGÂNICA DO SOLO, 1982, Piracicaba: CENA, p. 223-226.
- CHANTIGNY, M. H.; ANGERS, D. A.; BEAUCHAMP, C. J. Active carbon pools and enzyme activities in soils amended with de-inking paper sludge. Canadian Journal of Soil Science, Ottawa, v. 80, n. 1, p. 99-105, Feb. 2000.
- CHRIST, M. J.; DAVID, M. B. Temperature and moisture effects on the production of dissolved organic carbon in a spodsol. Soil Biology and Biochemistry, Oxford, v. 28, n. 9, p. 1191-1199, Sept. 1996.
- COMPANHIA DE ÁGUAS E ESGOTO DE BRASÍLIA CAESB. O lodo de esgoto na agricultura. Brasília (DF). 1996. 60 p. (Manual técnico).
- COMPANHIA DE SANEAMENTO DO PARANÁ SANEPAR: Manual Técnico para utilização agrícola do lodo de esgoto no Paraná. Curitiba (PR), 1997. 96 p.
- COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL CETESB. Aplicação de biossólidos de sistemas de tratamento biológico em áreas agrícolas: critérios para projeto e operação. São Paulo, 1999. 29 p. (CETESB, Norma P. 4. 230).
- CORRÊA, R. S.; CORRÊA, A. S. Valoração de biossólidos como fertilizantes e condicionadores de solos. Sanare, Curitiba, v. 16, n. 2, p. 49-56, 2001.

- DEBOSZ, K.; PETERSEN, S. O.; KURE, L. K.; AMBUS, P. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Applied and Soil and Ecology, Amsterdam, v. 19, n. 3, p. 237-248, Mar. 2002.
- DEFELIPO, B. V.; NOGUEIRA, A. V.; LOURES, E. G.; ALVAREZ, V. V. H. Eficiência agronômica do lodo de esgoto proveniente de uma indústria siderúrgica. Revista Brasileira de Ciência do Solo, Campinas, v. 15, n. 3, p. 389-393, set./dez. 1991.
- DESCHAMPS, C.; FAVARETTO, N. Efeito da aplicação do lodo de esgoto complementado com fertilizante mineral na produtividade e desenvolvimento da cultura do feijoeiro e do girassol. Sanare, Curitiba, v. 8, n. 8, p. 33-38, 1997.
- DESCHAMPS, C.; FAVARETTO, N. Efeito do lodo de esgoto na produtividade e desenvolvimento das culturas. In: ANDREOLI, C. V.; LARA, A. I.; FERNANDES, F. Reciclagem de biossólidos: transformando problemas em soluções. Curitiba: SANEPAR/Finep, 1999. p. 181-192.
- DIACK, M. Relationships between soil biological and chemical charateristics and surface soil structural properties for use in soil quality. 1997. 221 p. Tese (Doutorado) Purdue University.
- DIAS, F. L. F. Efeito da aplicação de calcário, lodo de esgoto e vinhaça em solo cultivado com sorgo granífero (*Sorghum bicolor* (L.) Moench). Jaboticabal: FCAV/UNESP, 1994. 74 p. Trabalho de Graduação.
- DICK, R. P.; BREAKWELL, D. P.; TURCO, R. F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: DORAN, J. W.; JONES, A. J. Methods for Assessing soil quality. Madison: Soil Science Society of America, 1996. p. 247-272.
- DUFRANC, G.; DECHEN, S. C. F.; FREITAS, S. S.; CAMARGO, O. A. Atributos físicos, químicos e biológicos relacionados com a estabilidade de agregados de dois Latossolos em plantio direto no Estado de São Paulo. Revista Brasileira de Ciência do Solo, Viçosa, v. 28, n. 3, p. 505-517, maio/jun. 2004.
- EL-FADEL, M.; BOU-ZEID, E.; CHAHINE, W.; ALAYLI, B. Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Management, Oxford, v. 22, n. 3, p. 269-282, 2002.

FEIGIN, A.; RAVINA, I.; SHALHEVET, J. Irrigation with treated sewage effluent: management for environmental protection. Berlin: Springer-Verlag, 1991. 224 p.

FEIGL, B. J.; SPARLING, G. P.; ROSS, D. J.; CERRI, C. C. Soil microbial biomass in Amazonian soils: evaluation of methods and estimates of pool sizes. Soil Biology and Biochemistry, Oxford, v. 27, n. 11, p. 1467-1472, Nov. 1995.

FERNANDES, F. Estabilização e higienização de biossólidos. In: BETTIOL, W.; CAMARGO, O. A. (Ed.). Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna, SP: EMBRAPA Meio Ambiente, 2000. p. 45-67.

FERNANDES, F.; LARA, A. I.; ANDREOLI, C. V.; PEGORINI, E. S. Normatização para a reciclagem agricola do lodo de esgoto. In: ANDREOLI, C. V.; LARA, A. I.; FERNANDES, F. Reciclagem de biossólidos: transformando problemas em soluções. 2. ed. Curitiba: SANEPAR/Finep, 2001. p. 263-291.

FERNANDES, L. A. R.; FURTINI NETO, A. E.; CURI, N.; LIMA, J. M.; GUEDES, G. A. A. Fósforo e atividade de fosfatase em dois solos sob diferentes condições de uso. Pesquisa Agropecuária Brasileira, Brasilia, v. 33, n. 7, p. 1159-1170, jul. 1998.

FERREIRA, A. C.; ANDREOLI, C. V.; JÜRGENSEN, D. I- Produção e características dos biossólidos. In: PROGRAMA DE PESQUISA EM SANEAMENTO BÁSICO. Uso e manejo do lodo de esgoto na agricultura. Rio de Janeiro; PROSAB, 1999a. p. 16-25.

FERREIRA, A. C.; ANDREOLI, C. V.; LARA, A. III-Riscos associados ao uso do lodo de esgoto. In: PROGRAMA DE PESQUISA EM SANEAMENTO BÁSICO. Uso e manejo do lodo de esgoto na agricultura. Rio de Janeiro: PROSAB. 1999b. p. 29-33.

FLIEBBACH, A.; MARTENS, A.; REBER, H. H. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biology and Biochemistry, Oxford, v. 26, n. 9, p. 1201-1205, Sept. 1994.

FRANK, R. The use of biosolids from wastewater treatment plants in agriculture. Environmental Management, New York, v. 9, n. 4, p. 165-169, Apr. 1998.

FRANKENBERGER, W. T.; DICK, W. A. Relationship between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, Madison, v. 47, n. 5, p. 945-951, Sept./Oct. 1983.

except days

FURRER, O. J.; STAUFFER, W. Influence of sewage sludge application on physical properties of soils and its contribution to the humus balance. In: THE INFLUENCE of sewage sludge application on physical and biological properties of soils. Dordrecht: D. Reidel, 1983. p. 65-74.

GAGNON. B.; LALANDE, R.; SIMARD, R. R.; ROY, M. Soil enzyme activities following paper sludge addition in a winter cabbage-sweet corn rotation. Canadian Journal of Soil Science, Ottawa, v. 80, n. 1, p. 91-97, Feb. 2000.

GAMA-RODRIGUES, E. F. Biomassa microbiana e ciclagem de nutrientes. In: SANTOS, G. A.; CAMARGO, F. A. O. de (Ed.). Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais. Porto Alegre: Genesis, 1999. p. 227-243.

GAMA-RODRIGUES, E. F. da; DE-POLLI, H. Biomassa na Ciclagem de Nutrientes. In: FERTIBIO 2000, Santa Maria (RS). Anais... Santa Maria (RS), 2000, CD-ROM.

GARCÍA-GIL, J. C.; PLAZA, C.; SOLER-ROVIRA, P.; POLO, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology & Biochemistry, Oxford, v. 32, n. 12, p. 1907-1913, Nov. 2000.

GIANFREDA, L.; BOLLAG, J. M. Effect of soil on the behavior of immobilized enzymes. Soil Science Society of America, Madison, v. 58, p. 1672-1681, 1994.

GIANFREDA, L.; BOLLAG, J. M. Influence of natural and anthropogenic factors on enzyme activity in soil. In: STOTZKY, G.; BOLLAG, J. M. Soil biochemistry. New York: Dekker, 1996. v. 9, p. 123-193.

GOH, K. M.; CONDRON, L. M. Plant availability of phosphorus accumulated from long-term applications of superphosphate and effluent to irrigated pastures. New Zealand of Agricultural Research, Wellington, v. 32, n. 1, p. 45-51, 1989.

GONÇALVES, C. N.; CERETTA, C. A. Plantas de cobertura de solo

antecedendo o milho e seu efeito sobre o carbono orgânico do solo, sob plantio direto. Revista Brasileira de Ciência do Solo, Viçosa, v. 23, n. 2, p. 307-313, abr./jun. 1999.

٤

- GONÇALVES, J. L. M.; VAZ, L. M. S.; AMARAL, T. M.; POGGIANI, F. Aplicabilidade de Biossólido em Plantações Florestais: II. Efeito na fertilidade do solo, nutrição e crescimento de árvores. In: BETTIOL, W.; CAMARGO, O. A. (Ed.). Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna: Embrapa Meio Ambiente, 2000.
- GUILHERME, L. R. G.; MARQUES, J. J. G. S. M.; PIERANGELI, M. A. P.; ZULIANI, D. Q.; CAMPOS, M. L. Elementos-traço em solos, sedimentos e águas. In: SIMPÓSIO NACIONAL SOBRE RECUPERAÇÃO DE ÁREAS DEGRADADAS, 5., 2002, Belo Horizonte. Palestras... Belo Horizone: SOBRADE, 2002. v. 2, p. 30-55.
- HARRIS, J. A.; BIRCH, P. Soil microbial activity in opencast coal mine restoration. Soil Use and Management, Wallingford, v. 5, n. 4, p. 155-160, Dec. 1989.
- HOOK, J. E. Movement of phosphorus and nitrogen in soil following application of municipal wastewater. In: NELSON, D. W.; ELRICK, D. E.; TANJI, K. K. (Ed.). Chemical mobility and reativity in soil systems. Madson: Soil Science Society of America, 1981. p. 241-255.
- JENKINSON, D. S.; LADD, J. M. Microbial biomass in soil: movement and turnover. In: PAUL, E. A.; LADD, J. M. (Ed.). Soil Biochemistry. New York: Marcel Dekker, 1981, p. 368-386.
- JOHNS, G. G.; McCONCHIE, D. M. Irrigation of bananas with secoundary treated sewage sludge effluent. I. Field evaluation of effect on plant nutrients and additional elements in leaf, pulp and soil. Australian Journal of Agricultural Research, Victoria, v. 45, n. 8, p. 1601-1617, 1994.
- JORDÃO, C. B.; MELFI, A. J.; ALLEONI, L. R. F.; BERTON, R. S.; CAMARGO, O. A. Especiação iônica de cádmio e níquel em Latossolo Vermelho acriférrico tratado com biossólido industrial. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais... Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003. CD-ROM.
- JORGE, J. A.; CAMARGO, O. A.; VALADARES, J. M. A. S. Condições

físicas de um Latossolo Vermelho-Escuro quatro anos após aplicação de lodo de esgoto e calcário. Revista Brasileira de Ciência do Solo, Campinas, v. 15, n. 3, p. 237-240, set./dez. 1991.

KIRKHAM, B. B. Agricultural use of phosphorus in sewage sludge. Advances in Agronomy, New York, v. 35, p. 1159-1163, 1982

KOOMEN, I.; McGRATH, S. P.; GILLER, K. E. Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications. Soil Biology and Biochemistry, Oxford, v. 22, n. 6, p. 871-873, 1990.

KVARNSTROM, E.; NILSSON, M. Reusing phosphorus: engineering possibilities and economic realties. **Journal of Economic Issues**, Knoxville, v. 33, n. 2, p. 393-341, June 1999.

LATTERELL, J. J.; DOWDY, R. H.; CLAPP, C. E.; LARSON, W. E.; LINDEN, D. R. Distribuition of phosphorus in soils irrigated whit municipal waste-water effluent: a 5-year study. Journal of Environmental Quality, Madison, v. 11, n. 1, p. 124-128, Jan./Feb. 1982.

LIMA, L. A. Efeitos de sais no solo e na planta. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 26., 1997, Campina Grande. Manejo e controle da salinidade na agricultura irrigada. Campina Grande: UFPB/SBEA, 1997. Cap. 4, p. 113-136.

LINDSAY, B. J.; LOGAN, T. J. Field response of soil physical properties to sewage sludge. Journal of Environmental Quality, Madison, v. 27, n. 3, p. 534-542, May/June 1998.

LOURENÇO, R. S.; ANJOS, A. R. M. dos; LIBARDI, P. L.; MEDRADO, J. S. Efeito do lodo de esgoto na produtividade de milho e feijão, no sistema de produção da bracatinga. Sanare, Curitiba, v. 5, n. 5, p. 90-92, jan./jun. 1996.

LUDUVICE, M. Gestão de biossólidos e o Mercosul. In: SEMINÁRIO SOBRE GERENCIAMENTO DE BIOSSÓLIDOS DO MERCOSUL, 1., 1998, Curitiba. Palestras... Curitiba: SANEPAR/ABES, 1998. p. 9-10.

MARCIANO, C. R.; MORAES, S. O.; OLIVEIRA, F. C.; MATTIAZZO, M. E. Efeito do lodo de esgoto e do composto de lixo urbano sobre a condutividade hidráulica de um Latossolo Amarelo saturado e não saturado. Revista Brasileira de Ciência do Solo, Viçosa, v. 25, n. 1, p. 1-9, Jan./Mar. 2001.

- MARQUES, M. O. Incorporação de lodo de esgoto em solo cultivado com cana-de-acúcar. 1997. 111 p. Tese (Livre Docência) Universidade Estadual de São Paulo, Jaboticabal.
- MARSCHNER, H. Mineral nutrition of higher plants. San Diego: Academic Press, 1995. 889 p.
- MARTENS, D. A.; JOHANSON, J. B.; FRANKENBERGER, Jr., W. T. Production and persistence of soil enzymes with repeated addition of organic residues. Soil Science, Baltimore, v. 153, n. 1, p. 53-61, Jan. 1992.
- MARTINS, A. L. C.; BATAGLIA, O. C.; CAMARGO, O. A.; CANTARELLA, H. Produção de grãos e absorção de Cu, Fe, Mn e Zn pelo milho em solo adubado com lodo de esgoto, com e sem calcário. Revista Brasileira de Ciência do Solo, Viçosa, v. 27, n. 3, p. 563-574, maio/jun. 2003.
- MATHAN, K. K. Studies on the influence of long-term municipal sewage-effluent irrigation on soil physical properties. Bioresource Technology, v. 48, p. 275-276, 1994.
- MELO, V. P.; BEUTLER, A. N.; SOUZA, Z. M.; CENTURION, J. F.; MELO, W. J. Atributos físicos de Latossolos adubados durante cinco anos com biossólido. Pesquisa Agropecuária Brasileira, Brasília, v. 39, n. 1, p. 67-72, jan. 2004.
- MELO, V. P.; MARQUES, M. O.; MELO, W. J.; MELO, G. M. P.; BERTIPAGLIA, L. M. A. Produtividade do milho em latossolos após três anos de aplicação de biossólido. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais... Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003. CD-ROM.
- MELO, W. J.; MARQUES, M. O.; MELO, V. P. O uso agrícola e as propriedades do solo. In: TSUTIYA, M. T.; COMPARINI, J. B.; ALEM SOBRINHO, P.; HESPANHOL, I.; CARVALHO, P. de C. T. de; MELFI, A. J.; MELO, W. J de; MARQUES, M. O. (Ed.). Biossólidos na agricultura. São Paulo: Companhia de Saneamento Básico do Estado de São Paulo, 2001. p. 289-363.
- MELO, W. J.; MARQUES, M. O.; SANTIAGO, G.; CHEELI, R. A.; LEITE, S. A. A. Efeito de doses crescentes de lodo de esgoto sobre frações da matéria orgânica e CTC de um latossolo cultivado com cana-de-açucar. Revista Brasileira de Ciência do Solo, Campinas, v. 18, n. 3, p. 449-455, set./dez. 1994.

- MELO, W. J.; MARQUES, O. M. Potencial do lodo de esgoto como fonte de nutrientes para as plantas. In: BETTIOL, W.; CAMARGO, O. A. (Ed.). Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna, SP: EMBRAPA Meio Ambiente, 2000. p. 109-141.
- MENGEL, K. Turnover of organic nitrogen in soils and its availability to crops. Plant and Soil, Dordrecht, v. 181, n. 1, p. 83-93, Apr. 1996.
- MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e bioquímica do solo. Lavras: Universidade Federal de Lavras, 2002. 625 p.
- NAHAS, E.; CENTURION, J. F.; ASSIS, L. C. Microrganismos solubilizadores de fosfato e produtores de fosfatases de vários solos. Revista Brasileira de Ciência do Solo, Campinas, v. 18, n. 1, p. 43-48, Jan./Abr. 1994.
- NAVAS, A.; BERMÚDEZ, F.; MACHÍN, J. Influence of sewage sludge application on physical and chemical properties of Gypsisols. Geoderma, Amsterdam, v. 87, n. 1/2, p. 123-135, Dec. 1998.
- NETO, R. T.; SOUZA, A. F; FILHO, M. V. M.; CARMONA, R.; RAMAGEM, R. D. Alteração dos atributos químicos e da matéria orgânica de um Latossolo do Distrito Federal em função de doses crescentes de biossólido. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais... Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003. CD-ROM.
- OLIVEIRA, F. C. Disposição de lodo de esgoto e composto de lixo urbano num Latossolo Vermelho-Amarelo cultivado com cana-de-açúcar. 2000. 247 p. Tese (Doutorado) Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.
- ORTEGA, E.; NOGALES, R.; DELGADO, M. Modificación en la porosidad de un suelo por la adición de un compost de basura urbana. Anales de Edafología y Agrobiología, Madrid, v. 15, p. 1735-1747, 1981.
- PEGORINI, E. S.; ANDREOLI, C. V.; SOUZA, M. L. P.; FERNANDES, F. DOETZER, B.; FERREIRA, A. C. Qualidade do lodo de esgoto utilizado na reciclagem agrícola na região metropolitana de Curitiba PR. In: SIMPÓSIO SOBRE BIOSSÓLIDOS NO ÂMBITO DO MERCOSUL, 3., 2003, São Paulo.
- PROGRAMA DE PESQUISA EM SANEAMENTO Básico PROSAB. Uso e manejo do lodo de esgoto na agricultura. Rio de Janeiro: Prosab/Abes, 1999. 97p.

- RAIJ, B. V. Uso Agrícola de biossólidos. In: SEMINÁRIO SOBRE GERENCIAMENTO DE BIOSSÓLIDOS NO MERCOSUL, 1., 1998, Curitiba. Anais... Curitiba: SANEPAR/Abes, 1998. p. 147-151.
- REIS, T. C.; RODELLA, A. A. Cinética de degradação da matéria orgânica e variação do pH do solo sob diferentes temperaturas. Revista Brasileira de Ciência do Solo, Viçosa, v. 26, n. 3, p. 619-626, jul./set. 2002.
- ROCHA, M. T.; SHIROTA, R. Disposição final de lodo de esgoto. Revista de Estudos Ambientais, v. 1, n. 3, p. 77-100, set./dez. 1999.
- SANTOS, D. S.; ANDRADE, C. A.; MATTIAZZO, M. E. Capacidade de Troca Catiônica (CTC) em solo tratado com doses de biossólidos. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais... Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003.
- SECRETARIA NACIONAL DE SANEAMENTO SNSA. 2004. Ministério das cidades. Disponível em: http://www.cidades.gov.br/index_snsa. Acesso em: set. 2004.
- SEKI, L. T. Estudo da aplicação de doses de calcário e de lodo de esgoto na cultura da aveia branca (Avena sativa L.) cv. UFRGS-7, cultivada em Latossolo Vermelho-Escuro. Jaboticabal: FCAV/UNESP, 1995. 63 p. Trabalho de Graduação.
- SEROA DA MOTA, R. Manual para valoração econômica de recursos ambientais. Brasília: Ministério do Meio Ambiente, Recursos Hídricos e Amazônia Legal MMA, IPEA, PNUD, CNPq. 1998. 218 p. Disponível em: http://www.mma.gov.br Acesso em: 15 abr. 2003.
- SILVA NETO, J. P. da. Efeito da inoculação de fungos micorrízicos em mudas de maracujazeiro amarelo (*Passiflora edulis Sims f. flavicarpa* Deg) em substrato com biossólido. 2001. 105 p. Dissertação (Mestrado) Universidade Federal Rural de Pernambuco.
- SILVA, F. C.; BOARETTO, A. E.; BERTON, R. S.; ZOTELLI, H. B.; PEXE, C. A.; MENDONÇA, E. Cana-de-açúcar cultivada em solo adubado com lodo de esgoto: nutrientes, metais pesados e produtividade. Pesquisa Agropecuária Brasileira, Brasília, v. 33, n. 1, p. 1-8, jan. 1998.
- SILVA, J. E.; LEMAINSKI, J. Biossólido como fertilizante na produção de milho e soja no Distrito Federal. In: CONGRESSO BRASILEIRO DE

- CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais... Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003.
- SILVA, J. E.; RESCK D. V. S.; SHARMA, R. D. Alternativa agronômica para o biossólido produzido no Distrito Federal. I. Efeito na produção de milho e na adição de metais pesados em latossolo no Cerrado. Revista Brasileira de Ciência do Solo, Viçosa, v. 26, n. 2, p. 487-495, abr/jun. 2002a.
- SILVA, J. E.; RESCK, D. V. S.; SHARMA, R. D. Alternativa agronômica para o biossólido produzido no Distrito Federal. II. Aspectos qualitativos, econômicos e práticos de seu uso. Revista Brasileira de Ciência do Solo, Viçosa, v. 26, n. 2, p. 497-503, abr./iun. 2002b.
- SIQUEIRA, J. O.; MOREIRA, F. M. S.; GRISI, B. M.; HUNGRIA, M.; ARAÚJO, R. Microrganismos e processos biológicos do solo: perspectiva ambiental. Brasília: Embrapa-CNPAF, 1994. 142 p.
- SMITH, J. L.; PAUL, E. A. The significance of soil microbial biomass estimations. In: BOLLAG, J. M.; STOTZKY, G. (Ed.). Soil Biochemistry. New York: M. Dekker, 1990. v. 6, p. 357-396.
- SMITH, S. E.; READ, D. J. Mycorrhizal symbiosis. 2. ed. London: Academic Press, 1997. 605 p.
- SOCCOL, V. T.; PAULINO, R. C. Riscos de contaminação de agrossistema com parasitos pelo uso do lodo de esgoto. In: BETTIOL, W. CAMARGO, O. A. (Ed.). Impactos ambientais do uso agrícola do lodo de esgoto. Jaguariúna, SP: EMBRAPA Meio Ambiente, 2000. p. 245-258.
- SORT, X.; ALCAÑIZ, J. M. Modification of soil porosity after application of sewage sludge. Soil & Tillage Research, Amsterdam, v. 49, n. 4, p. 337-345, Jan. 1999.
- SPANINKS, F.; VAN BEUKERING, P. Economic valuation of mangrove ecosystems: potential and limitations. New Delhi, 1997. p. 37-38. (CREED Working Paper, v. 53, n. 14).
- SPEIR, T. W.; VAN SCHAIK, A. P.; KETTLES, H. A.; VICENT, K. W.; CAMPBELL, D. J. Soil and stream-water impacts of sewage effluent irrigation onto steeply sloping land. Journal of Environmental Quality, Madison, v. 28, n. 4, p. 1105-1114, July/Aug. 1999.

STEVENSON, F. J. Cycles of soil-carbon, nitrogen, phosphorus, sulfur, micronutrients. New York: John Wiley & Sons, 1986. 380 p.

TÓTOLA, M. R.; CHAER, G. M. Microrganismos e processos microbiológicos como indicadores da qualidade dos solos. In: SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO. Tópicos em ciência do Solo. Viçosa, 2002. v. 2, p. 195-276.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY – USEPA. 40 CFR – Part 503. Standards for the use and disposal of sewage sludge. Federal Register, Washington, v. 58, p. 9387-9415, 1993.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY – USEPA. Visual MINTEQ ver. 2. 15 - Geochemical Equilibrium Speciation Model for Windows. 1999. Disponível em: www.lwr.kth.se/english/oursoftware/vminteq>. Acesso em: abr. 2003.

UNITED STATES. Department of Agriculture-USDA. Report and recommendation on organic farming. Washington, 1980. 94 p.

VIEIRA, R. F.; CARDOSO, A. A. Variações nos teores de nitrogênio mineral em solo suplementado com lodo de esgoto. Pesquisa Agropecuária Brasileira, Brasilia, v. 38, n. 7, p. 867-874, jul. 2003.

WALDROP, M. P.; BALSER, T. C.; FIRESTONE, M. K. Linking microbial community composition to function in a tropical soil. Soil Biology & Biochemistry, Oxford, v. 32, n. 13, p. 1837-1846, Nov. 2000.

CAPÍTULO 2

AVALIAÇÃO AGRONÔMICA DE UM BIOSSÓLIDO INDUSTRIAL PARA A CULTURA DO MILHO

RESUMO

TRANNIN, Isabel Cristina de Barros. Avaliação agronômica de um biossólido industrial para a cultura do milho. In: ______ Avaliação agronômica de um biossólido industrial e de seus efeitos sobre atributos do solo. Lavras: UFLA, 2004. Cap. 2, p.43–71. (Tese – Doutorado em Solos e Nutrição de Plantas)

A utilização de biossólidos na agricultura é uma alternativa para a disposição desses resíduos, que apresentam potencial como fertilizantes e condicionadores do solo. Com o objetivo de avaliar a viabilidade agronômica do biossólido classe II. gerado em uma unidade industrial de fibras e resinas de polietileno terestalato (PET), em Poços de Caldas, MG, para a cultura do milho, realizou-se um estudo a campo, em Cambissolo distrófico, no ano agrícola 1999/2000 com re-aplicação dos tratamentos em 2000/2001. O estudo constou da aplicação de 0; 6; 12; 18 e 24 Mg ha⁻¹ de biossólido em base seca suplementado com K2O nos dois anos e 30% do P2O5 recomendado somente no segundo ano, comparado à adubação mineral completa. O biossólido melhorou a fertilidade do solo, o estado nutricional e a produtividade do milho. A produtividade do milho apresentou resposta quadrática às doses crescentes de biossólido, sendo a máxima, média dos dois anos, de 9.992 kg ha⁻¹ de grãos, alcançada com a aplicação de 22,5 Mg ha-1 de biossólido, 27% superior à adubação mineral e 86% ao controle sem adubação. Os teores de nutrientes, de Na e de metais pesados no biossólido, mesmo na maior dose aplicada, não causaram fitotoxicidade. A equivalência em produtividade à adubação mineral completa (7.895 kg ha⁻¹) foi obtida com a dose de 10 Mg ha⁻¹ de biossólido base seca. Com base na equivalência em NPK, o valor do biossólido foi estimado em R\$ 43,70 Mg⁻¹ em base seca e R\$ 8,74 Mg⁻¹ em base úmida e, considerando o custo de transporte, a aplicação deste é economicamente viável a uma distância de 66 km da fonte geradora.

^{*} Comitê orientador: José Oswaldo Siqueira – UFLA (Orientador) e Fátima M. de Souza Moreira – UFLA (Co-orientadora).

ABSTRACT

TRANNIN, Isabel Cristina de Barros. Agronomic assessment of a industrial biosolid for corn crop. In:

Agronomic evaluation of an industrial biosolid and its related effects on soil attributes. Lavras: UFLA, 2004. Chap.2, p.43–71. (Thesis – PhD. in Soils and Plant Nutrition)

Agricultural application is an alternative for practical disposal for biosolids, considering their potential as fertilizers and soil conditioners. In the present study it was evaluated the agronomic feasibility of a biosolid class II. produced by a polyethylene terephthalate (PET) fiber and resin industrial located in Pocos de Caldas, MG, for corn crop. The study was conducted in a crop field of dystrophic Cambisol in two cropping seasons 1999/2000 and 2000/01. A total five biosolid doses (0, 6, 12, 18 and 24 Mg ha⁻¹ dry matter basis) and a complete fertilizer control (NPK) was tested in a completely randomized blocks with treatments repeated for two consecutive years. Biosolid treatments were supplemented with K₂O in both trials and with 1/3 of the recommended P₂O₅ rate in the second trial. Biosolid application enhanced soil fertility, crop nutrition and grain productivity. Yield response to doses was quadratic reaching the maximum of 9,992 kg ha⁻¹ (average for two years) when 22.5 Mg ha⁻¹ of biosolid were applied each year. Yield increments were 27% higher than the complete mineral NPK fertilization and 86% higher than the control with no fertilizer added. Biosolid fertilized plants reached adequate nutritional status. There was an increase in Na content in corn leaves, but no symptom of Na or metal toxicity was found. Complete fertilizer yield (7,895 kg ha⁻¹) equivalence in terms of biosolid was attained with 10 Mg ha⁻¹ of biosolid per year. Basing upon this equivalence the fertilizer value of the biosolid was estimated in R\$43.70 per Mg dry residue and in R\$8.74 per Mg wet material. Considering the transportation cost, biosolid application in corn crop is economically feasible up to a distance of 66 km from the generating source.

Guidance Committee: José Oswaldo Siqueira – UFLA (Major Professor) and Fátima M. de Souza Moreira – UFLA.

2.1 INTRODUÇÃO

Para atender às exigências legais e minimizar os impactos ambientais e econômicos do lancamento direto de esgotos em cursos d'água ou no solo, um número cada vez maior de indústrias. dos mais variados setores. está desenvolvendo diversos tipos de tratamento de esgoto. dos quais são geradas grandes quantidades de outro resíduo, o lodo de esgoto ou biossólido. Estes resíduos, geralmente, não têm disposição adecuada, sendo armazenados em condições precárias, em áreas próximas às estações de tratamento de esgotos (ETEs), lançados em cursos d'água ou distribuídos para agricultores, sem critérios de segurança (Ferreira et al. 1999), gerando com isso, riscos ambientais. Por isso, no gerenciamento ambiental, medidas que priorizem a redução da produção de resíduos e a reciclagem ou aproveitamento seguro destes materiais para fins diversos, ocupam posição de destaque na estrutura organizacional das empresas. De fato, há em todo o mundo, grandes esforços visando dispor adequadamente e desenvolver alternativas seguras para a reciclagem e agregação de valores aos resíduos, de tal modo que estes tenham aplicações e valor econômico e, ao mesmo tempo, contribuam para proteger a atividade econômica, a saúde pública e o ambiente.

Entre as alternativas de disposição, a utilização agrícola dos biossólidos assume importância estratégica, tanto como forma de reduzir a pressão sobre a exploração dos recursos naturais, como por evitar opções de destino final de custos mais elevados e mais impactantes ao meio ambiente e à população, como a incineração e a disposição em aterros sanitários (Andreoli et al., 1999). Estas alternativas só devem ser adotadas quando a qualidade dos resíduos ou a viabilidade técnica não forem compatíveis com a reciclagem agrícola que, em diversos países, é assegurada por normas técnicas e critérios de aplicação. No Brasil, a reciclagem no solo deve atender à Associação Brasileira de Normas

Técnicas ou às normas da Cetesb que, em 1999, adotou como critérios básicos, aqueles estabelecidos pela Agência de Proteção Ambiental dos Estados Unidos-USEPA 40 CFR Part 503, para aplicação de biossólidos em áreas agrícolas. Como os biossólidos geralmente são ricos em matéria orgânica e nutrientes, apresentam grande potencial de uso como fertilizantes e condicionadores do solo e quando atendem aos requisitos necessários em relação à concentração de metais pesados e patógenos podem substituir parcial ou totalmente os fertilizantes minerais (Silva et al., 2002a). Segundo Raij (1998), os beneficios da aplicação do biossólido devem ser equiparados ou superar os alcançados com a adubação mineral, principalmente em relação à produtividade e economia com fertilizantes, sobretudo, nitrogenados. No entanto, é preciso considerar que, devido ao alto teor de umidade dos biossólidos, aplicações de grandes quantidades são necessárias para que a equivalência nutricional aos fertilizantes minerais seja alcançada. Isto torna o custo com transporte e distribuição no solo. o fator mais limitante para a viabilidade econômica da reciclagem agrícola destes residuos. Mesmo assim, a aplicação de biossólidos tem sido recomendada para culturas perenes e anuais, cujas partes comestíveis não entram em contato com o resíduo, para pastagens e reflorestamentos (Andreoli et al., 1999; Bettiol & Camargo, 2000).

Embora já existam evidências do aumento da produtividade de diferentes culturas, entre elas, o milho, com a aplicação de biossólidos urbanos (Biscaia & Miranda, 1996; Silva et al., 2002a; Silva & Lemainski, 2003), estudos sobre a viabilidade de uso agrícola de biossólidos de origem industrial são poucos e desenvolvidos com resíduos diversificados como, por exemplo, de curtume e de carboníferos (Konrad & Castilhos, 2002; Ferreira et al., 2003). No entanto, como os biossólidos industriais são extremamente diversos, com características próprias em função da matéria-prima utilizada, do processo industrial empregado e do sistema de tratamento aplicado (Ferreira et al., 1999),

são necessárias pesquisas de avaliação agronômica para a definição de taxas de aplicação, viabilidade técnica e segurança ambiental, específicas para cada resíduo. O objetivo deste estudo foi avaliar a viabilidade de utilização agronômica do biossólido produzido na ETE de uma indústria de fibras e resinas de polietileno tereftalato (PET) por meio de duas aplicações anuais sucessivas e do efeito destas na fertilidade do solo, nutrição e produtividade de milho em um Cambissolo distrófico, do município de Poços de Caldas MG.

2.2 MATERIAL E MÉTODOS

O estudo constou de dois experimentos a campo, nos anos agricolas 1999/2000 e 2000/2001, em área de Cambissolo distrófico sob vegetação de *Brachiaria* sp. nos últimos 10 anos, próxima à empresa Rhodia-ster S.A., em Poços de Caldas, MG (Figura 2.2.1). Esta área foi escolhida em função de aspectos técnicos de segurança (Cetesb, 1999) e da representatividade desta classe de solo na região. Segundo a classificação de Köpen, o clima da região de Poços de Caldas é do tipo Cwb-mesotérmico, com duas estações climáticas bem definidas: o inverno, de abril a setembro e o verão, de outubro a março, com temperatura média anual de 18°C (mínima de 12°C e máxima de 24°C), com precipitação pluviométrica média de 1.700 mm e umidade relativa de 77%.

Para o estudo, a área experimental foi arada na profundidade de 0 a 20 cm, gradeada e, com base na análise química, recebeu 2.5 Mg ha⁻¹ de calcário dolomítico (PRNT 91%), incorporado por gradagem (Figura 2.2.2). Trinta dias após a calagem, amostras da camada de 0 a 20 cm foram analisadas química e fisicamente apresentando: pH em água (1:2,5) = 6,3; P= 2 mg dm⁻³; K=117 mg dm⁻³; S-SO₄=31 mg dm⁻³; Ca=4,2 cmol_c dm⁻³; Mg=1,7 cmol_c dm⁻³; Cu=0,7 mg dm⁻³; Mn=6 mg dm⁻³; Zn=0,4 mg dm⁻³; Fe=23 mg dm⁻³; Na=7,4 mg dm⁻³.

Pb=1,3 mg dm⁻³; Cd=0,1 mg dm⁻³; Al=0 cmol_e dm⁻³; H+Al=3,6 cmol_e dm⁻³; V=63% e C.O.=25 g kg⁻¹. A composição granulométrica (Day, 1986) de 80, 270 e 650 g kg⁻¹ de areia, silte e argila, respectivamente, remeteu o solo à classe textural muito argilosa.

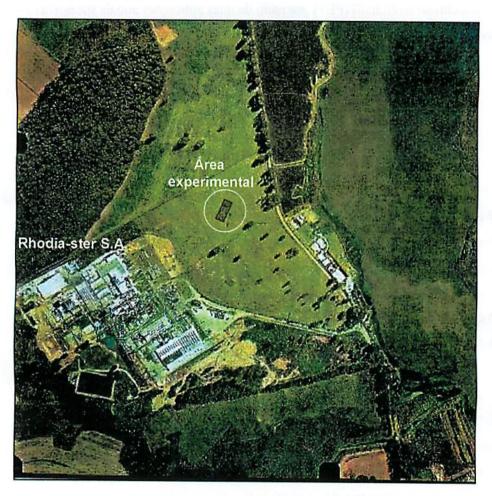


FIGURA 2.2.1 Fotografia aérea da área industrial da Rhodia-ster S.A. e localização da área experimental.

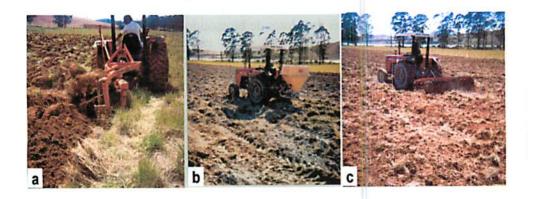


FIGURA 2.2.2 Preparo do solo: aração (a), calagem (b) e segunda gradagem, 30 dias antes da incorporação do biossólido (c).

O biossólido utilizado foi obtido do leito de secagem da ETE da Rhodiaster S.A., em Poços de Caldas, MG, classificado como "Classe II - resíduo não inerte" de acordo com métodos do Standard Methods of Water and Wastewater -19ª Edição/SW846 da USEPA e análise química (Tabela 2.2.1), conforme metodologias descritas por Eaton et al. (1985). No tratamento do esgoto gerado da produção industrial, empregam-se a digestão aeróbica e a adição de NaOH, Na₃PO₄ e Na₂CO₃.

Nos dois cultivos, o biossólido foi aplicado com cerca de 80 dag kg⁻¹ de umidade, sendo distribuído e incorporado ao solo com o uso de enxadas à profundidade média de 20 cm nas parcelas experimentais. A aplicação de fertilizantes no tratamento com adubação mineral e a semeadura foram feitas manualmente, no sulco, 30 dias após a incorporação do biossólido ao solo (Figura 2.2.3).

TABELA 2.2.1 Características dos lotes de biossólido em base seca, coletados na ETE da Rhodia-ster S.A., em Poços de Caldas, MG, aplicados na cultura do milho nos anos agrícolas 1999/2000 e 2000/2001, valores típicos e limites de metais pesados para lodo de esgoto

Características ¹¹	1999/	2000/	Valores típicos V	Limites	
	2000	2001		máximos	
pH, CaCl ₂ 0,01 mol L ⁻¹	7,3	6,6	Bioestabilizado=7,5		
Umidade total, dag kg ⁻¹	.80	82	> 80		
Inertes, g kg ⁻¹	0	0	0		
M.O. total, g kg ⁻¹	780	755	> 50% do peso		
M.O. compostável, g kg ^{·l}	560	638	80% da M.O. total		
M.O. resistente à compostagem, g kg ⁻¹	220	116	15-20% da M.O. total		
Carbono total, g kg ⁻¹	433	419	170		
Carbono orgânico, g kg ⁻¹	311	355	_		
Residuo mineral, g kg ⁻¹	220	245	_		
Residuo min. insolúvel, g kg ⁻¹	39	75	_		
Residuo mineral solúvel, g kg ⁻¹	181	170			
Nitrogênio total, g kg ^{-l}	64	54	16 (variável)		
Fósforo (P ₂ O ₅), g kg ⁻¹	47	76	8 (> 15 = alto)		
Potássio (K ₂ O), g kg ⁻¹		5	2 (< 5 = baixo)		
Cálcio, g kg ⁻¹	2 5 2 2	10	16 (< 15 = baixo)		
viagnésio, g kg ⁻¹	2	3	6 (< 6 = baixo)		
inxofre, g kg ⁻¹	2	3 2	2 (< 2 = baixo)		
CN	7	8	11 (libera NH ₄ †)		
^Р егго, mg kg ^{·1}	8229	14943			
∕langanês, mg kg ⁻¹	137	360	-		
Linco, mg kg ⁻¹	1217	1047	900	7500	
Cobre, mg kg ⁻¹	147	180	435	4300	
krsênio ^M , mg kg¹	<2	<2	→	75	
Cádmio™, me ke¹¹	<0,5	<0,5	11	85	
Chumbo ¹³ , mg kg ⁻¹	12	16	360	840	
⁄lercúrio™, mg kg⁻′	<1,25	<1,25	-	57	
Viquel™, mg kg ⁻¹	35,7	32,5	362	420	
elenio [™] , mg kg ^{-l}	<3	<3	_	100	
Sódio, mg kg ^{-l}	3287	3633		ا ک	

¹¹ Conforme Eaton et al. (1985); ¹² Conforme Raij et al. (1997) e Kiehl (1985); ¹³ Concentração limite de metal em lodo de esgoto (Cetesb, 1999); ¹⁴ Determinado por Ecolabor Comercial e Análises Ltda; ¹⁵ Limite a ser estabelecido pelo Órgão Estadual de Controle Ambiental (FEAM).



FIGURA 2.2.3 Delineamento da área experimental (a), distribuição e incorporação com enxadas do biossólido nas doses determinadas para cada tratamento (b, c, d, e) e semeadura aos 30 dias após a incorporação do biossólido (f).

O delineamento experimental empregado foi o de blocos casualizados, com 6 tratamentos distribuídos em 4 blocos, totalizando 24 parcelas (Figura 2.2.4). Cada parcela de 40 m² constou de 6 linhas de 10 m de comprimento, espaçadas de 0,80 m com 5 plantas por metro linear, após desbaste, ajustando a densidade para 62.500 plantas de milho ha¹. Considerou-se como parcela útil apenas 25,6 m², sendo avaliadas as quatro linhas centrais, descartando-se 1 m de cada extremidade.

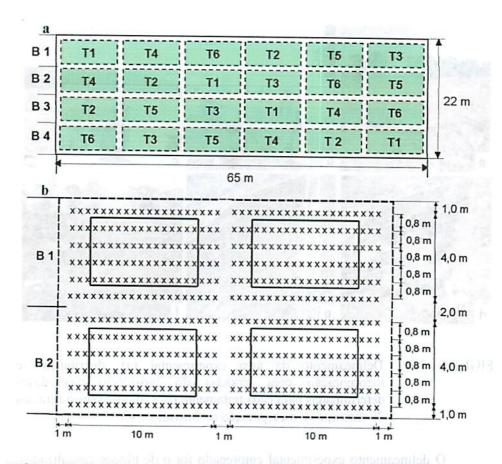


FIGURA 2.2.4 Croqui da área experimental de milho com delineamento em blocos casualizados: 4 blocos (B) x 6 tratamentos (T) = 24 parcelas (a); espaçamento entre blocos, parcelas e linhas de semeadura (b). Área total = 1.430 m².

No primeiro ano de cultivo utilizou-se o híbrido Braskalb-XL660 e no segundo o Agroceres-AG1051. Os tratamentos foram: 1) controle, sem adubação; 2) adubação mineral (400 kg ha⁻¹ da fórmula 4-30-16 + Zn no sulco de semeadura e cobertura aos 30 dias com 80 kg de K₂O ha⁻¹ adicionado por KCl e aos 30 e 60 dias com 80 e 55 kg de N ha⁻¹, respectivamente, na forma de uréia); 3) 6 Mg ha⁻¹ de biossólido; 4) 12 Mg ha⁻¹ de biossólido; 5) 18 Mg ha⁻¹ de biossólido e 6) 24 Mg ha⁻¹ de biossólido. As doses de biossólido em base seca foram determinadas em função do teor de N-total (g kg⁻¹) e corresponderam a 0;

0,5; 1,0 e 2,0 vezes a quantidade de N aplicada no tratamento com adubação mineral recomendada pela Comissão de Fertilidade do Solo do Estado de Minas Gerais (1999) para a produtividade de 6-8 Mg de grãos de milho ha⁻¹ (Tabela 2.2.2). Todos os tratamentos com biossólido receberam complementação com KCl até atingir a equivalência em K₂O à adubação mineral. Para os cálculos de fornecimento de nutrientes pelo biossólido, foram considerados como disponíveis anualmente, 20% do N (Cetesb, 1999), 50% do P₂O₅ e 100% do K₂O (Companhia de Saneamento do Paraná, 1997).

TABELA 2.2.2 Quantidades médias de N, P₂O₅ e K₂O aplicadas à cultura do milho, via adubação mineral e em diferentes doses de biossólido em base seca, nos anos agrícolas 1999/2000 e 2000/2001

Tratamento	Adul	pação mi	Adubação orgânica					
	N	P ₂ O ₅	K ₂ O	N.	P ₂ O ₅	K ₂ O		
	kg ha ⁻¹							
Controle	0	0	0	0	0 .	0		
Adubação mineral	150	120	144	0	. 0	O		
6 Mg ha ⁻¹ biossólido	0	36 ²	123	72	186	21		
12 Mg ha ⁻¹ biossólido	0	36 ²	102	144	372	42		
18 Mg ha ⁻¹ biossólido	0	36 ²	81	216	558	63		
24 Mg ha ⁻¹ biossólido	0	36 ²	60	288	744	84		

¹ Teores médios de N, P₂O₅ e K₂O dos dois lotes de biossólido em base seca, considerando a disponibilidade anual de: 20% para N (Cetesb, 1999), 50% para P₂O₅ e 100% para K₂O (Companhia de Saneamento do Paraná, 1997); ² Somente no segundo ano, os tratamentos com biossólido foram complementados com superfosfato triplo para suprir 30% do P₂O₅ aplicado no tratamento com adubação mineral.

No segundo cultivo de milho procedeu-se à capina e ao preparo do solo com uso de enxadas, repetindo-se nas mesmas parcelas os tratamentos do ano anterior. Esse procedimento foi adotado devido ao teor de N no lote de biossólido empregado no segundo cultivo permanecer muito próximo ao do utilizado no cultivo anterior. Devido a deficiências foliares de P no primeiro cultivo de milho, no segundo, os tratamentos com biossólido receberam suplementação com 30% de P_2O_5 do total adicionado no tratamento com

adubação mineral. Os experimentos receberam todos os tratos culturais e devido ao ataque de lagarta do cartucho, aplicou-se vexter (0,8 L ha⁻¹) nos dois cultivos de milho.

A fertilidade do solo foi avaliada por meio de amostragens da camada de 0 a 20 cm de cada parcela, aos 30 dias de cada aplicação do biossólido, antes da semeadura do milho. O pH foi determinado em água, na relação solo:água de 1:2.5: S-SO₄-2 foi extraído por fosfato monocálcico em ácido acético e determinado por turbidimetria; H+Al determinada indiretamente em solução SMP e quantificada em potenciômetro; Ca, Mg e Al trocáveis, foram extraídos com KCl 1 mol L-1 e determinados por titulometria; P, K e Na foram extraídos por Mehlich 1 e analisados, por colorimetria (P) e fotometria de chama (K e Na), conforme Vettori (1969), com modificações da Embrapa (1997). O carbono orgânico (C.O.) foi determinado por oxidação a quente com dicromato de potássio e titulação com sulfato ferroso amoniacal (Walkley & Black, 1934). Zinco, Cu, Mn, Fe, Cd, Ni e Pb foram extraídos por Mehlich 1 e determinados por espectrofotometria de absorção atômica. O N-total foi determinado por digestão Kjeldahl (Bremner & Mulvaney, 1982) e N-NH₄ e N-NO₃ por destilação (Keeney & Nelson, 1982). Os valores de CTC efetiva (t); CTC a pH 7.0 (T), soma de bases (S) e as porcentagens de saturação por bases (V%) e por alumínio (m), foram obtidos de forma indireta, utilizando os valores de acidez potencial, bases trocáveis e alumínio trocável. A porcentagem de sódio trocável (PST) foi calculada pela formula: [(100 x Na)/T].

O estado nutricional das plantas foi avaliado por diagnose foliar, por ocasião do aparecimento da inflorescência feminina, sendo analisada a folha localizada abaixo e em posição oposta à espiga inferior, conforme Malavolta et al. (1997). As folhas colhidas foram lavadas em água destilada e secas em estufa com circulação de ar à temperatura de 65 a 70°C, até atingir peso constante. Em seguida foram moídas e armazenadas em frascos de vidro para as determinações

químicas. No extrato obtido por digestão nitroperclórica determinaram-se os teores de macro e micronutrientes, metais pesados e Na, conforme métodos descritos em Malavolta et al. (1997).

Ao final do ciclo da cultura procedeu-se à colheita e, quando os grãos apresentaram umidade entre 12 e 13% realizou-se a pesagem. O efeito da aplicação do biossólido na produtividade do milho e a equivalência entre dose de biossólido e adubação mineral foram estimados por curvas de resposta, ajustando-se equações de regressão para a produtividade média de grãos em kg ha-1 (y) em função das doses de biossólido (x). Para o cálculo da produtividade relativa, conforme Corrêa & Corrêa (2001), considerou-se a produtividade alcançada com a adubação mineral como 100% e a porcentagem desta, nas diferentes doses de biossólido, utilizando-se a seguinte fórmula: PR = (PB/PM) x 100, em que PR = produtividade relativa (%), PB = produtividade no tratamento com biossólido (kg de grãos ha-1) e PM: produtividade média no tratamento com adubação mineral (kg de grãos ha-1).

A viabilidade de utilização do biossólido foi avaliada em função de sua capacidade em fornecer nutrientes e, assim, aumentar a produtividade do milho nos dois anos agrícolas. Para os cálculos do valor econômico, utilizou-se do método de mercado de bens substitutos de Seroa da Mota (1998), sendo considerados os índices da Gazeta Mercantil (www.gazeta.com.br) de 22 a 26 de setembro de 2003. Assim, a receita bruta foi estimada considerando-se o valor de R\$ 20,00 saca-1 de 60 kg de milho e a receita líquida foi obtida descontando-se da receita bruta, os custos com fertilizantes: R\$ 0,84 kg-1 de NPK na fórmula 4-30-16 + Zn; R\$ 0,89 kg-1 de uréia; R\$ 0,69 kg-1 de KCl e R\$ 1,16 kg-1 de superfosfato triplo. Os custos com preparo do solo, calagem, semeadura, tratos culturais e colheita foram considerados como fatores constantes em todos os tratamentos e, portanto, desconsiderados nesta avaliação. Os lucros obtidos nos tratamentos com biossólido em relação à adubação mineral foram calculados

pela diferença entre as receitas líquidas da produção.

Considerou-se a distância máxima economicamente viável entre a ETE geradora e o local de aplicação, aquela em que o valor fertilizante do biossólido (base úmida) foi igual ao de seu frete (Silva et al., 2002b), considerando R\$ 1,60 km⁻¹ (ida/volta) para o frete de 12 Mg, conforme http://www.agroinform.com.br, em setembro de 2003.

Os efeitos dos tratamentos foram avaliados por meio de análises de variância, teste de médias e regressão para doses de biossólido, utilizando-se o programa estatístico SISVAR (Ferreira, 1999).

2.3 RESULTADOS E DISCUSSÃO

Fertilidade do solo

Os efeitos dos tratamentos na fertilidade do solo são apresentados na Tabela 2.3.1. Os teores de matéria orgânica aumentaram com as doses crescentes de biossólido, principalmente após a segunda aplicação. No entanto, esse aumento no teor de matéria orgânica não resultou em aumento da CTC a pH 7,0 do solo (T), conforme verificado por Melo & Marques (2000) e Santos et al. (2003). Como o biossólido utilizado apresenta baixos teores de Ca, Mg e K (Tabela 2.2.1), o aumento da T, da soma de bases (S) e da saturação por bases (V%), verificado após a primeira aplicação, pode ser justificado pela proximidade da adição de calcário dolomítico, rico em Ca e Mg. Verificou-se diminuição do pH e aumento da acidez potencial (H + Al) e do alumínio trocável, com conseqüente aumento da saturação por alumínio (m), com a aplicação do biossólido. Isto pode ser explicado, em parte, pelo fato deste resíduo ser produzido sem adição de calcário, apresentando, por isso, baixa eficiência corretiva. Também a mineralização do N orgânico e a subsequente nitrificação podem ter contribuído para a acidificação do solo.

TABELA 2.3.1 Atributos químicos do solo nos diferentes tratamentos, 30 dias após a aplicação de biossólido, nos anos agrícolas 1999/2000 e 2000/2001¹¹

		2000/2001									
Atributo	1999/2000 Controle e Biossólido, Mg ha ⁻¹					controle	Adubação	Biossólido, Mg ha ⁻¹			
	adubação mineral	6	12	18	24	•	mineral	6	12	18	24
pH _{H2O} (1:2,5)	6,3 a	6,3 a	6,4 a	6,2 ab	5,9 b	5,9 a	5,9 a	5,6 ab	5,2 bc	5,2 bc	4,8 c
N-total, g kg ⁻¹	1,3 b	1,5 b	1,7 b	2,2 a	2,5 a	1,2 d	1,5 cd	1,8 c	2,2 b	2,4 ab	2,8 a
N-NO ₃ , mg dm ⁻³	17 e	69 d	102 c	114 b	131 a	15 e	40 d	76 c	118 b	123 b	134 a
N-NH4 , mg dm ⁻³	25,5 c	55,8 b	57,8 b	58,2 b	64,2 ab	21,4 c	29,8 d	38,1 c	49,6 b	53,9 ab	64,4 s
P, mg dm ³	2,0 c	6,0 b	6,0 b	9,0 a	10,0 a	1,5 d	3,5 d	10,7 c	22,2 b	21,2 b	37,8 €
K, mg dm³	117 ab	118 ab	122 ab	123 ab	125 a	106 d	147 a	114 cd	115 c	121 bc	127 b
Ca, cmol, dm ⁻³	4,2 a	4,3 a	4,2 a	4,4 a	4.4 a	4,4 a	4,7 a	4,3 ab	4,3 ab	3,9 bc	3,8 c
Mg, cmol. dm ⁻³	1,7 c	2,1 bc	2,7 ab	2,9 a	2,9 a	2,3 ab	2,7 a	2,2 b	1,9 b	2,1 b	1,3 c
Al, cmol, dm 3	0 a	0 a	0 a	Óa	Óв	0,0 d	0,0 d	0,05 c	0,16	0,1 b	0,2 a
H+Al, cmol _e dm ⁻³	3,6 a	2,9 Ь	2,3 c	2,6 bc	3,6 a	2,2 d	2,2 d	2,5 cd	3,0 bc	3,3 b	4,5 a
S-SO, me dm ⁻³	31 d	59 c	83 b	101 a	108 a	19 e	32 d	188 c	278 b	292 b	376 a
8-SO ₄ , mg dm ³ B, mg dm ³	•	•	•	•	-	0,7 a	0,9 a	0,7 a	0,7 a	0,8 a	0,9 a
Zn, mg dm ³	0,4 b	2,3 a	2,3 a	2,6 a	2,6 a	0,3 d	2,1c	2,5 c	4,9 b	3,9 b	7,5 a
Cu, mg dm ³	0,7 bc	1,3 a	1,0 ab	0,9 abc	0,7 bc	0,5 e	0,9 cd	0,8 de	1,2 bc	1,4 ab	1,6 a
Pb, mg dm ³	1,3 a	1,2 a	l ab	1 ab	0,7 b	2,0 a	1,2 b	1,8 ab	1,9 ab	1,8 ab	1,9 a
Ni, mg dm ⁻³	.,	.,	•	•	-,-	0,1 c	0,1 c	0,2 bc	0,4 abc	0,5 ab	0,6 a
Pe, mg dm ⁻³	20 c	23 bo	24 b	26 b	30 a	22 e	40 d	47 c	57 b	56 b	72 a
Mn, mg dm ³	6 b	7,9 ab	8,3 a	8,4 a	9,5 a	6,0 bc	6,5 b	5,7 c	5,9 bc	7,7 ab	9,6 a
Na, mg dm ⁻³	7,4 e	15 d	20 c	31 b	42 a	4,3 d	10 c	13 c	20 b	21 b	35 a
nan ay Ma' mg am	0,3 e	0,7 d	0,9 c	1,3 b	1,6 a	0,2 d	0,5 cd	0,60	0,9 b	1,0 b	1,5 a
PST, %	25 c	25 c	28 bc	32 b	36 a	27 e	31 d	37 c	42 b	44 ab	47 a
C.O., g kg 1				7,5 a	7,6 a	6,9 b	7,8 a	6,8 b	6,5 b	6,3 b	5,4 0
8, cmol _e dm ⁻³	6,2 b	6,7 ab	7,2 ab			9,2 a	9,9 a	9,2 a	9,5 a	9,6 a	9,9 a
T, cmol _e dm ⁻¹	9,8 b	9,6 b	9,5 b	10,2 ab	11,2 a		7,8 a	6,8 b	6,6 b	6,4 b	5,6 c
t, emol _e dm ⁻³	6,2 b	6,7 ab	7,2 ab	7,5 a	7,6 a	7,0 b			68 b	66 b	55 c
V, %	63 d	70 bc	76 a	74 ab	68 cd	76 a	78 a	73 a	1,5 b	1,6 b	3,6 8
m, %	0 a	O a	0 в	0 a	0 a	<u>0 d</u>	0d	0,7 c			

^{II} Médias seguidas da mesma letra na horizontal não diferem entre si (Tukey, P<0,05) dentro de cada ano agricola; Soma de Bases (S) = Ca + Mg + K + Na; CTC a pH 7 (T) = S + (H + Al); CTC efetiva (t) = S + Al; Porcentagem de Saturação por bases (V%) = (100.SB)/T; Saturação por alumínio (m) = (100.Al)/t; Porcentagem de Sódio Trocável (PST) = [(100 x Na)/T]; Cd = 0,1 em todos os tratamentos.

De fato, os teores de N-NH₄ e N-NO₃ aumentaram com a aplicação do biossólido, corroborando com os resultados de Vazquez-Montiel et al. (1996) e Boeira et al. (2002). Além disso, a biodegradação da matéria orgânica decomponível também pode causar acidificação transiente no solo, devido à produção de ácidos orgânicos (Camargo et al., 1999).

O aumento nos teores de P, SO₄, N (N-total, N-NH₄⁺ e N-NO₃⁻), Zn, Cu, Mn, Fe e Ni, principalmente após a segunda aplicação nas parcelas já cultivadas com milho, indicam efeito residual do biossólido, que representa um reservatório de nutrientes a serem liberados após a mineralização da matéria orgânica, conforme relatado por Melo & Marques (2000). Por outro lado, o baixo teor de K do biossólido fez com que, somente com a dose máxima, o teor deste nutriente fosse significativamente maior que o tratamento controle após a primeira aplicação, justificando a complementação desse biossólido com fertilizante mineral, como foi feito.

Quanto aos teores de Cd e Pb, mesmo na dose máxima de biossólido e após duas aplicações, estes foram muito inferiores aos limites máximos para carga acumulada, 19,5 e 150 mg kg⁻¹, para Cd e Pb, respectivamente (Cetesb, 1999).

O teor e a porcentagem de Na trocável (PST) aumentaram significativamente com as doses de biossólido. Após a segunda aplicação, o teor de Na no solo que recebeu a dose máxima de biossólido foi 8 vezes superior ao encontrado no tratamento controle. No entanto, a PST foi de apenas 1,5%, 10 vezes menor que o limite tolerado por plantas sensíveis a Na, para as quais, segundo Ayers & Westcot (1991) a PST máxima é de 15%. Portanto, a concentração de Na no solo, mesmo após as duas aplicações da dose máxima de biossólido, não atingiu níveis considerados tóxicos, não representando limitação ao uso agronômico deste resíduo.

Estado nutricional do milho

Os resultados da diagnose foliar das plantas de milho indicam que a melhoria da fertilidade do solo refletiu em aumentos nos teores foliares de nutrientes, especialmente de N, P, Cu, Fe e Zn que, com exceção de Fe, responderam linearmente às doses de biossólido nos dois cultivos (Figura 2.3.1).

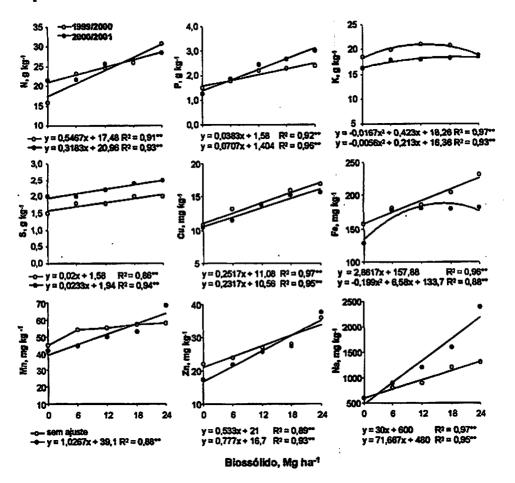


FIGURA 2.3.1 Teores foliares médios de macro e micronutrientes e de sódio em plantas de milho cultivadas em Cambissolo distrófico tratado com doses crescentes de biossólido industrial nos anos agrícolas 1999/2000 e 2000/20001.

Os teores foliares de nutrientes e de metais pesados apresentados no

tratamento com 12 Mg ha⁻¹ de biossólido (equivalente à adubação nitrogenada) não diferiram significativamente dos alcançados com a adubação mineral, exceto para Cu e Na, que foram superiores, no primeiro e nos dois anos de cultivo, respectivamente, com a aplicação desta dose (Tabela 2.3.2). No entanto, alguns nutrientes, em determinados tratamentos, apresentaram teores abaixo da faixa considerada adequada para plantas de milho (Malavolta et al., 1997). Para N. nos dois cultivos, o teor foliar considerado adequado só foi alcançado com a aplicação da dose máxima de biossólido, mas sintomas visuais de deficiência deste nutriente, como clorose e secamento das folhas mais velhas e colmos finos (Malavolta & Dantas, 1987), só foram observados no controle. No caso do P. o teor foliar se aproximou da faixa considerada adequada no primeiro cultivo, somente com a aplicação da dose máxima de biossólido. No segundo cultivo, os teores foliares atingiram a faixa considerada adequada, no tratamento com adubação mineral e nas doses mais altas de biossólido. No entanto, é preciso considerar que, além do provável efeito residual da primeira aplicação, os tratamentos com biossólido receberam suplementação com superfosfato triplo. Goh & Condron (1989) também detectaram deficiência em P em plantas de azevém cultivadas em solo de Nova Zelândia, tratado por mais de 80 anos com biossólido de origem urbana. Eles verificaram que com a aplicação sucessiva de biossólido, embora tenha aumentado os teores de P-total no solo, cerca de 40% deste, encontrava-se na fração P-orgânico, que é altamente estável no solo e indisponível às plantas. Essa estabilidade do P-orgânico, quando adicionado ao solo via biossólido, pode justificar os baixos teores foliares de P nas plantas de milho do primeiro cultivo.

Com relação aos teores foliares de K, Ca, Mg e S, verificou-se que, no primeiro cultivo, estes nutrientes alcançaram a faixa adequada em todos os tratamentos, inclusive no controle. Houve tendência de aumento destes nutrientes com as doses crescentes de biossólido, porém não significativos.

61

TABELA 2.3.2 Teores foliares médios de macro e micronutrientes, metais pesados e sódio em plantas de milho, nos diferentes tratamentos em cada ano agrícola, e teores considerados adequados para esta cultura¹¹

Elemento			1999/	2000			2000/2001						Teores
	controle	Adubação	io Biossól		do, Mg ha		controle	Adubação	1	Biossólido,	Mg ha'		adequados
	401111010	mineral	6	12	18	24		mineral	6	12	18	24	
			g k						g kgʻ				
N	16 c	22 bc	23 Ծ	24 ab	26 ab	31 a	21 c	25 abc	22 bc	26 ab	27 a	28 a	27,5 - 32,5 ^{\(\)}
P	1,5 d	1,7 cd	1,8 bcd	2,2 abc	2,3 ab	2,4 a	1,2 c	2,5 ab	1,9 bc	2,4 ab	2,7 a	3,0 a	2,5 - 3,5 ¹²
K	18 b	18 b	20 ab	21 a	21 a	19 ab	16 b	17 ab	17 ab	18 a	18 a	18 a	17,5 - 22,5 ³
Ca	4,8 b	5,5 ab	5,3 ab	5,4 ab	5,4 ab	5,8 a	3,0 a	3,1 a	3,1 a	3,1 a	3,3 a	3,7 a	2,5 - 4,0 ¹²
Mg	3,3 a	3,9 a	3,3 a	3,5 a	3,6 a	3,7 a	3,0 a	3,1 a	3,1 a	3,1 a	3,2 a	3,4 a	$2,5 - 4,0^{12}$
S	1,5 b	1,4 b	1,8 ab	1,8 ab	2,0 a	2,0 a	2,0 bc	2,2 abc	2,0 bc	2,2 abc	2,4 ab	2,5 a	1,5 - 2,0 ^{\2}
3	1,50		mg				-		mg kg	· · · · · · · · · · · · · · · · · · ·			
В	10 a	11 a	ll a	11 a	11 a	11 a	8a -	8 a	9a `	10 a	10 a	11 a	15 - 20 ¹²
Cu	11 de	10 e	13 cd	14 bc	16 ab	17 a	10 d	13 bod	11 cd	14 abc	15 ab	16 a	6 - 20 ¹²
Fe	158 b	167 b	181 ab	186 ab	205 ab	232 a	128 b	158 ab	178 a	181 a	180 a	181 a	50 - 250 ^{\2}
Mn	45 a	56 a	54 a	55 a	57 a	58 a	42 b	45 b	44 b	50 ab	53 ab	68 a	50 - 150 ¹²
Zn	22 b	24 b	27 ab	27 ab	28 ab	36 a	17 c	21 bc	22 bc	26 b	27 b	38 a	15 - 50 ¹²
Cd	0,1 a	0,1 a	0,1 a	0,1 a	0,1 a	0,1 a	0,1 a	0,1 a	0,1 a	0,1 a	0,1 a	0,1 a	0,05 - 0,2 ^{\3}
Pb	2,5 a	3,6 a	3,5 a	3,7 a	4,2 a	4,3 a	3,5 a	3,9 a	3,8 a	3,7 a _	_ 4,4 a	4,6 a	5 - 10 ¹³
Ni	2,4 a	2,2 a	3,2 a	3,4 a	3,4 a	4,2 a	2,3 a	2,7 a	3,4 a	3,9 a	4,2 a	4,7 a	0,1 - 5 ^{\2}
Na	600 c	600 c	800 bc	900 ab	1200 a	1300 a	600 c	700 c	900 bc	1200 ab	1600 a	2400 a	¥

¹¹ Médias seguidas da mesma letra na horizontal não diferem entre si (Tukey, P<0,05) dentro de cada ano agrícola; ¹² teores adequados para folha oposta e abaixo da espiga inferior no florescimento (Malavolta et al., 1997); ¹³ Concentrações suficientes ou normais em tecidos de folhas maduras de várias espécies (Kabata-Pendias & Pendias, 1984); ¹⁴ Não encontrado em literatura.

No segundo plantio, somente no tratamento controle, o teor de K foi inferior à faixa adequada, apresentando resposta quadrática às doses de biossólido, que pode ser justificada pelo aumento dos teores de Na no solo e na planta, que exerce efeito antagônico sobre o K, devido à competição entre estes ions pelos sítios de absorção na plasmalema (Marshner, 1995).

Os teores foliares de S, nas plantas do segundo cultivo foram superiores à faixa adequada, quando tratadas com as doses mais elevadas de biossólido, provavelmente devido ao efeito residual da primeira aplicação. Mesmo assim, não foram identificados sintomas de toxicidade de S nas plantas de milho. Em relação aos micronutrientes, verifica-se que, com exceção de B e Mn, os demais elementos alcançaram a faixa considerada adequada para plantas de milho em todos os tratamentos, nos dois cultivos. Os aumentos significativos nos teores foliares de Cu, Fe e Zn nos dois anos e de Mn, a partir do segundo ano de aplicação, evidenciam o potencial desse biossólido em fornecer esses nutrientes.

Não houve efeito significativo das doses de biossólido nos teores foliares de Cd, Pb e Ni nas plantas de milho. Estes foram mantidos na faixa considerada "normal" por Kabata-Pendias & Pendias (1984) para tecidos de folhas maduras de várias espécies. Isto se deve ao fato do biossólido apresentar estes metais em teores muito inferiores aos limites restritivos ao uso agrícola (Tabela 2.2.1).

Os teores foliares de Na aumentaram linearmente em resposta às doses de biossólido, mas sintomas de toxicidade, como queimaduras ao longo das bordas e necroses, principalmente nas folhas mais velhas (Marschner, 1995), não foram observados no milho, que é considerado sensível a esse elemento (Ayers & Westcot, 1991). A ausência de sintomas de toxicidade ocorreu mesmo em plantas do segundo cultivo, tratadas com a dose máxima de biossólido, nas quais o teor foliar de Na atingiu 2,4 g kg⁻¹, próximo ao limite de 2,5 g kg⁻¹ para plantas sensíveis a sódio (Lima, 1997).

Produtividade do milho

A aplicação do biossólido melhorou a fertilidade do solo e o estado nutricional do milho, promovendo aumentos consistentes na produtividade de grãos, nos dois anos de cultivo. As curvas de resposta da produtividade do milho às doses de biossólido apresentaram melhor ajuste à regressão polinomial de segundo grau, alcançando produtividades máximas de 8.188 e 11.800 kg ha⁻¹ de grãos, com a aplicação de 22 e 23 Mg ha⁻¹ de biossólido em base seca, no primeiro e segundo cultivo, respectivamente (Figura 2.3.2).

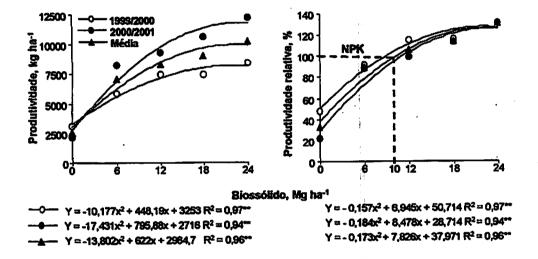


FIGURA 2.3.2 Produtividade (kg de grãos ha⁻¹) e produtividade relativa (% da adubação mineral) do milho em resposta às doses crescentes de biossólido nos anos agrícolas 1999/2000 e 2000/2001.

A produtividade máxima de 8.188 kg ha⁻¹, logo no primeiro ano, foi superior aos 6.863 kg ha⁻¹ encontrados por Silva et al. (2002b), com a aplicação de 24 Mg ha⁻¹ em base seca do biossólido de esgoto urbano, produzido pela CAESB, ETE-norte, em Brasília, DF, em Latossolo Vermelho distrófico. No entanto, em outro experimento, desenvolvido sob as mesmas condições, Silva & Lemainski (2003) verificaram que a aplicação de 5,7 Mg ha⁻¹ base seca deste

B partition of

biossólido resultou na produtividade máxima de 7.600 kg ha⁻¹ de grãos de milho. Essa discrepância entre doses e produtividades máximas alcançadas com a aplicação de lotes diferentes do biossólido produzido pela CAESB pode ser justificada pela grande variabilidade nas concentrações de nutrientes e de metais pesados que compõem este resíduo (Silva et al., 2002b), o que não ocorre com o biossólido avaliado no presente estudo. Este, por ser gerado de processo industrial, mantém relativamente constantes os teores de matéria orgânica, de nutrientes e de metais pesados (Tabela 2.2.1).

Por outro lado, Biscaia & Miranda (1996) obtiveram a produtividade máxima de 7.620 kg ha¹ de grãos de milho, com a aplicação de 60 Mg ha¹ em base seca de biossólido, da ETE-Belém, em Curitiba, PR, inferior às alcançadas com doses bem menores do biossólido aqui avaliado, evidenciando o potencial desse resíduo como insumo para o milho. A maior produtividade de grãos no segundo ano de cultivo, com exceção do tratamento controle, foi, provavelmente, devido ao efeito residual dos tratamentos, especialmente daqueles com biossólido.

A equivalência à adubação mineral, estimada pelas equações ajustadas, foi alcançada com as doses de 9 e 11 Mg ha⁻¹ de biossólido, para o primeiro e segundo ano, respectivamente (Figura 2.3.2). Assim, a aplicação de uma dose média de 10 Mg ha⁻¹ de biossólido base seca, complementada com K₂O, em substituição ao fertilizante nitrogenado e 70% do fosfatado, foi suficiente para manter a produtividade do milho, alcançada com a adubação mineral média dos dois anos. Esta é uma referência técnica da viabilidade agronômica desse biossólido para a cultura do milho em Cambissolo distrófico da região de Poços de Caldas. Considerando essa dose de 10 Mg ha⁻¹ de biossólido base seca como referência, a produção média atual de biossólido pela empresa produtora que é de 40 Mg dia⁻¹ com 80 dag kg⁻¹ de umidade (8 Mg dia⁻¹ base seca), seria suficiente para adubar 24 ha mês⁻¹ ou, ainda, 288 ha ano⁻¹ de lavouras de milho

na região. No entanto, dependendo do interesse do agricultor, das características do solo e, principalmente, da distância do local de aplicação em relação à fonte geradora, doses maiores desse biossólido poderão ser aplicadas, visto que a produtividade máxima, média dos dois anos (9.992 kg ha⁻¹ de grãos), só foi atingida com a dose de 22,5 Mg ha⁻¹ de biossólido base seca, sendo esta 27% superior em relação à adubação mineral e 86% em relação ao controle. Estudos semelhantes desenvolvidos na região de Curitiba também verificaram aumentos na produtividade do milho que variaram de 30% a 77% com a aplicação de biossólidos de esgoto urbano comparada ao tratamento controle (Andreoli et al., 1999), evidenciando o potencial de aplicação desses resíduos em substituição total ou parcial aos fertilizantes minerais.

Valor agronômico

Uma análise dos ganhos em produção e custos com insumos aplicados (Tabela 2.3.3) indica que o aumento da produtividade do milho e a diminuição dos custos com fertilizantes minerais, em resposta ao aumento das doses de biossólido, refletiram em acréscimos na receita líquida parcial e lucros em relação à adubação mineral. Mesmo com a aplicação da menor dose de biossólido, houve lucro de R\$145,00 ha⁻¹ comparado à adubação mineral, mas o máximo de R\$1269,00 ha⁻¹ foi alcançado com a aplicação de 24 Mg ha⁻¹. No entanto, é preciso considerar os custos com transporte e aplicação desse resíduo no solo. De fato, Silva et al. (2002b) observaram que, apesar da maior produção de milho ter sido alcançada com 24 Mg ha⁻¹ base seca de biossólido, esta foi a que produziu a menor receita líquida, devido aos maiores custos com frete. Após 3 anos da aplicação, a maior receita líquida foi obtida com 6 Mg, a menor dose aplicada. Portanto, a viabilidade econômica do biossólido depende de sua eficiência em substituir parcialmente ou atingir equivalência à adubação mineral, pois o elevado teor de umidade encarece muito o transporte e a aplicação.

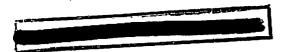


TABELA 2.3.3 Receita bruta, custos com adubação, receita líquida e lucro em relação à adubação mineral para a produtividade média de milho dos anos agrícolas, 1999/2000 e 2000/2001

Tratamento	P	rodutividad	c	Saca	Receita	Custo da	Receita	Lucro à
•	1999/ 2000	2000/ 2001	Média	60 kg	bruta ¹	adubação <u>mineral²</u>	líquida parcial ³	adubação mineral
		kg ha'		nº ha-l		R\$	ha'	
Controle	3085c	2089c	2.587d	43	860	•	860	•
Adub. mineral	641 6 b	9375ab	7.895bc	132	2640	682	1958	•
6 Mg ha 1 bios.	5830ъ	8271b	7.051c	118	2360	257	2103	+ 145
12 Mg ha ⁻¹ bios.	7412ab	9297ab	8.354bc	139	2780	242	2538	+ 580
18 Mg ha'l bios.	7441ab	10600ab	9.021ab	150	3000	227	2773	+ 815
24 Mg ha-1 bios.	8398a	12251a	10.325a	172	3440	213	3227	+ 1269

Médias seguidas pela mesma letra na coluna não diferem entre si (Tukey, P<0,05); ¹Receita bruta: preço médio pago pela saca de 60 kg = R\$20,00 ao produtor de Minas Gerais (Gazeta Mercantil, periodo de 22 a 26/09/2003); ²Custo de fertilizantes em setembro de 2003 (kg¹): NPK (4-30-16 + Zn) = R\$0,84; Uréia = R\$ 0,89; KCl = R\$ 0,69 e Superfosfato triplo = R\$ 1,16; ³Não foram considerados os custos com transporte e aplicação do lodo, somente com fertilizantes minerais; ⁴Lucro = diferença entre a receita líquida parcial dos demais tratamentos em relação à adubação mineral (4-30-16 + Zn).

Considerando que, no presente estudo, a equivalência em produtividade de milho à adubação mineral, no valor de R\$682,00, foi alcançada com a dose média de 10 Mg ha¹, descontando-se a suplementação com K2O e P2O3 de R\$245,00; o valor do biossólido foi estimado em R\$43,70 Mg¹ em base seca e R\$8,74 Mg¹ em base úmida (80 dag kg¹ de água). Assumindo-se o custo do frete de R\$1,60 km¹ para transporte de 12 Mg de biossólido úmido, cujo valor fertilizante é de R\$105,00, a distância máxima, economicamente viável para aplicação desse resíduo, é de 66 km da fonte geradora. Por outro lado, os custos da empresa para manter o biossólido em lagoas e fazer co-processamento são, atualmente, de R\$100,00 e R\$300,00 Mg¹, respectivamente, muito elevados, se comparados com o custo do frete de R\$0,15 Mg¹ km², para a reciclagem agrícola. Assim, o transporte até o local de aplicação poderia ser subsidiado pela empresa geradora, garantindo vantagens ao agricultor, cuja propriedade atenda às condições geológicas, topográficas e ambientais para a aplicação deste tipo de resíduo. A reciclagem agrícola é, portanto, uma alternativa viável para a empresa

geradora do biossólido e para os agricultores que poderão reduzir despesas com fertilizantes minerais e garantir a produtividade, sendo necessário, no entanto, a elaboração de planos técnicos de aplicação que obedeçam à legislação e garantam a aplicação segura do resíduo.

2.4 CONCLUSÕES

- \bullet O biossólido da indústria de fibras e resinas PET suplementado com K_2O e P_2O_5 melhorou a fertilidade do solo, o estado nutricional e a produtividade, sendo agronomicamente viável como insumo para a cultura do milho.
- Os teores de metais pesados e de sódio no biossólido não limitaram a utilização agronômica deste resíduo.
- A dose de 10 Mg·ha⁻¹ de biossólido em base seca, suplementada com K₂O e
 30% da exigência em P₂O₅, foi suficiente para manter a produtividade equivalente à obtida com adubação mineral completa.
- O valor fertilizante do biossólido, baseado em sua equivalência em NPK foi estimado em R\$ 43,70 Mg⁻¹ em base seca e R\$ 8,74 Mg⁻¹ em base úmida e, considerando o custo de transporte, a aplicação deste pode ser economicamente viável a uma distância de 66 km da fonte geradora.

2.5 REFERÊNCIAS BIBLIOGRÁFICAS

ANDREOLI, C. V.; LARA, A. I.; FERNANDES, F. Reciclagem de biossólidos: transformando problemas em soluções. Curitiba: Sanepar/Finep, 1999. 288 p.

AYERS, R. S.; WESTCOT, D. W. A qualidade da água na agricultura. Campina Grande: UFPB. Tradução de GHEYI, H. R.; MEDEIROS, J. F.; DAMACENO, F. A. V., 1991. 218 p. (Estudos FAO: Irrigação e Drenagem, 29, Revisado).

BETTIOL, W.; CAMARGO, O. A. Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna, SP: Embrapa Meio Ambiente, 2000. 312 p.

BISCAIA, R. C. M.; MIRANDA, G. M. Uso do lodo de esgoto calado na produção de milho. Sanare, Curitiba, v. 5, n. 4, p. 86-89, 1996.

BOEIRA, R. C.; LIGO, M. A. V.; DYNIA, J. F. Mineralização de nitrogênio em solo tropical tratado com lodos de esgoto. Pesquisa Agropecuária Brasileira, Brasilia, v. 37, n. 11, p. 1639-1647, nov. 2002.

BREMNER, J. M.; MULVANEY, R. L. Nitrogen – total. In: PAGE, A. L.; MILLER, R. H.; KEENEY, D. K. (Ed.). Methods of soil analysis. Part 2 – Chemical and Microbiological Properties. Wisconsin: Soil Science of America, 1982. p. 595-616.

CAMARGO, F. A. O.; SANTOS, G. A.; GUERRA, J. G. M. Macromoléculas e substâncias húmicas. In: SANTOS, G. A.; CAMARGO, F. A. O. Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais. Porto Alegre: Gênesis, 1999. 508 p.

COMISSÃO DE FERTILIDADE DO SOLO DO ESTADO DE MINAS GERAIS. Recomendações para uso de corretivos e fertilizantes em Minas Gerais: 5º Aproximação. Viçosa-MG, 1999. 359 p.

COMPANHIA DE SANEAMENTO BÁSICO DO PARANÁ - SANEPAR. Manual técnico para utilização do lodo de esgoto no Paraná. Curitiba: SANEPAR, 1997. 96 p.

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL - CETESB. Aplicação de lodos de sistemas de tratamento biológico em áreas

agrícolas: critérios para projeto e operação. São Paulo, 1999. p. 4. 230. (Manual Técnico).

CORRÊA, R. S.; CORRÊA, A. S. Valoração de biossólidos como fertilizantes e condicionadores de solos. Sanare, Curitiba, v. 16, n. 2, p. 49-56, 2001.

EATON, A. D.; CLESCERI, L. S.; GRENNBERG, A. E. Standard methods for the examination of water and wastewater. 19. ed. Washington: APHA, AWWA, WEF, 1995. 1082 p.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solos. 2. ed. Rio de Janeiro: EMBRAPA-CNPS, 1997. 212 p.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro, 1997. 212 p. (EMBRAPA-CNPS, Documentos, 1).

FERREIRA, A. C.; ANDREOLI, C. V.; JÜRGENSEN, D. II- Destino final do lodo. In: ANDREOLI, C. Programa de Pesquisa em Saneamento Básico: uso e manejo do lodo de esgoto na agricultura, Rio de Janeiro: PROSAB, 1999. 97 p.

FERREIRA, A. S.; CAMARGO, F. A. O.; TEDESCO, M. J.; BISSANI, C. A. alterações de atributos químicos e biológicos de solo e rendimento de milho e soja pela utilização de resíduo de curtume e carbonífero. Revista Brasileira de Ciência do Solo, Viçosa, v. 27, n. 3, p. 755-763, maio/jun. 2003.

FERREIRA, D. F. SisVar - programa estatístico. Versão 4. 2 (Build 39). 1999-2003. Departamento de Ciências Exatas, Universidade Federal de Lavras.

GOH, K. M.; CONDRON, L. M. Plant availability of phosphorus accumulated from long-term applications of superphosphate and effluent to irrigated pastures. New Zealand of Agricultural Research, Wellington, v. 32, n. 1, p. 45–51, 1989.

KABATA-PENDIAS, A.; PENDIAS, H. Trace elements in soils and plants. Boca Raton: CRC Press, 1984. 315 p.

KEENEY, D. R.; NELSON, D. W. Nitrogen organic forms. In: PAGE, A. L. (ed.) Methods of soil analysis: chemical and microbiological properties. 2.

- ed. Madison: American Society of Agronomy/Soil Science Society of America, 1982. cap. 33. p. 643-698.
- KIEHL, E. J. Fertilizantes orgânicos. Piracicaba: Agronômica Ceres, 1985. 492 p.
- KONRAD, E. E.; CASTILHOS, D. D. Alterações químicas do solo e crescimento do milho decorrentes da adição de lodos de curtume. Revista Brasileira de Ciência do Solo, Viçosa, v. 26, n. 1, p. 257-265, jan./mar. 2002.
- LIMA, L. A. Efeitos de sais no solo e na planta. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 26., 1977, Campina Grande. Manejo e Controle da Salinidade na agricultura irrigada. Campina Grande: UFPB/SBEA, 1997. Cap. 4, p. 113-136.
- MALAVOLTA, E.; DANTAS, J. P. Nutrição e adubação do milho. In: PATERNIANI, E.; VIEGAS, G. D. Melhoramento e produção do milho. 2. ed. Campinas: Fundação Cargill, 1987. p. 541-593.
- MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2. ed. Piracicaba: POTAFOS, 1997. 319 p.
- MARSCHNER, H. Mineral nutrition of higher plant. 2. ed. New York: Academic Press, 1995. 889 p.
- MELO, W. J.; MARQUES, M. O. Potencial do lodo de esgoto como fonte de nutrientes para as plantas. In: BETTIOL, W.; CAMARGO, O. A. Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna, SP: EMBRAPA Meio Ambiente, 2000. p. 109-141.
- RAIJ, B. V. Uso Agrícola de Biossólidos. In: SEMINÁRIO SOBRE GERENCIAMENTO DE BIOSSÓLIDOS NO MERCOSUL, 1., 1998, Curitiba. Anais... Curitiba: SANEPAR/ABES, 1998. p. 147-151.
- RAIJ, B. V.; CANTARELA, H. GUAGGIO, J. A.; FURLANI, A. M. C. Recomendações de adubação e calagem para o estado de São Paulo. 2. ed. Campinas: Instituto Agronômico e Fundação IAC, 1997. 285 p.
- SANTOS, D. S.; ANDRADE, C. A.; MATTIAZZO, M. E. Capacidade de Troca Catiônica (CTC) em solo tratado com doses de biossólidos. In: CONGRESSO

- BRASILEIRO DE CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais.. Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003.
- SEROA DA MOTA, R. Manual para valoração econômica de recursos ambientais. Brasília: Ministério do Meio Ambiente, Recursos Hídricos e Amazônia Legal MMA, IPEA, PNUD, CNPq. 1998. 218 p. Disponível em: http://www.mma.gov.br. Acesso em: 15 abr. 2003).
- SILVA, J. E.; LEMAINSKI, J. Biossólido como fertilizante na produção de milho e soja no Distrito Federal. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais... Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003.
- SILVA, J. E.; RESCK D. V. S.; SHARMA, R. D. Alternativa agronômica para o biossólido produzido no Distrito Federal. II. Aspectos qualitativos, econômicos e práticos de seu uso. Revista Brasileira de Ciência do Solo, Viçosa, v. 26, n. 2, p. 497-503, abr./jun. 2002b.
- SILVA, J. E.; RESCK D. V. S.; SHARMA, R. D. Alternativa agronômica para o biossólido produzido no Distrito Federal. I. Efeito na produção de milho e na adição de metais pesados em latossolo no Cerrado. Revista Brasileira de Ciência do Solo, Viçosa, v. 26, n. 2, p. 487-495, abr/jun. 2002a.
- VASQUEZ-MONTIEL, O.; HORAN, N. J.; MARA, D. D. Management of domestic wastwater for reuse in irrigation. Water Science and Technology, Oxford, v. 33, n. 10/11, p. 355-362, 1996.
- VETTORI, L. Métodos de análises do solo. Rio de Janeiro: Ministério da Agricultura, 1969. 24 p. (Boletim Técnico 7).
- WALKLEY, A.; BLACK, I. A. An examination of the Degjareff method for determining soil matter and proposed modification of the cromic acid titration method. Soil Science Society America Proceedings, Madison, v. 37, n. 1, p. 29-38, Jan./Feb. 1934.

CAPÍTULO 3

ATRIBUTOS QUÍMICOS, FÍSICOS E BIOLÓGICOS DE SOLO TRATADO COM DOSES CRESCENTES DE BIOSSÓLIDO INDUSTRIAL E CULTIVADO COM MILHO

RESUMO

TRANNIN, Isabel Cristina de Barros. Atributos químicos, físicos e biológicos de solo tratado com doses crescentes de biossólido industrial e cultivado com milho. In:

Avaliação agronômica de um biossólido industrial e de seus efeitos sobre atributos do solo. Lavras: UFLA, 2004. Cap. 3, p.73-122. (Tese - Doutorado em Solos e Nutrição de Plantas)

O uso agrícola de resíduos orgânicos pode exercer grande influência nos atributos do solo. No presente estudo avaliaram-se os efeitos da aplicação, por dois anos consecutivos, de doses crescentes de um biossólido gerado por indústria de fibras e resinas PET (0, 6, 12, 18 e 24 Mg ha' base seca) no cultivo de milho sobre os atributos químicos, físicos e biológicos de um Cambissolo distrófico, mantido sob Brachiaria sp. A aplicação do biossólido melhorou a fertilidade do solo, aumentando os teores de matéria orgânica e nutrientes. O Zn apresentou-se como elemento móvel no perfil do solo, enquanto o Ni acumulouse na camada de 20-40 cm. Os teores de N-NO3 e de Na aumentaram em profundidade, atingindo 53 e 47 mg dm⁻³, respectivamente, na camada de 40-60 cm com a aplicação de 24 Mg ha⁻¹. A aplicação do biossólido aumentou a estabilidade de agregados, a porosidade total e a microporosidade e reduziu a densidade do solo. Os valores de C e N da biomassa microbiana, a respiração basal e as atividades da urease, da β-glicosidase e da hidrólise do diacetato de fluoresceina aumentaram, enquanto o qCO2 e a atividade da fosfatase ácida diminuíram com a elevação das doses. A colonização micorrízica da Brachtaria sp. não diferiu entre plantas da vegetação remanescente das parcelas experimentais e da área adjacente. Os resultados evidenciaram que a aplicação do biossólido melhorou a fertilidade e favoreceu atributos físicos e biológicos indicadores da qualidade do solo e, portanto, os beneficios da utilização agricola deste resíduo.

^{*} Comitê orientador: José Oswaldo Siqueira – UFLA (Orientador) e Fátima M. de Souza Moreira – UFLA (Co-orientadora).

ARSTRACT

TRANNIN, Isabel Cristina de Barros. Chemical, physical and biological attributes of soil treated with increasing rates of an industrial biosolid and cultivated with corn. In:

Agronomic evaluation of an industrial biosolid and its related effects on soil attributes. Lavras: UFLA, 2004. Chap. 3, p.73–122. (Thesis – PhD. in Soils and Plant Nutrition)*

Agricultural use of organic residues may have strong influence on soil attributes. In the present study the effects of application of increasing rates of a biosolid generated by industry of PET fibers and resins (0, 6, 12, 18 and 24 Mg ha' dry matter) for two consecutive years in corn cultivation on the chemical physical and biological attributes of a dystrophic Cambisol in Pocos de Caldas. MG. maintained with Brachiaria sp. were evaluated. Biosolid application improved soil fertility, enhanced the organic matter and nutrients. Zinc presented mobility in soil profile, while nickel accumulated in layer of 20-40 cm. Nitrate and sodium contents increased in deep layers, reaching 53 and 47 mg dm⁻³, respectively. in 40-60 cm with application of 24 Mg ha⁻¹. Biosolid application also enhanced soil aggregate stability, total porosity and microporosity and reduced soil density. Biomass C and N, basal respiration and prease Bglucosidase and fluorescein diacetate hydrolysis activities were favored by biosolid application, whereas qCO₂ and acid phosphatase activity were reduced Mycorrhizal colonization of Brachiaria sp. in corn plots was not affected by these treatments. These results show that biosolid application enhanced soil fertility and physical attributes and the major biological indicators of soil quality evidencing the benefits of this amendment for agricultural.

Guidance Committee: José Oswaldo Siqueira – UFLA (Major Professor) and Fátima M. de Souza Moreira – UFLA.

3.1 INTRODUÇÃO

A utilização de biossólidos na agricultura é relativamente recente em nosso país e as informações sobre as eventuais alterações nos atributos químicos, físicos e biológicos dos solos brasileiros pela adoção desta prática são ainda escassas e restritas a biossólidos de origem domiciliar. Por outro lado, existe uma grande demanda por estudos com biossólidos de origem industrial, que têm sido gerados em volumes cada vez maiores por empresas dos mais variados setores. Como apresentam composição química extremamente variável em função da matéria-prima utilizada e do processo de tratamento de esgoto empregado, estes resíduos precisam ser avaliados caso a caso, não só quanto ao valor agronômico, mas também quanto aos riscos e eventuais impactos sobre os atributos químicos, físicos e biológicos do solo, para que sejam aplicados de forma eficiente e segura em sistemas agrícolas.

Nas regiões tropicais e subtropicais, onde os solos são altamente intemperizados, ácidos e os minerais apresentam baixa capacidade de troca de cátions, a adição de material orgânico assume importância fundamental na mamutenção da fertilidade (Melo & Marques, 2000). No Brasil, embora as pesquisas ainda se encontrem em fase incipiente, alguns trabalhos já demonstraram que, geralmente, a aplicação de biossólido aumenta o teor de matéria orgânica e melhora o complexo sortivo em relação aos cátions K, Ca, Mg e, algumas vezes, Na, elevando a soma de bases, a V%, a CTC e o pH do solo, especialmente quando o resíduo é tratado com calcário (Melo et al., 1994; Johns & McConchie, 1994; Neto et al., 2003; Santos et al., 2003). Contudo, a produção de ácidos orgânicos durante o processo de biodegradação da fração orgânica dos resíduos (Camargo et al., 1999) e a nitrificação (Boeira et al., 2002) podem contribuir para a acidificação do solo. Embora os biossólidos sejam, geralmente, ricos em N e P e pobres em K, grande parte do P adicionado

permanece como P-orgânico no solo (Goh & Condron, 1989) e o P solúvel, quando em solos intemperizados, é fixado por óxidos de Fe e Al (Fernandes et al., 1998). Por isso, quando utilizados como substitutos de fertilizantes nitrogenados, os biossólidos precisam de complementação mineral de P e K para atender às exigências nutricionais das culturas (Melo & Marques, 2000; Reis, 2002). Por outro lado, Boeira et al. (2002) observaram que a aplicação de biossólido originado de esgoto urbano, por quatro anos consecutivos em Latossolo, mesmo em dose equivalente à adubação mineral recomendada, superou as necessidades do milho por nitrogênio e apresentou risco de lixiviação de NO₃. Defelipo et al. (1991) constataram que, mesmo com a elevação do pH, a aplicação do biossólido gerado pela Siderúrgica Mendes Júnior aumentou o teor dos micronutrientes Cu, Fe, Mn e Zn em dois Latossolos cultivados com sorgo. Assim, como medida de precaução, Basta & Sloam (1999) não recomendam o uso de biossólidos ácidos em solos com reação também ácida, por aumentar os riscos de lixiviação e fitotoxicidade de metais.

Com relação aos atributos físicos, estudos mostram que a adição de matéria orgânica via biossólido pode ter efeito positivo, principalmente na estrutura do solo, por promover aumento da porosidade (Ortega et al., 1981; Mathan, 1994; Melo et al., 2004), melhorar o estado de agregação das partículas e diminuir a densidade do solo (Aggelides & Londra, 2000). No entanto, Gonçalves & Ceretta (1999) consideram que, em condições tropicais, é difícil obter aumentos significativos nos teores de matéria orgânica, o suficiente para atuar sobre os atributos físicos do solo em curto espaço de tempo. De fato, Melo et al. (2004) observaram diminuição da densidade do solo e aumento da macroporosidade em dois Latossolos somente após 5 anos de aplicação de 50 Mg ha¹ em base seca de biossólido. Marciano et al. (2001) observaram que quando o solo apresenta originalmente boa estrutura, as melhorias nos atributos físicos podem ser inconsistentes, mesmo com a aplicação de doses elevadas de

biossólido. Por outro lado, Furrer & Stauffer (1983) não verificaram alterações na estabilidade de agregados e na porosidade total com a aplicação de biossólido, independente da condição original do solo.

Pascual et al. (2000) e Debosz et al. (2002) sugerem que os atributos biológicos e bioquímicos são mais sensíveis a pequenas alterações no solo que os químicos e físicos, fornecendo informação imediata e segura sobre os impactos causados por mudanças no manejo do solo. De fato, a aplicação de biossólidos pode afetar diretamente a biomassa microbiana, já que esta relaciona-se ao conteúdo e qualidade da matéria orgânica (Tótola & Chaer, 2002), representando de 2% a 5% do C orgânico (Jenkinson & Ladd, 1981) e de 1% a 5% do N total do solo (Smith & Paul, 1990). As relações Cmicrobiano/Corgânico e Nmicrobiano/Ntotal expressam índices de qualidade nutricional da matéria orgânica e as relações Cmicrobiano/Nmicrobiano e Corgânico/Ntotal, a eficiência da biomassa em imobilizar C ou N e, segundo Gama-Rodrigues & De-Polli (2000), podem ser usadas na avaliação dos efeitos da aplicação de resíduos orgânicos sobre a biota do solo.

A atividade microbiana medida pela respiração, o quociente metabólico (qCO₂) e as atividades enzimáticas também têm sido empregados para avaliar os efeitos da aplicação de biossólidos na biologia do solo. García-Gil et al. (2000) observaram que a aplicação de 80 Mg ha⁻¹ de lodo compostado em solo arenoso durante nove anos aumentou em 46% o C da biomassa e em mais de 100% a atividade da β-glicosidase, mas reduziu em 62% a atividade da fosfatase ácida, devido ao aumento de P solúvel e em 28% a atividade da urease, devido aos altos teores de metais pesados e de N-NH₄⁺ daquele resíduo. Gagnon et al. (2000) verificaram aumento linear na atividade da fosfatase ácida em resposta às doses de 8 a 65 Mg ha⁻¹ do biossólido gerado por indústria de celulose a um solo orgânico utilizado para horticultura, mesmo após três anos da aplicação. Chantigny et al. (2000) constataram que a aplicação de 50 Mg ha⁻¹ de biossólido,

também gerado por indústria de celulose, a um solo argiloso, aumentou em 100% o C da biomassa e em 40% a hidrólise da fluoresceina diacetato (FDA), que manteve atividade superior ao controle três anos após a aplicação. Por outro lado, Debosz et al. (2002) verificaram que os efeitos da aplicação de 4,2 Mg ha⁻¹ de biossólido municipal sobre C e N da biomassa, respiração, qCO₂ hidrólise da FDA e atividade da β -glicosidase foram transientes.

Outro aspecto que merece atenção em relação aos possíveis impactos da aplicação de biossólidos são as associações simbióticas entre fungos micorrízicos arbusculares (FMAs) e espécies vegetais, já que existe correlação inversa entre fertilidade do solo e micotrofismo (Siqueira et al., 1994; Smith & Read, 1997). Além disso, a presença de metais pesados ou outros compostos orgânicos tóxicos no biossólido pode ter efeito inibitório sobre os FMAs (Koomen et al., 1990). Contudo, Silva Neto (2001) verificou que a adição de biossólido ao substrato de mudas de maracujazeiro não afetou a colonização micorrízica e que os FMAs controlaram a absorção de metais e elementos tóxicos pelas plantas. Estudos sobre o comportamento de FMAs em solos tratados com biossólidos são escassos em solos tropicais e tornam-se essenciais ao entendimento da interação e contribuição destes insumos na produção agrícola.

Neste estudo, foram avaliados os efeitos da aplicação, por dois anos consecutivos, de doses crescentes do biossólido gerado por uma unidade industrial de fibras e resinas PET e da adubação mineral completa no cultivo de milho sobre os atributos físicos, químicos e biológicos de um Cambissolo distrófico de Poços de Caldas, MG, mantido sob vegetação de *Brachiaria* sp. nos últimos 10 anos.

3.2 MATERIAL E MÉTODOS

Experimento e amostragens de solo

O experimento foi conduzido a campo, nos anos agrícolas 1999/2000 e 2000/2001, em área de Cambissolo distrófico sob vegetação de *Brachiaria* sp. nos últimos 10 anos, próxima à Rhodia-ster S.A., unidade produtora de fibras e resinas PET em Poços de Caldas, MG, com o objetivo de avaliar a viabilidade de uso agronômico do biossólido gerado por esta empresa na cultura do milho, conforme apresentado no capítulo 2.

O delineamento experimental empregado foi o de blocos ao acaso, com 6 tratamentos distribuídos em 4 blocos, totalizando 24 parcelas. Os tratamentos aplicados foram: 1) controle, sem adubação, 2) adubação mineral completa, 3) 6 Mg ha⁻¹ de biossólido, 4) 12 Mg ha⁻¹ de biossólido, 5) 18 Mg ha⁻¹ de biossólido e 6) 24 Mg ha⁻¹ de biossólido. As doses de biossólido em base seca foram determinadas em função do teor de N-total, considerando a disponibilidade anual de 20% (CETESB, 1999) e corresponderam a 0; 0,5; 1,0 e 2,0 vezes a quantidade de N aplicada no tratamento com adubação mineral recomendada pela Comissão de Fertilidade do Solo do Estado de Minas Gerais (CFSEMG, 1999) para a produtividade de 6–8 Mg de grãos de milho ha⁻¹. No segundo cultivo de milho, os tratamentos com biossólido, além da complementação com K₂O, receberam suplementação com 30% de P₂O₅ do total adicionado no tratamento com adubação mineral. As características químicas do solo e do biossólido e detalhes dos tratamentos estão descritos no capítulo 2.

Neste estudo foram avaliados os efeitos dos tratamentos aplicados por dois anos consecutivos no cultivo de milho sobre os atributos químicos, físicos e biológicos do solo. Em julho de 2001, amostras de solo de cada tratamento e da área adjacente, coberta com *Brachiaria* sp., considerada como referência, foram coletadas (Figura 3.2.1) e analisadas conforme metodologias descritas a seguir.

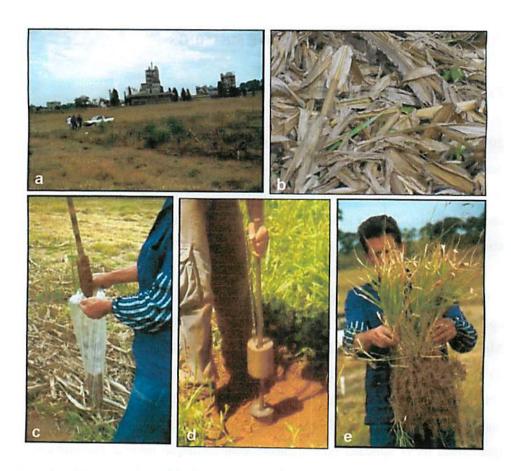


FIGURA 3.2.1 Área experimental próxima à Rhodia-ster S.A. (a); parcela experimental coberta com restos culturais de milho e vegetação remanescente por ocasião da amostragem de solo (b); coleta de amostra deformada de solo nas profundidades 0-20, 20-40 e 40-60 cm (c); coleta de amostras indeformadas de solo utilizando amostrador de Uhland (d) e coleta de *Brachiaria* sp. nas parcelas experimentais e na área adjacente para avaliação da colonização micorrízica (e).

Análises dos atributos químicos do solo

Para as análises químicas foram coletadas amostras indeformadas de solo das camadas de 0-20, 20-40 e 40-60 cm de profundidade, seguindo as metodologias descritas no capítulo 2.

Análises dos atributos físicos do solo

Os atributos densidade do solo (Ds), porosidade total (PT) e macro e microporosidade foram determinados pelo método do anel volumétrico, utilizando amostras indeformadas obtidas da camada de 0-7 cm com amostrador de Uhland (Figura 3.2.1), conforme metodologias descritas em Embrapa (1997). A avaliação da estabilidade de agregados foi feita para amostras da camada de 0-20 cm por meio de peneiramento úmido, após pré-umedecimento lento dos agregados, por capitaridade. Os agregados com diâmetro de 4,0 a 7,0 mm foram obtidos por peneiramento do solo, segundo recomendações de Kemper & Rosenau (1986), em aparelho de Yoder. Foram usadas peneiras de 2, 1, 0,5, 0,25 e 0,105 mm para a separação das classes de diâmetro dos agregados. O diâmetro médio geométrico (DMG) dos agregados estáveis em água e a percentagem de agregados maiores que 2 mm foram calculados conforme Kemper & Rosenau (1986).

Análises dos atributos biológicos do solo

Utilizaram-se amostras de solo da camada de 0-20 cm que, no laboratório, foram peneiradas para remoção de resíduos vegetais e armazenadas em geladeira (4°C), por uma semana, até o início das análises, descritas resumidamente a seguir e, de forma detalhada, em anexo.

O carbono da biomassa microbiana (Cmic) foi avaliado pelo método da fumigação-extração (Vance et al., 1987), adotando-se o coeficiente de correção 0,30 proposto por Feigl et al. (1995) para solos tropicais. O nitrogênio da biomassa microbiana (Nmic) também foi avaliado pelo método da fumigação-extração, adotando-se o coeficiente de correção 0,45 proposto por Brookes et al. (1985). Os quocientes microbianos ou relações Cmic/Corg e Nmic/Ntotal, foram calculados de acordo com Sparling (1992). As relações C/N entre Corg e Ntotal e entre Cmic e Nmic também foram calculadas.

A respiração basal foi determinada por meio da captura do CO₂ liberado do solo por solução de NaOH 0,05 mol L⁻¹, durante 72 h de incubação em recipiente hermeticamente fechado, mantido no escuro a 28°C, como descrito em Alef & Nannipieri (1995). O quociente metabólico (qCO₂) foi calculado pela razão entre o C-CO₂ da respiração basal e o C da biomassa microbiana (Cmic) das amostras, conforme Anderson & Domsch, (1993).

A atividade da urease foi avaliada pelo método descrito por Tabatabai & Bremmer (1972), que se baseia na determinação do amônio liberado após incubação do solo com uma solução de uréia. A atividade da fosfatase ácida foi avaliada seguindo a metodologia de Dick et al. (1996). A atividade da β-glucosidase foi determinada por espectrofometria do ρ-nitrofenol-β-D-glucosídeo, conforme descrito por Eivazi & Tabatabai (1988). A hidrólise da fluoresceína diacetato (FDA) por células microbianas viáveis foi avaliada conforme Diack (1997). As atividades específicas das enzimas foram calculadas pela razão entre a atividade total (μg produto g⁻¹ solo seco h⁻¹) e o Cmic (μg C g⁻¹ solo seco) das amostras, sendo expressas em μg de produto h⁻¹ μg⁻¹ Cmic, conforme Waldrop et al. (2000).

A colonização micorrízica foi avaliada em raízes de *Brachiaria* sp. coletadas na área adjacente e na vegetação remanescente das parcelas experimentais. Amostras de 1 g de raízes finas foram separadas do solo, lavadas em água e clarificadas em solução aquosa de KOH (100 g L⁻¹) e coloridas com azul de tripano (Philips & Hayman, 1970). A colonização foi estimada pelo método da placa quadriculada (Giovanetti & Mosse, 1980) e a densidade de esporos foi determinada após peneiramento úmido de amostras de 50 mL de solo e separação dos esporos de partículas de solo por centrifugação e flutuação em sacarose (Gerdemann & Nicolson, 1963). Após lavagem dos esporos em água, estes foram distribuídos em placa de Petri canaletada e contados com o auxílio de microscópio estereoscópico (40x).

Análises estatísticas

Os dados foram submetidos à análise de variância e, quando ocorreram diferenças significativas pelo teste F (P < 0.01), estes foram submetidos a testes de médias e análises de regressão, utilizando-se o programa estatístico SISVAR (Ferreira, 1999).

3.3 RESULTADOS E DISCUSSÃO

Efeitos sobre os atributos químicos do solo

Os resultados da análise química do solo apresentados na Tabela 3.3.1 mostraram que a fertilidade foi afetada de modo significativo pelos tratamentos aplicados por dois anos consecutivos no cultivo de milho e pela profundidade de amostragem do solo.

Na camada de 0-20 cm, o solo tratado com biossólido, especialmente em doses superiores a 12 Mg ha⁻¹, apresentou maiores teores de C orgânico (Corg), macro e micronutrientes e Na, que os solos do tratamento controle, com adubação mineral e da área adjacente. A elevação dos teores de K, Ca, Mg e Na promoveu incrementos na soma de bases (S) e melhorou o complexo sortivo, aumentando a CTC a pH 7,0 (T) e a CTC efetiva (t) e os maiores teores de Na corresponderam a aumentos na porcentagem de sódio trocável (PST). Todos os tratamentos causaram elevação da acidez potencial (H+Al) em relação à área adjacente, mas o maior teor de Al³⁺ trocável e o menor valor de pH ocorreram com a aplicação da dose máxima de biossólido.

Os teores de Pb aumentaram somente em relação à área adjacente, enquanto os de Cd e Ni não foram alterados pela aplicação dos tratamentos e, em todos os casos, os teores mantiveram-se muito abaixo da carga cumulativa permitida para metais em solos tratados com biossólidos (Cetesb, 1999).

22

TABELA 3.3.1 Atributos químicos do solo amostrado em profundidade nos diferentes tratamentos após o segundo cultivo de milho¹¹

Tratamento	Corg	N-total	N-NH₄ ⁺	N-NO ₃	P	K	S-SO ₄ -2	Ca	Mg
0 a 20 cm	g 1	(g ⁻¹			mg dm ⁻³ -			cmol	。dm ⁻³
Area adjacente	18 Acd	1,2 Acd	17 Ade	21 Ad	1,2 Ab	54 Ac	37 Acd	3,2 Ab	1,8 Aab
Controle	14 Ad	1,0 Ad	16 Ae	15 Ae	0,7 Ab	42 Ad	28 Ad	2,2 Ac	1,3 Ab
Adubação mineral	21 Ac	1,4 Acd	18 Ade	20 Ade	1,8 Ab	84 Ab	39 Ac	3,3 A b	1,3 Ab
6 Mg ha'l biossólido	23 Abc	1,7 Abc	21 Acd	24 Ccd	1,8 Ab	91 Aab	44 Abc	3,8 Aa	1,6 Aab
12 Mg ha ⁻¹ biossólido	26 Ab	1,9 Aab	25 Abc	28 Bbc	4,0 Aa	93 Aa	53 Aab	3,9 Aa	2,0 Aab
18 Mg ha ⁻¹ biossólido	34 Aa	2,0 Aab	27 Aab	32 Bab	4,2 Aa	95 Aa	54 Aab	3,9 Aa	2,0 Aab
24 Mg ha' biossólido	37 Aa	2,3 Aa	31 Aa	36 Ca	5,6 Aa	96 Aa	56 Aa	3,9 Aa	2,1 Aa
20 a 40 cm					• • • • • • • • • • • • • • • • • • • •		0 = 0	·, · · · · ·	-,
Área adjacente	15 Ad	0,9 ABc	13 Bd	17 Bd	0,4 Bb	42 Be	32 Acd	2,7 Aab	1,2 Ba
Controle	13 Abd	0,8 Ac	12 ABd	14 ABd	0,5 ABb	38 Ae	27 ABd	2,3 Ab	1,3 Aa
Adubação mineral	14 Bd	0,7 Bc	16 Acd	18 Ad	2,2 Aab	57 Bd	32 Bcd	2,6 Aab	1,4 Aa
6 Mg ha'l biossólido	17 Abcd	0,9 Bc	19 Abc	28 Bc	1,9 Aab	62 Bc	35 ABc	2,4 Bab	1,4 Aa
12 Mg ha ⁻¹ biossólido	21 Bbc	1,2 Bbc	21 ABb	32 ABbc	3,6 Aa	68 Bb	37 Bbc	2,4 Bab 2,6 Bab	1,4 Aa 1,5 Aa
18 Mg ha-1 biossólido	23 Bab	1,5 Bab	23 Aab	37 Bab	3,7 Aa	71 Bab	41 Bab	2,7 Bab	1,3 Aa 1,8 Aa
24 Mg ha-1 biossólido	28 Ba	1,7 Aa	26 Ba	42 Ba	4,1 ABa	74 Ba	43 Ba	2,7 Bac 2,9 Ba	1,8 Aa
40 a 60 cm		-,			.,	77 20	45 Du	2,7 Da	1,0 Aq
Area adjacente	13 Acd	0,6 Bab	12 Bc	14 Bde	0,4 Bb	33 Ccd	26 Bbc	1,8 Ba	1,2 Bbc
Controle	11 Bd	0,4 Bb	13 Bbc	11 Be	0,3 Bb	29 Bd	24 Bc	1,6 Bb	1,2 Abc
Adubação mineral	12 Bcd	0,5 Bb	15 Aabc	19 Ae	0,5 Bb	35 Ccd	25 Cc	1,7 Bab	1,2 ACC
6 Mg ha ⁻¹ biossólido	16 Bbcd	0,7 Bab	19 Aa	36 Ac	0,5 Bb	34 Ccd	27 Bbc	1,7 Dau 1,5 Cb	1,1 Ac
12 Mg ha ⁻¹ biossólido	18 Babc	0,8 Cab	17 Bab	38 Ac '	0,3 Bab	39 Cbc	32 Cab	1,3 Co 1,8 Cab	1,5 Ade
18 Mg ha ⁻¹ biossólido	19 Bab	0,9 Ca	18 Ba	46 Ab	0,9 Bab	43 Cab	35 Ca	2,1 Cab	1,5 Aabc
24 Mg ha ⁻¹ biossólido	22 Ca	0,9 Ba	17 Cab	53 Aa	1,3 Ba	47 Ca	38 Ba		
T etros maiásculos com	2000	- 1 11-		22 570	1,3 Da	47 C8	36 DH	2,3 Bab	1,8 Aa

Letras maiúsculas comparam camadas de solo em cada tratamento e minúsculas comparam tratamentos dentro de camada; médias seguidas pela mesma letra na coluna não diferem entre si pelo teste Tukey ($P \le 0.05$) "...continua..."

TABELA 3.3.1¹¹, cont.

Tratamento	Zn	Cu	Mn	Fe	Ni	Cd	Pb
0 a 20 cm	***************************************			mg dm ⁻³			
Area adjacente	0,4 Ad	0,1 Ac	7,3 Ac	16 Ad	0,1 Aa	0,1 Aa	1,1 Ab
Controle	1,4 Acd	0,4 Ab	4,6 Ad	13 Ad	0,1 Ba	0,1 Aa	3,0 Aa
Adubação mineral	2,1 Abc	0,3 Abc	5,3 Ad	16 Ad	0,1 An	0,1 Aa	3,5 Aa
6 Mg ha ^{-l} biossólido	3,0 Aab	0,5 Ab	7,4 Ac	23 Ac	0,1 Ba	0,1 Aa	3,4 Aa
12 Mg ha ⁻¹ biossólido	3,3 Aab	0,6 Aab	8,0 Abc	31 Ab	0,2 Ba	0,1 Aa	3,8 Aa
18 Mg ha'l biossólido	3,8 Aa	0,8 Aa	9,0 Ab	36 Aab	0,2 Ba	0,1 Aa	3,8 Aa
24 Mg ha ⁻¹ biossólido	4,3 Aa	0,8 Aa	11,3 Aa	39 Aa	0,2 Ba	0,1 Aa	3,9 Aa
20 a 40 cm	*,0	-1			-		
Área adjacente	0,5 Acd	0,1 Ab	6,2 Ba	14 Acd	0,2 Ad	0,1 Aa	0,1 Ba
Controle	0,3 Bd	0,2 Bb	3,8 Acd	11 Ad	0,3 Bcd	0,1 Aa	0,1 Ba
Adubação mineral	1,1 Bbcd	0,2 Bb	3,6 Bd	12 Ad	0,3 Acd	0,1 Aa	0,1 Ba
6 Mg ha ⁻¹ biossólido	1,0 Bbcd	0,4 Aab	3,8 Bcd	15 Bcd	0,6 Ac	0,1 Aa	0,1 Ba
12 Mg ha ⁻¹ biossólido	1,8 Babc	0,4 Bab	4,2 Bbcd	18 Bbc	0,9 Ab	0,1 Aa	0,1 Ba
18 Mg ha ⁻¹ biossólido	2,0 Bab	0,6 Aa	4,4 Bbc	21 Bab	1,7 Aa	0,1 Aa	0,1 Ba
24 Mg ha ⁻¹ biossólido	2,8 Aa	0,4 ABab	4,8 Bb	25 Ba	1,8 Aa	0,1 Aa	0,1 Ba
40 a 60 cm	2,0 FM	0,17000	.,0 _0		•	·	
Area adjacente	0,1 Bb	0,1 Aa	3,5 Ca	12 Ba	0,2 Aa	0,1 Aa	0,1 Ba
Controle	0,1 Bb	0,1 Ba	2,2 Be	11 Aa	0,7 Aa	0,1 Aa	0.1 Ba
Adubação mineral	0,1 Cb	0,1 Ba	2,4 Cde	13 Aa	0,1 Aa	0,1 Aa	0,1 Ba
6 Mg ha ⁻¹ biossólido	0,1 Bb	0,1 Ba	2,7 Ccd	12 Ba	0,1 Ba	0,1 Aa	0,1 Ba
12 Mg ha ⁻¹ biossólido	0,5 Cab	0,1 Ca	2,9 Cbc	14 Ba	0,2 Ba	0,1 Aa	0,1 Ba
18 Mg ha ⁻¹ biossólido	0,9 Ca	0,2 Ba	3,2 Cabc	13 Ca	0,2 Ba	0,1 Aa	. 0,1 Ba
24 Mg ha ⁻¹ biossólido	0,9 Ca 0,9 Ba	0,1 Ba	3,3 Cab	12 Ca	0,1 Ba	0,1 Aa	0,1 Ba

Letras maiúsculas comparam camadas de solo em cada tratamento e minúsculas comparam tratamentos dentro de camada; médias seguidas pela mesma letra na coluna não diferem entre si pelo teste Tukey $(P \le 0.05)$ "...continua..."

80

TABELA 3.3.1¹¹, cont.

<u>Tratamento</u>	pН	Na	Al	H+AI_	S	T	t		PST	m
0 a 20 cm		mg dm ⁻³			-cmol _e dm ⁻³				%	
Area adjacente	5,4 Abc	7 Ac	0,1 Cb	2,4 Cb	5,1 Abc	7,5 Ccd	5,2 Abc	68 Aa	0,4 Ac	2 Cb
Controle	5,9 Aa	3 Ad	0,2 ABab	3,4 Aa	3,6 ABd	7,0 Ad	3,7 Ad	51 Ad	0,2 Ad	5 Ba
Adubação mineral	5,6 Aabc	3 Ad	0,2 Aab	3,5 Ba	4,8 Ac	8,3 ABbc	5,0 Ac	58 Ac	0,1 Ad	3 Bab
6 Mg ha biossólido	5,8 Aab	8 Cc	0,2 Aab	3,6 Ba	.5,7 Aab	9,2 Aab	5,8 Aab	61 Abc	0,4 Cc	3 Bab
12 Mg ha 1 biossólido	5,7 Aabc	10 Cbc	0,2 Aab	3,6 Aa	6,1 Aa	9,7 Aa	6,3 Aa	63 Aabc	0,4 Cbc	3 Bab
18 Mg ha ⁻¹ biossólido	5,5 Abc	12 Cb	0,2 Aab	3,7 Ca	6,2 Aa	9,9 Aa	6,4 Aa	63 Abc	0,5 Cb	3 Bab
24 Mg ha ⁻¹ biossólido	5,3 Ac	15 Ca	0,3 Ba	3,7 Ba	6,4 Aa	10,1 Aa	6,6 Ав	63 Aab	0,7 Ca	4 Bab
20 a 40 cm				•	•	-	•		•	
Área adjacente	5,2 Bb	5 Be	0,7 Aa	7,0 Aa	4,0 Bbc	11 Aa	4,7 Aab	36 Bb	0,2 Bd	15 Aa
Controle	5,6 Ba	3 ABef	0,1 Bb	4,6 Ab	3,6 Ac	8 Ac	3,7 Ac	44 Aab	0,1 Ad	3 Bb
Adubação mineral	5,4 Aab	2 Af	0,2 Ab	5,4 Aab	4,1 Aabc	10 ABabç	4,4 ABabc	44 Bab	0,1 Ad	5 ABb
6 Mg ha biossólido	5,6 Ba	13 Bd	0,2 Ab	5,0 Ab	4,0 Bbc	9 Abc	4,2 Bbc	45 Bab	0,6 Bc	4 Bb
12 Mg ha biossólido	5,5 Aab	19 Bc	0,1 Ab	4,5 Ab	4,4 Babc	9 Abc	4,5 Babc	50 Ba	0,9 Bb	3 ABb
18 Mg ha biossólido	5,4 Aab	25 Bb	0,2 Ab	5,3 Aab	4,8 Bab	10 Aabc	4,9 Bab	47 Ba	1,1 Bb	4 Bb
24 Mg ha ⁻¹ biossólido 40 a 60 cm	5,2 Ab	34 Ba	0,2 Bb	5,3 Aab	4,9 Ba	10 Aab	5,1 Ba	48 Ca	1,4 Ba	4 Bb
Área adjacente	5,1 Bc	3 Ce	0,2 Bb	5,6 Ba	3,1 Cbc	8,7 Ba	3,3 Bc	36 Bc	0,1 Ce	6 Ba
Controle	5,6 Bab	2 Be	0,4 Aab	3,6 Ab	2,8 Bc	6,5 Ab	3,2 Ac	45 Abc	0,2 Ae	11 Aa
Adubação mineral	5,4 Aabc	2 Ae	0,4 Aab	3,9 Bb	2,9 Bc	6,8 Bab	3,3 Bc	42 Bbc	0,1 Ae	12 Aa
6 Mg ha biossólido	5,5 Babc	20 Ad	0,3 Aab	3,3 Bb	2,9 Cc	6,3 Bb	3,3 Cc	47 Babc	1,4 Ad	10 Aa
12 Mg ha ⁻¹ biossólido	5,6 Aa	29 Ac	0,3 Aab	3,5 Ab	3,4 Cbc	6,9 Bab	3,7 Cbc	50 Bab	1,8 Ac	7 Aa
18 Mg ha ⁻¹ biossólido	5,5 Aabc	38 Ab	0,5 Aab	3,4 Bb	3,9 Bab	7,3 Bab	4,4 Bab	53 Bab	2,2 Ab	12 Aa
24 Mg ha ⁻¹ biossólido	5,2 Abc	47 Aa	0,6 Aa	3,4 Bb	4,5 Ca	7,8 Bab	5,1 Ba	57 Ba	2,6 Aa	12 Aa

Letras maiúsculas comparam camadas de solo em cada tratamento e minúsculas comparam tratamentos em cada camada. Médias seguidas pela mesma letra na coluna não diferem entre si pelo teste Tukey ($P \le 0.05$).

O tratamento com 12 Mg ha⁻¹ de biossólido, equivalente à adubação nitrogenada recomendada para o milho, apresentou maiores teores de Corg, macro e micronutrientes e de Na, em relação ao tratamento com adubação mineral completa, nas três profundidades de amostragem do solo.

Em todos os tratamentos e na área adjacente observou-se a tendência de diminuição de valor de todos os atributos químicos avaliados com o aumento da profundidade do solo. Comportamento inverso foi observado somente para os teores de Na e de N-NO₃, nos tratamentos com biossólido, que aumentaram significativamente à medida que se aprofundou no solo e para Ni, que foi maior nas doses mais elevadas de biossólido que os demais tratamentos somente na camada de 20-40 cm.

Com a aplicação de 12 Mg ha-1 de biossólido, o teor de N-NO₃ na camada de 40-60 cm foi o dobro do observado no tratamento com adubação. mineral, atingindo 38 mg dm⁻³. Este resultado indica que o biossólido, mesmo quando aplicado em dose equivalente à adubação mineral, pode causar lixiviação de NO₃ para camadas inferiores a 60 cm do solo após sucessivas aplicações e ter consequências ambientais quando atinge as águas subsuperficiais, como a eutrofização, além de causar toxicidade aos seres humanos e animais (USEPA, 1999). Entretanto, é preciso considerar que este risco não é exclusivo do biossólido em estudo. Boeira et al. (2002) também constataram que a aplicação de biossólido municipal, por quatro anos consecutivos em Latossolo, mesmo em dose equivalente à adubação mineral recomendada, superou as necessidades de nitrogênio do milho e apresentou risco de lixiviação de N-NO3. Para prevenir problemas causados por excesso de N, Stevenson (1986) recomenda que as aplicações sucessivas de resíduos orgânicos sejam feitas com doses anuais decrescentes até o quinto ano, quando se estabelece equilíbrio dinâmico entre mineralização-imobilização do N; a partir desse momento, é possível manter a aplicação de doses constantes.

No caso do Na, a aplicação de 12 Mg ha⁻¹ foi responsável por aumentos de 3, 10 e 15 vezes o teor alcançado no tratamento com adubação mineral nas camadas de 0-20, 20-40 e 40-60 cm de profundidade, respectivamente, evidenciando sua movimentação no perfil do solo e a possibilidade de causar salinização das águas subsuperficiais (Paganini, 1997).

As alterações nos atributos químicos do solo devido à aplicação do biossólido no cultivo de milho são apresentadas na Figura 3.3.1. O Corg aumentou linearmente em resposta às doses de biossólido, sendo que na camada superficial o teor de 37 g kg⁻¹ obtido com a aplicação da dose máxima foi três vezes maior que o do controle. Embora este efeito tenha diminuído em profundidade, os teores de Corg mantiveram respostas lineares e dobraram com a aplicação de 24 Mg ha⁻¹ também nas camadas inferiores do solo. Este resultado indica que o biossólido apresenta elevado potencial como condicionador do solo. visto que Ferreira et al. (2003) não detectaram aumento significativo no teor de Corg com a aplicação de 42,5 Mg ha⁻¹ de biossólido gerado em curtume suplementado com P2O5 e K2O em Argissolo Vermelho distrófico cultivado com soja e milho, no qual o teor original de C era 16 g kg⁻¹, bem inferior ao do solo utilizado no presente estudo. Os teores de N total do solo apresentaram aumentos quadráticos nas camadas de 0-20 e 40-60 cm e linear na camada de 20-40 cm e, em todas as profundidades, a aplicação da dose máxima dobrou os teores observados no controle, resultado semelhante ao obtido por Ferreira et al. (2003). Os teores de N-NH4⁺ aumentaram linearmente nas camadas superficiais do solo e apresentaram resposta quadrática às doses de biossólido na camada de 40-60 cm, tendo a aplicação da dose máxima mantido o dobro dos teores encontrados no controle nas três profundidades do solo. Para N-NO3, as respostas foram quadráticas e os teores aumentaram em profundidade, atingindo o máximo de 53 mg dm⁻³ na camada de 40-60 cm, com aplicação de 24 Mg ha⁻¹, sendo este cinco vezes maior que o do controle.

Os teores de P aumentaram linearmente com as doses de biossólido nas camadas de 0-20 cm e de 40-60 cm e apresentaram resposta quadrática na camada de 20-40 cm. Na camada superficial, o teor de 5,6 mg P dm⁻³, com a aplicação de 24 Mg ha⁻¹ de biossólido, correspondeu a um aumento de cinco vezes o obtido no tratamento controle. Embora o biossólido apresente baixos teores de K, sua aplicação em doses crescentes promoveu aumentos quadráticos deste elemento nas três profundidades de amostragem do solo.

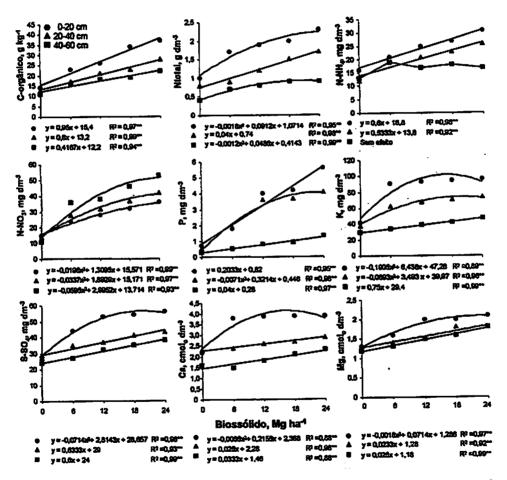
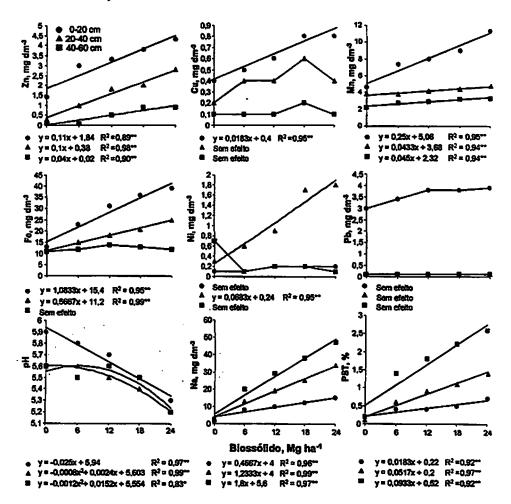



FIGURA 3.3.1 Atributos químicos do Cambissolo distrófico em três profundidades de amostragem, após dois anos de aplicação de doses crescentes de biossólido industrial e cultivo do milho "...continua..."

FIGURA 3.3.1, cont.

Na camada de 0-20 cm, a aplicação da dose máxima de biossólido resultou em 96 mg dm⁻³ de K, o dobro do obtido no controle, mantendo este aumento nas camadas inferiores do solo. Os teores de S-SO₄⁻², Ca e Mg apresentaram respostas semelhantes ao aumento das doses de biossólido, com incrementos quadráticos na camada superficial e lineares nas camadas inferiores. Na camada superficial, o tratamento com 24 Mg ha⁻¹ resultou em 56 mg dm⁻³ de S-SO₄⁻² e 3,9 e 2,1 cmol_c dm⁻³ de Ca e Mg, respectivamente, que

corresponderam ao dobro do determinado no tratamento controle.

Com exceção de Ni, os demais micronutrientes avaliados apresentaram respostas lineares às doses de biossólido na camada superficial do solo, mas a aplicação de 24 Mg ha¹ resultou em aumentos de apenas dois a três vezes os teores do tratamento controle. Embora os teores de Zn não tenham aumentado em profundidade, o efeito da aplicação do biossólido foi mais marcante nas camadas inferiores do solo, nas quais a dose máxima aumentou em nove vezes o teor obtido no controle, mostrando que, de fato, ocorreu a movimentação desse elemento no perfil do solo. Os teores de Ni não foram alterados significativamente com a aplicação do biossólido na camada de 0-20 cm e de 40-60 cm, mas apresentaram resposta linear na camada de 20-40, atingindo teor seis vezes maior que o do controle com a aplicação da dose máxima. Este comportamento evidencia a tendência de acúmulo de Ni nesta camada do solo com o aumento das doses. A aplicação do biossólido não teve efeito sobre os teores dos metais pesados, Cd e Pb, tendo em vista que este resíduo continha baixos teores destes elementos.

De acordo com os resultados obtidos na camada superficial do solo com a aplicação da dose máxima de biossólido e considerando as classes de interpretação da disponibilidade de macronutrientes estabelecidos pela Comissão de Fertilidade do Solo do Estado de Minas Gerais (CFSEMG, 1999), verifica-se que o teor de P passou de muito baixo no controle para médio, que os teores de K e Ca são considerados bons e de Mg muito bom neste tratamento. Quanto aos teores de micronutrientes, estes são considerados altos para Zn, bons para Fe e Mn e médios para Cu. Mesmo com a aplicação da dose máxima de biossólido, os teores de Zn, Cu e Ni mantiveram-se muito abaixo dos limites estabelecidos pela USEPA (1993) e adotados pela Cetesb (1999), para carga cumulativa no solo de, respectivamente, 1400, 750 e 210 mg dm⁻³, em todas as profundidades de amostragem do solo.

O teor de Na e, consequentemente, a PST, aumentou linearmente em resposta às doses de biossólido nas três profundidades de amostragem. Com a aplicação da dose máxima, o teor de 47 mg Na dm⁻³, obtido na camada de 40-60 cm, foi 23 vezes superior ao do controle. Embora a PST obtida neste tratamento tenha sido muito inferior ao limite de 15%, tolerado por plantas sensíveis a Na (Ayers & Westcot, 1991), é preciso considerar que esta profundidade não corresponde à zona de maior desenvolvimento radicular da maioria das culturas anuais e o Na deixa de representar uma preocupação agrícola. Nestas condições, o Na passa a ter importância ambiental, pois, além do risco de salinização das águas subsuperficiais, comentado anteriormente, em altos teores, pode causar dispersão das partículas e consequente diminuição da permeabilidade do solo (Bettiol & Camargo, 2003).

O aumento do teor de matéria orgânica e a melhoria do complexo sortivo com a aplicação do biossólido corroboram com os resultados de Melo et al. (1994), Johns & McConchie (1994), Neto et al. (2003) e Santos et al. (2003), mas a diminuição nos valores de pH discorda destes estudos. A acidificação do solo causada pela aplicação do biossólido pode ter ocorrido pelo fato do resíduo não ser tratado com calcário e apresentar baixa eficiência corretiva. Além disso, Boeira et al. (2002) observaram que a acidificação de solos tratados com biossólidos pode ser causada pelo processo de nitrificação do N adicionado via biossólido. Camargo et al. (1999) afirmam que a acidificação de solos tratados com resíduos orgânicos também pode ocorrer devido à produção de ácidos orgânicos durante o processo de biodegradação da fração orgânica destes materiais.

Basta & Sloam (1999) não recomendam o uso de biossólidos ácidos em solos com reação também ácida, por aumentar os riscos de lixiviação e fitotoxicidade de metais. De fato, o Zn, além de ser o metal adicionado ao solo em maior quantidade pelo biossólido avaliado no presente estudo,

provavelmente teve sua movimentação favorecida pela diminuição do pH. A movimentação do Zn em profundidade também foi observada em solos tratados com biossólido por Oliveira et al. (2001) e com composto de lixo urbano por Oliveira et al. (2002).

Estes resultados demonstraram que, embora o biossólido apresente potencial de aplicação agronômica como fonte de matéria orgânica e de nutrientes, quando aplicado em doses elevadas pode promover a movimentação de Zn e, principalmente de Na e de N-NO3 no perfil do solo e trazer problemas ambientais, caso atinjam as águas subsuperficiais. Além disso, aplicações pesadas e contínuas de biossólido podem causar o acúmulo de Corg e de nutrientes na camada superficial, sendo estes últimos, responsáveis pela salinização da solução do solo. Via de regra, é preciso que a utilização deste resíduo como insumo agrícola seja feita de forma controlada, respeitando critérios e normas vigentes para que os beneficios de sua utilização agronômica superem os riscos de poluição ambiental, tornando imprescindível o monitoramento dos atributos químicos do solo.

Efeitos sobre os atributos físicos do solo

A avaliação do solo após dois anos de aplicação dos tratamentos e cultivo de milho indicou que a aplicação do biossólido teve impacto positivo sobre os atributos que fazem inferência à estrutura do solo (Tabela 3.3.2). A aplicação da menor dose de biossólido foi suficiente para que, com exceção da macroporosidade, os demais atributos avaliados apresentassem diferença significativa em relação ao tratamento com adubação mineral, controle absoluto e área adjacente.

Apesar das diferenças significativas entre os tratamentos, no que se refere aos índices de estabilidade de agregados, o solo da área adjacente, em suas condições naturais, apresentou bom estado de agregação, com diâmetro

médio geométrico (DMG) > 2 mm (Le Bissonnais, 1996) e, aproximadamente, 90% dos agregados na classe > 2 mm. Provavelmente, isto se deve ao alto teor de argila do solo, de 650 g kg⁻¹, ao não cultivo nos últimos 10 anos e à cobertura com *Brachiaria* sp., já que as gramíneas são consideradas as mais eficientes, entre os melhoradores da estrutura do solo (Oades, 1984). O fato do solo tratado com adubação mineral apresentar melhor agregação que a área adjacente pode ser explicado pela adição de fertilizantes minerais e de matéria orgânica, via restos culturais, o que pode favorecer o crescimento e a atividade da biomassa microbiana que, por sua vez, auxilia no estabelecimento de ciclos biogeoquímicos e na formação da estrutura do solo (Harris & Birch, 1989; Dufranc et al. 2004).

TABELA 3.3.2 Avaliação dos atributos físicos do solo após dois anos de aplicação dos tratamentos e cultivo de milho e da área adjacente coberta com *Brachiaria* sp. 11

	Tratamentos									
Atributo	Área adjacente	Adubação mineral	Biossólido base seca Mg ha ⁻¹							
	_		0	6	12	18	24			
Agregados > 2 mm, %	87c	946	88c	98a	98a	99 a	99 a			
DMG, mm	3,5c	4,0b	3,6c	4,4a	4,4a	4,4 a	4,5 a			
Ds, kg dm ⁻³	1,24a	1,03c	1,13b	0,96cd	0,9de	0.9de	0,87e			
Porosidade total, m ³ m ⁻³	0,54e	0,61cd	0,58de	0,63bc	0,65ab	0,65ab	0,66a			
Microporosidade, m ³ m ⁻³	0,37e	0,40d	0,39de	0,43c	0,45bc	0.47ab	0,50a			
Macroporosidade, m ³ m ⁻³		0,21a	0,19ab	0,20ab	0.20ab	0.18ab	0.16b			
^U Médias seguidas da mesma	a letra não d	iferem entr	esinah	orizontal j	elo teste	Tukey (P	≤0,05).			

Como pode ser observado na Figura 3.3.2, o DMG, a porcentagem de agregados > 2 mm, a porosidade total e a microporosidade aumentaram, enquanto a Ds diminuiu em resposta às doses crescentes de biossólido adicionadas ao Cambissolo distrófico. Os índices de estabilidade de agregados apresentaram respostas quadráticas às doses de biossólido. A classe de agregados > 2 mm aumentou de 88% para 99% e o DMG passou de 3,6 para 4,5

mm com a aplicação da dose máxima de biossólido. Além da adição de matéria orgânica, a aplicação do biossólido pode ter favorecido a estabilidade de agregados pelo fornecimento de cátions polivalentes.

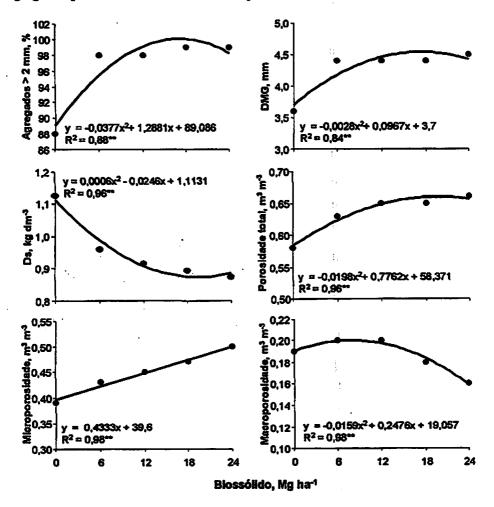


FIGURA 3.3.2 Resposta de atributos físicos de um Cambissolo distrófico à aplicação de doses crescentes de biossólido industrial e cultivo de milho por dois anos consecutivos.

De acordo com o modelo proposto por Edwards & Bremer (1967), cátions polivalentes são essenciais para unir a fração orgânica e os minerais de argila. Sem essa união, as frações argila e orgânica dispersam-se, pois ambas

têm cargas negativas permanentes. Vale salientar ainda que, embora o biossólido avaliado no presente estudo apresente alto teor de sódio, que reconhecidamente. é um agente dispersante, este não teve efeito adverso sobre a estabilidade de agregados, provavelmente pela baixa PST observada na camada de 0-20 cm do solo (Tabela 3.3.1). Desboz et al. (2002) também observaram aumento da estabilidade de agregados de um solo arenoso com a aplicação de 4.2 Mg ha-1 de biossólido, mas este efeito não permaneceu após 3 anos da aplicação. Furrer & Stanffer (1983) não verificaram alterações na estabilidade de agregados e na porosidade total com a aplicação de biossólido, independente da condição original do solo. No presente estudo, a microporosidade aumentou linearmente em resposta às doses de biossólido, passando de 0.39 para 0.50 m³ m⁻³ com a aplicação de 24 Mg ha⁻¹. A macroporosidade foi menos afetada, mas diminuiu de forma quadrática com as doses de biossólido. Mesmo com a diminuição da macroporosidade, houve aumento da porosidade total de 0.58 para 0.66 m³ m⁻³ com a aplicação da dose máxima de biossólido, devido à elevação da microporosidade. Em todos os tratamentos foi mantida a proporção de 2/3 de microporos em relação ao volume de macroporos, que representa para Kiehl (1979), um solo bem estruturado, com potencial para maior armazenamento de água e resistência à erosão hídrica. Navas et al. (1998) também obtiveram incremento da porosidade total de 0.38 para 0.49 m³ m⁻³ em solo tratado com 320 Mg ha⁻¹ de biossólido. Por outro lado, Jorge et al. (1991) observaram que a aplicação de 10 Mg ha-1 de biossólido em Latossolo alterou a relação macro e microporos sem, no entanto, alterar a porosidade total e a Ds.

A Ds apresentou resposta quadrática às doses de biossólido e diminuiu de 1,13 kg m⁻³ no controle para 0,87 kg m⁻³ com a aplicação da dose máxima. De acordo com Kiehl (1979), a Ds pode variar de 0,6-0,8 kg dm⁻³ em solos orgânicos a 1,0-1,6 kg m⁻³ em solos argilosos e, com base nestes valores, verifica-se que o aumento das doses de biossólido teve grande influência sobre

este atributo. Segundo Resende et al. (1997), a adição de matéria orgânica diminui a Ds, como consequência da melhoria na agregação das partículas de solo e aumento da porosidade.

Estes resultados corroboram com os encontrados por Ortega et al. (1981), para porosidade total e por Logan et al. (1996), Aggelides & Londra (2000) e Melo et al. (2004), para densidade do solo (Ds), em diferentes tipos de solos tratados com biossólidos.

Os efeitos positivos da aplicação do biossólido para a estrutura do Cambissolo distrófico evidenciam seu potencial como condicionador das propriedades físicas do solo, com consequências importantes do ponto de vista agronômico e ambiental relacionadas ao maior armazenamento de água e resistência à compactação e aos processos erosivos, que contribuem para a sustentabilidade das atividades agrícolas.

Efeitos sobre os atributos biológicos do solo

Os resultados apresentados na Tabela 3.3.3 mostram que a aplicação dos tratamentos no cultivo de milho teve efeito significativo sobre os atributos biológicos e bioquímicos do solo. Maiores valores de C e N da biomassa microbiana (Cmic e Nmic) foram encontrados com a aplicação de doses superiores a 12 Mg ha¹ de biossólido comparada ao tratamento com adubação mineral e à área adjacente, sendo os menores valores observados no controle. O valor de Cmic obtido na área adjacente, coberta por *Brachiaria* sp. nos últimos 10 anos, foi inferior a 1600 μg C g¹ solo seco, encontrado por Carneiro (2000), em solo sob pastagem nativa em Poços de Caldas, MG, mas foi superior a 203 μg C g¹ solo seco, encontrado por Geraldes et al. (1995) em solo sob pastagem por 15 anos em Paragominas, PA. O valor de Nmic foi inferior aos encontrados em solos sob pastagem na Amazônia, que variaram de 53 a 64 μg N g¹ solo seco (Geraldes et al., 1995).

8

TABELA 3.3.3 Atributos biológicos e bioquímicos do solo tratado por dois anos consecutivos com doses crescentes de biossólido industrial e adubação mineral no cultivo de milho e do solo da área adjacente 11

	Tratamentos										
Atributo	Area	Controle	Adubação	Biossólido base seca, Mg ha-1							
	adjacente ¹²	absoluto	mineral	6	12	18	24				
	Biomassa, respiração, quocientes microbianos e metabólico										
Cmic, µg C g ⁻¹ solo seco	439 bc	355 c	576 bc	715 abc	782 ab	993 a	1081 a				
Nmic, μg N g ⁻¹ solo seco	26 d	19 e	29 cd	28 d	32 bc	36 b	44 a				
Respiração, μg C-CO ₂ g ⁻¹ solo seco h ⁻¹	25 g	27 f	35 e	37 d	39 c	43 b	48 a				
Nmic/Ntotal, %	2,2 a	1,9 a	2,0 a	1,6 a	1,7 a	1,7 a	1,9 a				
Cmic/Corg, %	2,4 a	2,5 a	2,7 a	3,0 a	3,0 a	2,9 a	2,9 a				
Corg/Ntotal	15 a	14 a	15 a	14 a	14 a	16 a	17 a				
Cmic/Nmic	17 a	19 a	20 a	26 a	25 a	27 a	25 a				
<i>qCO</i> ₂ , μg C-CO ₂ h ⁻¹ μg ⁻¹ Cmic	0,06 a	0,08 a	0,06 a	0,05 a	0,05 a	0,04 a	0,04 a				
	Atividade enzimática, total e específica										
β-glicosidase, μg PNG g ⁻¹ solo seco h ⁻¹	863 ab	776 d	783 d	795 cd	816 bcd	852 abc	895 a				
Urease, µg N-NH4 g ⁻¹ solo seco h ⁻¹	154 b	151 b	384 ab	283 ab	290 ab	278 ab	555 a				
Fosfatase, µg PNF g ⁻¹ solo seco h ⁻¹	692 a	633 ab	601 bc	517 cd	471 de	457 de	393 e				
FDA, µg fluoresceina g¹ solo seco h¹	149 e	76 g	230 e	313 d	393 c	534 b	632 a				
β-glicosidase, μg PNG h ⁻¹ μg ⁻¹ Cmic	2,0 a	2,2 a	1,4 ab	1,1ab	1,0ab	0,9ab	0,8b				
Urease, µg N-NH4 h-1µg-1 Cmic	0,4 a	0,4 a	0,7 a	0,4a	0,4a	0,3a	0,5a				
Fosfatase, µg PNF h ⁻¹ µg ⁻¹ Cmic	1,6 a	1,8 a	1,0 ab	0,7Ь	0,65	0,5b	0,4b				
FDA, µg fluoresceina h ⁻¹ µg ⁻¹ Cmic	0,3 ъ	0,2 b	0,4 ab	0,4ab	0,5a	0,5a	0,48 0,6a				
	2,00	~,~ ·		ção da <i>Brach</i>		0,54	v,0a				
Colonização FMAs, %	26 a	İla	15 a	13 a	14 a	13 a	8,3 a				
FMAs, nº de esporos 50 g ⁻¹ solo	27 a	22 ab	7 b	9 b	5 b	11 b	6 b				

¹¹Médias seguidas da mesma letra não diferem entre si na horizontal pelo teste Tukey ($P \le 0.05$); Cmic: C da biomassa microbiana; Nmic: N da biomassa microbiana; qCO2: quociente metabólico (C-CO₂/ Cmic); FDA: Fluoresceína diacetato hidrolisada; Corg: C orgânico; Ntotal: N obtido pelo método Kjeldahl.

A respiração basal (C-CO₂) foi estimulada por todos os tratamentos quando comparada à área adjacente, mas a aplicação do biossólido, mesmo na menor dose, manteve valores superiores aos tratamentos com adubação mineral e controle. Embora a aplicação de biossólido tenha promovido aumento da atividade microbiana, a respiração específica da biomassa ou quociente metabólico (aCO₂) não diferiu significativamente entre os tratamentos. Considerando o qCO2 como indicador de estresse microbiano, este resultado sugere que a aplicação do biossólido não apresentou efeito adverso à população microbiana e que esta foi eficiente na transformação da fração orgânica do biossólido. Segundo Brookes (1995), o qCO2 pode ser interpretado como "eficiência microbiana", já que se trata da avaliação da energia necessária para manutenção da atividade metabólica em relação à energia utilizada para a sintese de biomassa. Dessa forma, solos estressados apresentam qCO2 mais elevados, mas à medida que a biomassa se torna mais eficiente, menos C é perdido como CO2 pela respiração e uma fração significativa de C é incorporada às células microbianas (Gama-Rodrigues & De-Polli, 2000). Valsecchi et al. (1995) observaram que a aplicação de biossólidos ricos em metais pesados teve efeito adverso sobre a comunidade microbiana de 16 solos, causando aumento do qCO₂ e acúmulo de Corg, devido à diminuição da eficiência da biomassa microbiana em transformar a matéria orgânica e realizar a ciclagem de nutrientes dos residuos.

Os quocientes microbianos, Cmic/Corg e Nmic/Ntotal, bem como as relações Cmic/Nmic e Corg/Ntotal, não apresentaram diferenças significativas entre os tratamentos. Os valores médios dos quocientes Cmic/Corg de 2,4% a 3,0% são considerados normais por Jenkinson & Ladd (1981), assim como os de Nmic/Ntotal de 1,6% a 2,2% por Smith & Paul (1990). Considerando a área adjacente como um ambiente em equilíbrio, a ausência de diferença significativa das relações C/N entre esta e os demais tratamentos indica que, mesmo com a

significativas entre as plantas pertencentes à vegetação remanescente das parcelas experimentais e as da área adjacente. Por outro lado, no tratamento com adubação mineral e naqueles com aplicação de biossólido o número de esporos foi inferior ao da área adjacente. Um somatório de fatores pode ter contribuído para a tendência de maiores níveis de colonização micorrízica e para o maior número de esporos na área adjacente. Dentre estes, destaca-se o não preparo do solo e, portanto, a preservação das hifas fúngicas e de raízes que, por sua vez, aumentam os substratos carbonados no sistema, via exsudatos, a não fertilização do solo, especialmente com adubo fosfatado e o acúmulo de serapilheira na superfície do solo, que propicia menor variação de temperatura e umidade, facilitando a sobrevivência dos fungos (Moreira & Siqueira, 2002).

Apesar do baixo número de esporos, verificou-se enriquecimento da população de FMAs nas parcelas experimentais, submetidas ao preparo do solo, adubação mineral ou orgânica e cultivo de milho. Enquanto na área adjacente foram encontrados somente esporos de Paraglomus occultum e Scutellospora heterogama, nas parcelas experimentais, além destes, foram identificados esporos de Accaulospora spinosa; Acaullospora scrobiculata; Accaulospora appendicula; Scutellospora pellucida, Scutellospora sp. e Gigaspora sp. (Figura 3.3.3). É preciso considerar que, no período de coleta da Brachiaria sp., as parcelas experimentais estavam cobertas com restos culturais de milho e de outras espécies de gramíneas e leguminosas invasoras, que podem ter estimulado o enriquecimento da população de FMAs. Estes resultados indicam que a aplicação do biossólido não teve efeito adverso sobre a população de FMAs. Resultados semelhantes foram obtidos por Silva Neto (2001) e Weissenhorn et al. (1995), em solos tratados com biossólidos contendo altos teores de metais pesados. Em síntese, o solo tratado com 12 Mg ha⁻¹ de biossólido apresentou maior atividade microbiana, medida pela respiração basal e hidrólise da FDA e menor atividade da fosfatase ácida que o solo que recebeu adubação mineral,

mas estes tratamentos não diferiram significativamente quanto aos demais atributos biológicos e bioquímicos avaliados.

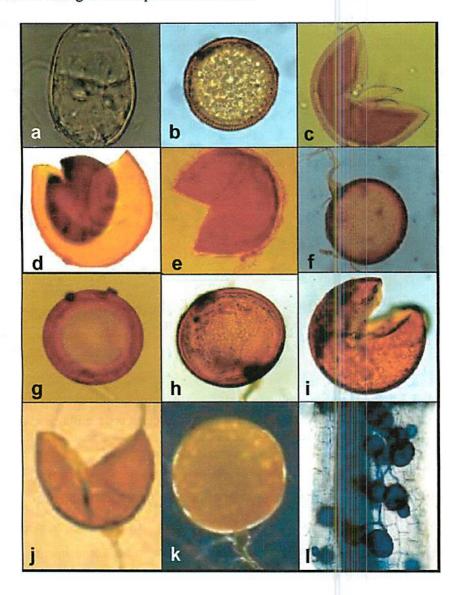


FIGURA 3.3.3 Esporos de FMAs: a) Paraglomus occultum; b,c) Acaulospora scrobiculata; d) Acaulospora sp.; e) Scutellospora pellucida f,g) Scutellospora heterogama; h,i) Scutellospora sp.; j) Acaulospora spinosa; k) Gigaspora sp.; l) segmento de raiz contendo hifas e vesículas fúngicas.

As respostas dos atributos biológicos à aplicação do biossólido são apresentadas na figura 3.3.4. O Cmic, o Nmic e a respiração basal aumentaram linearmente e o qCO₂ apresentou diminuição quadrática com a elevação das doses de biossólido.

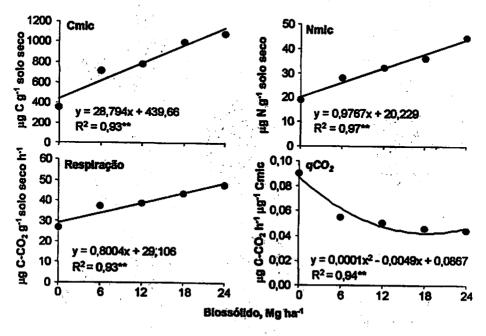


FIGURA 3.3.4 Resposta de atributos biológicos do solo à aplicação de doses crescentes de biossólido industrial e cultivo de milho por dois anos consecutivos.

A aplicação da dose máxima aumentou em três vezes o Cmic, que atingiu 1081 μg C g⁻¹ solo seco e dobrou os valores de Nmic e da respiração, que foram de 44 μg N g⁻¹ solo seco e 48 μg C-CO₂ h⁻¹ μg⁻¹ Cmic. Estes aumentos refletem o estímulo à microbiota do solo causado pelo fornecimento de substratos orgânicos e nutrientes e os baixos teores de metais pesados deste resíduo, favorecendo o crescimento e a atividade microbiana. No entanto, os resultados de Cmic, respiração basal e qCO₂ ilustram o problema de se considerar, isoladamente, os valores de respiração e de Cmic na avaliação do comportamento microbiano em resposta ao manejo e às condições do solo.

Considerando somente a taxa de respiração, esta apresentou resposta linear às doses de biossólido, o que pode ser indicativo de aumento da atividade microbiana em função da adição de matéria orgânica rica em frações lábeis (Emmerling et al., 2000), bem como de maior ciclagem da população microbiana, devido às alterações causadas pela aplicação do biossólido e necessidade de maior consumo de energia para sua sobrevivência (Chander & Brookes, 1991; Leita et al., 1995) e possível perda de C na forma de CO₂. No entanto, quando se considerou o qCO_2 , os menores valores obtidos nas doses mais elevadas, indicaram que o biossólido não teve efeito adverso à população microbiana do solo, que mostrou-se eficiente na ciclagem da matéria orgânica, consumindo menos C como CO₂ e acumulando maior proporção de C em seus tecidos. Resultados análogos foram obtidos por Banerjee et al. (1997), em solo tratado com biossólido contendo baixos teores de metais pesados, similar ao utilizado no presente estudo.

Quanto aos atributos bioquímicos, a atividade da urease apresentou aumento quadrático em resposta às doses de biossólido e atingiu 555 µg N-NH₄ g⁻¹ solo seco h⁻¹ com a aplicação da dose máxima, que correspondeu a um aumento de 4 vezes o valor obtido no tratamento controle (Figura 3.3.5). Este resultado difere dos obtidos García-Gil et al. (2000), que verificaram diminuição de 21% e 28% na atividade da urease causada pela aplicação de 20 e 80 Mg ha⁻¹ de biossólido contendo elevado teor de metais e de N-NH₄⁺. Para a atividade específica da urease não houve efeito significativo das doses de biossólido, embora a tendência de aumento na dose máxima tenha sido semelhante ao comportamento da atividade total desta enzima.

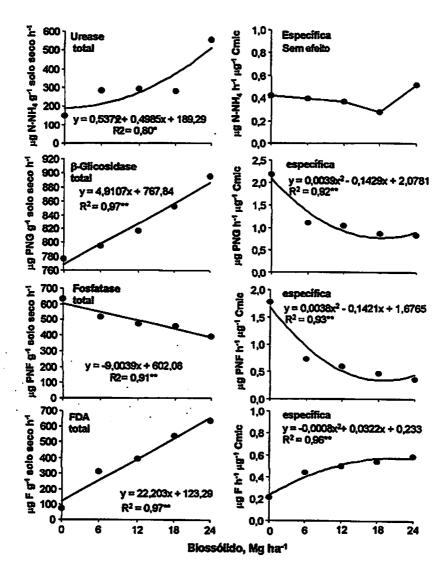


FIGURA 3.3.5 Resposta da atividade enzimática total e específica do solo à aplicação de doses crescentes de biossólido industrial e cultivo de milho por dois anos consecutivos.

A atividade da β-glicosidase foi favorecida e aumentou linearmente em resposta às doses de biossólido, obtendo-se 895 μg PNG g⁻¹ solo seco h⁻¹ no tratamento com a dose máxima. O oposto foi observado para a atividade específica, que diminuiu de forma quadrática com o aumento das doses de

biossólido, indicando menor proporção de microrganismos produtores desta enzima na biomassa microbiana nas doses mais elevadas. García-Gil et al. (2000) também verificaram aumento na atividade total da β-glicosidase, sendo este de 100% em relação ao controle, com a aplicação de 80 Mg ha⁻¹ de biossólido, devido ao estímulo causado pela adição de substratos carbonados contidos naquele resíduo.

A atividade da fosfatase ácida foi inibida pela aplicação do biossólido e diminuiu linearmente em resposta às doses, passando de 633 no controle para 393 µg PNF g⁻¹ solo seco h⁻¹ no tratamento com a dose máxima. A atividade específica da fosfatase também diminuiu, apresentando resposta quadrática ao aumento das doses, possivelmente devido ao aumento linear de P disponível fornecido pelo biossólido. Por outro lado, Kannan & Oblisami (1990) observaram aumento da atividade da fosfatase após 15 anos de aplicação de efluente de indústria de celulose em solos com maiores teores de P disponível (38 mg P dm⁻³ extraído por Mehlich 3) que o observado no presente estudo, de apenas 5,6 mg P dm⁻³, no solo tratado com 24 Mg ha⁻¹. Gagnon et al. (2000) constataram que a aplicação de 0 a 65 Mg ha-1 de biossólido gerado por indústria de celulose promoveu aumento da atividade da fosfatase ácida, mas doses superiores a 32 Mg ha-1 reduziram a atividade desta enzima devido ao aumento do teor de P inorgânico no solo, que foi superior a 100 mg P dm⁻³ extraído por Mehlich 3. Garcia-Gil et al. (2000) também verificaram inibição da atividade da fosfatase ácida em solos tratados com biossólido, devido não só ao aumento de P solúvel, mas também ao elevado teor de metais pesados presentes no resíduo.

A hidrólise da FDA foi estimulada e aumentou linearmente em resposta às doses de biossólido, atingindo 632 µg fluoresceína g⁻¹ solo seco h⁻¹ com a aplicação da dose máxima, que correspondeu a oito vezes o valor obtido no controle. A atividade específica apresentou aumento quadrático em resposta às doses de biossólido. Como a hidrólise da FDA é usada para quantificar as

cétulas ativas nos solos e para caracterizar a atividade microbiana global do solo (Schnürer & Roswall, 1982), o aumento em resposta às doses de biossólido indica que este pode estimular a comunidade microbiana do solo, por meio da adição de microrganismos ativos ou pela ativação dos que estão presentes no solo em estado de latência heterotrófica. Chantigny et al. (2000) verificaram valores de FDA próximos a 100 µg fluoresceína g¹solo seco h¹ após 3 anos de aplicação de 100 Mg ha¹ de biossólido. Tardif (1996) relatou atividades na faixa de 50 a 140 µg fluoresceína g¹ solo seco h¹ aplicando 0 a 18 Mg ha¹ de biossólido de indústria de celulose em solo cultivado com batata. Perucci (1992) reportou valores de 30 a 100 µg fluoresceína g¹ solo seco h¹ quando adicionou doses de 0 a 90 Mg ha¹ de composto de lixo urbano. Nota-se que, em todos estes trabalhos, a atividade da hidrólise da FDA apresentou valores inferiores aos obtidos com a aplicação de 24 Mg ha¹ de biossólido, observado no atual estudo.

Por outro lado, é preciso considerar que as respostas dos atributos biológicos e bioquímicos do solo à aplicação de resíduos orgânicos são muito variáveis, em função do tipo e das características químicas dos materiais orgânicos e do solo e da presença de cobertura vegetal. García-Gil et al. (2000) observaram que a aplicação de 80 Mg ha¹ de biossólido municipal compostado no cultivo de cevada em solo arenoso durante nove anos aumentou em 46% o Cmic e em mais de 100% a atividade da β-glicosidase, mas reduziu em 62% a atividade da fosfatase ácida, devido ao aumento de P solúvel e em 28% a atividade da urease, devido aos altos teores de metais pesados e de NH4⁺ daquele resíduo. Gagnon et al. (2000) verificaram aumento linear na atividade da fosfatase ácida com a aplicação de até 65 Mg ha¹ do biossólido gerado por indústria de celulose a um solo orgânico utilizado com horticultura, mesmo após três anos da aplicação. Chantigny et al. (2000) constataram que a aplicação de 50 Mg ha¹ de biossólido em base úmida (52 dag kg¹¹ água), também gerado por

indústria de celulose e tratado em sistema anaeróbico, aumentou em 100% o Cmic e em 40% a hidrólise da FDA, que manteve atividade superior ao controle três anos após a aplicação a um solo argiloso. Por outro lado, Debosz et al. (2002) verificaram que os efeitos da aplicação de 4,2 Mg ha⁻¹ de biossólido municipal sobre Cmic e Nmic, respiração, qCO₂, hidrólise da FDA e atividade da β-glicosidase foram transientes, não sendo observados após três anos da aplicação. Porém, as doses empregadas neste estudo são muito inferiores às utilizadas naqueles citados anteriormente.

A matriz de correlações mostra a existência de várias relações significativas entre os parâmetros biológicos e bioquímicos avaliados (Tabela 3.3.4). A biomassa microbiana apresentou correlações positivas significativas com o teor de Corg do solo e com a atividade medida pela respiração e pela maioria das enzimas extracelulares, evidenciando a relação estreita entre biomassa e atividade biológica. A correlação inversa do qCO2 com o aumento do Cmic. Nmic e atividade microbiana indica que a biomassa microbiana apresentou-se ativa na biodegradação dos compostos orgânicos e eficiente na utilização destes substratos para a obtenção de energia. A boa correlação da atividade hidrolítica da FDA com Cmic, Nmic e respiração indica que esta enzima pode ser empregada como referência para a atividade microbiana global do solo, como sugerido por Diack (1997). A β-glicosidase apresentou alta correlação com Corg e Cmic por estar diretamente envolvida com a mineralização de compostos carbonados do biossólido, o que também foi observado por Garcia-Gil et al. (2000). O aumento da atividade hidrolítica da FDA, da B-glicosidase e da urease correlacionou positivamente com o Corg do solo e inversamente com a atividade da fosfatase. Kumari & Singaram (1995) observaram que a maior produção de biomassa e da atividade enzimática correlacionou-se à melhoria da fertilidade do solo.

TABELA 3.3.4 Coeficientes de correlações de Pearson entre atributos biológicos e bioquímicos do solo tratado por dois anos consecutivos com doses crescentes de biossólido industrial e adubação mineral no cultivo de milho e da área adjacente coberta com Brachiaria sp.¹¹

arad april	30 AT 1500	216 [.	a pelo te	ifficativ	omooni igis osn	ice uz:	ectivamen	% resp	1 9%¢ B	ilcativas	ingis 250;	: conclad	17 + C **	metodo Kjeldal
3-GL: B-	olico; f	daləm əl	quocieni C orean	. Coss.	:Isssd otstansi	oßpraigs: b. enless:	RESP: re	abilànbir.	issa mici	smoid sb sbios ese	oinågor ingenier	in e o nd 204 :ese	nic: carbo mr :HAU	μ Cmic e Mn Glicosidase; U
•	*SL'0-	**\$8,0	su	•1L'0	su	su	*LL'0-	eu	su	+0 L'0⁻	•ÞL'0	su	+0L'0	Cmic/Corg
	-	**18 '0-	su	su	su	SU	* †9'0	. su	Su	su	su	su	su	Mmic/Mtotal
		-	su	••98'0	••64'0	** 78 '0	••68'0-	eu	su	**6L'0-	••\$8'0	• £ 9'0	**98 '0	Cmic/Vmic
			-	su	◆! L'0	•\$9'0	su	su	**08 ,0	su	su	•9L'0	su	Corg/Motal
				-	••L6'0	** 66 ' 0	**S6'0-	• <i>⊅L</i> '0	su	**£6'0-	** 46'0	** \$6'0	••66'0	IstoiM
					-	**66'0	** 06'0-	*£7,0	*1L'0	**88,0-	** \$6'0	**L6'0	**66' 0	හුලට
						-	**S6'0-	•9L'0	•99'0	**68 [°] 0-	**L6'0	**L6'0	••66'0	FDA
							-	∗£ L'0-	su	**6L'0	**96 [°] 0	++98'0-	**\$6 ' 0-	FOSF
								-	su	eu	**£8,0	**148,0	•\$L'0	UKE
									-	Su	su	•\$L'0	•79'0	b-gr
										-	**18,0-	**88,0-	**06°0~	^z ODb
											•	0,92**	**86 '0	KESb
												-	••\$6'0	Nmic
													-	Cmic
Voim D	Vmic/ Motal	Cmic Mmic	Corg/ Mtotal	Molal	StoO	FDA	FOSF	URE	D-GI	^г ОЭb	RESP	oimN	Cmic	otudinA

De fato, houve correlação positiva entre o teor de Ntotal e de Corg do solo com o aumento da biomassa e da atividade microbiana avaliada pela respiração e pela produção de enzimas extracelulares. Segundo Frankenberger & Dick (1983), essa relação entre fertilidade e atividade microbiana é amplamente documentada na literatura e resulta dos efeitos da maior decomposição dos resíduos orgânicos sobre a abundância e atividade dos microrganismos do solo. No entanto, a correlação negativa da atividade da fosfatase ácida com a maioria dos atributos biológicos e bioquímicos indica que o biossólido, embora tenha estimulado o crescimento e o metabolismo microbiano, inibiu a população produtora de fosfatase, provavelmente pelo aumento da disponibilidade de P. A correlação inversa entre atividade da fosfatase e disponibilidade de P foi observada por Garcia-Gil et al. (2000), Hysek & Sarapatka (1998) e Fernandes et al. (1998).

Dos atributos avaliados, o Corg e a biomassa microbiana foram os que apresentaram maior inter-relação com os demais, indicando que as alterações na quantidade e qualidade do Corg do solo, promovidas pela aplicação do biossólido, alteraram a dinâmica da biomassa microbiana e influenciaram os processos bioquímicos.

Os resultados desta avaliação indicam que o biossólido não apresentou efeito adverso e estimulou o crescimento e a atividade microbiana, favorecendo a produção de enzimas extracelulares responsáveis pela transformação dos compostos orgânicos e que estão diretamente relacionadas à melhoria da fertilidade do solo. Com base nestes aspectos, este biossólido apresenta excelente potencial de uso como condicionador dos atributos biológicos do solo, devido ao seu elevado conteúdo de matéria orgânica e de nutrientes, favorecendo a ativação de processos bioquímicos, que melhoram a fertilidade do solo e, consequentemente, favorecem a produtividade das culturas, como foi observado para o milho no capítulo 2.

3.4 CONCLUSÕES

- A aplicação do biossólido aumentou os teores de C orgânico, macro e micronutrientes, a CTC, a soma de bases e a porcentagem de saturação por bases e diminuiu o pH, mas não teve efeito sobre os teores de Pb e Cd no solo.
- O Zn apresentou-se como elemento móvel no perfil do solo, enquanto Ni tendeu ao acúmulo na camada de 20-40 cm. Os teores de NO₃ e de Na aumentaram em profundidade, representando potencial poluente de águas subsuperficiais após aplicações sucessivas do biossólido.
- A estabilidade de agregados, a porosidade total e a microporosidade do solo aumentaram e a densidade do solo diminuiu com a aplicação do biossólido.
- O C e N da biomassa microbiana, a respiração basal e as atividades da urease, da β-glicosidase e da hidrólise do diacetato de fluoresceina aumentaram, enquanto o qCO₂ e a atividade da fosfatase ácida diminuíram com a elevação das doses de biossólido.
- A aplicação por dois anos consecutivos do biossólido industrial no cultivo de milho aumentou a biomassa e a atividade microbiana e melhorou a fertilidade e a estrutura do solo, evidenciando os beneficios de sua utilização agrícola.

3.5 REFERÊNCIAS BIBLIOGRÁFICAS

AGGELIDES, S. M.; LONDRA, P. A. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and clay soil. Bioresource Technology, Oxford, v. 71, n. 3, p. 253-259, Feb. 2000.

ALEF, K.; NANNIPIERI, P. (Ed.). Methods in applied soil microbiology and biochemistry. London: Academic Press, 1995. 576 p.

ANDERSON, T. H.; DOMSCH, K. H. The metabolic quocient for CO₂ (qCO₂) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, Oxford, v. 25, n. 3, p. 393-395, Mar. 1993.

ANJOS, A. R. M.; MATTIAZZO, M. E. Lixiviação de ions inorgânicos em solos repetidamente tratados com biossólido. Revista Brasileira de Ciência do Solo, Viçosa, v. 24, n. 4, p. 927-938, out./dez. 2000.

AYERS, R. S.; WESTCOT, D. W. A qualidade da água na agricultura. Campina Grande: UFPB. Tradução de GHEYI, H. R.; MEDEIROS, J. F.; DAMACENO, F. A. V., 1991. 218 p. (Estudos FAO: Irrigação e Drenagem, 29, Revisado).

BANERJEE, M. R.; BURTON, D. L.; DEPOE, S. Impact of sewage sludge application on soil biological characteristics. Agriculture, Ecosystems and Environmental, Amsterdam, v. 66, n. 3, p. 241-249, Dec. 1997.

BASTA, N. T.; SLOAM, J. J. Bioavaibility of heavy metal in strongly acidic soils treated with exceptional quality biosolids. Journal of Environmental Quality, Madison, v. 28, n. 2, p. 633-638, Mar./Apr. 1999.

BETTIOL, W.; CAMARGO, O. A. Lodo de esgoto na agricultura: potencial de uso e problemas. Instituto de Educação Tecnológica – IETEC, 2003. www.ietec.com.br>. Acesso em: set. 2004.

BOEIRA, R. C.; LIGO, M. A. V.; DYNIA, J. F. Mineralização de nitrogênio em solo tropical tratado com lodos de esgoto. Pesquisa Agropecuária Brasileira, Brasilia, v. 37, n. 11, p. 1639-1647, nov. 2002.

BROOKES, P. C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility Soils, Berlin, v.19, n. 4, p. 269-279, mar. 1995.

- BROOKES, P. C.; LANDMAN, A.; PRUDEN, G.; JENKINSON, D. S. Cloroform fumigation and the release of soil nitrogen: a rapid direct extrction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, Oxford, v. 17, n. 6, p. 837-842, 1985.
- CAMARGO, F. A. de O.; GIANELLO, C.; TEDESCO, M. J.; VIDOR, C. Nitrogênio orgânico do solo. In: SANTOS, G. de A.; CAMARGO, F. A. de (Ed.). Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais. Porto Alegre: Genesis, 1999. p. 117-137.
- CARNEIRO, M. A. C. Características bioquímicas do solo em duas cronossequências de reabilitação em áreas de mineração de bauxita. 2000. 166 p. Tese (Doutorado) Universidade Federal de Lavras, Lavras, MG.
- CHANDER, K.; BROOKES, P. C. Effects of heavy metals from past applications of sewage slude on microbial biomass and organic matter accumulation in a sandy loam and silty loam U. K. soil. Soil Biology and Biochemistry, Oxford, v. 23, n. 10, p. 927-932, Oct. 1991.
- CHANTIGNY, M. H.; ANGERS, D. A.; BEAUCHAMP, C. J. Active carbon pools and enzyme activities in soils amended with de-inking paper sludge. Canadian Journal of Soil Science, Ottawa, v. 80, n. 1, p. 99-105, Feb. 2000.
- COMISSÃO DE FERTILIDADE DO SOLO DO ESTADO DE MINAS GERAIS CFSEMG. Recomendações para uso de corretivos e fertilizantes em Minas Gerais: 5ª Aproximação. Viçosa-MG, 1999. 359 p.
- COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL CETESB. Aplicação de biossólidos de sistemas de tratamento biológico em áreas agrícolas: critérios para projeto e operação. São Paulo, 1999. 29 p. (CETESB, Norma P. 4. 230),
- DEBOSZ, K.; PETERSEN, S. O.; KURE, L. K.; AMBUS, P. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Applied and Soil and Ecology, Amsterdam, v. 19, n. 3, p. 237-248, Mar. 2002.
- DEFELIPO, B. V.; NOGUEIRA, A. V.; LOURES, E. G.; ALVAREZ, V. V. H. Eficiência agronômica do lodo de esgoto proveniente de uma indústria siderúrgica. Revista Brasileira de Ciência do Solo, Campinas, v. 15, n. 3, p. 389-393, set./dez. 1991.

- DIACK, M. Relationships between soil biological and chemical characteristics and surface soil structural properties for use in soil quality. 1997. 221 p. Tese (Doutorado) Purdue University, Purdue.
- DICK, R. P.; BREAKWELL, D. P.; TURCO, R. F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: DORAN, J. W.; JONES, A. J. Methods for Assessing soil quality. Madison: Soil Science Society of America, 1996. p. 247-272.
- DICK, W. A.; JUMA, N. G.; TABATABAI, M. A. Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots. Soil Science, Baltimore, v. 136, n. 1, p. 19-25, July 1983.
- DUFRANC, G.; DECHEN, S. C. F.; FREITAS, S. S.; CAMARGO, O. A. Atributos fisicos, químicos e biológicos relacionados com a estabilidade de agregados de dois Latossolos em plantio direto no Estado de São Paulo. Revista Brasileira de Ciência do Solo, Viçosa, v. 28, n. 3, p. 505-517, maio/jun. 2004.
- EDWARDS, A. P.; BREMER, J. M. Microaggregates in soil. Journal of Soil Science, v. 18, p. 64-73, 1967.
- EIVAZI, F.; TABATABAI, M. A. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, Oxford, v. 20, n. 5, p. 601-606, 1988.
- EMPRESA BRASILEIRA DE PESQUISA AGROPCUÁRIA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solos. 2. ed. Rio de Janeiro: EMBRAPA-CNPS, 1997. 212 p.
- EMMERLING, C.; LIEBNER, C.; HAUBOULD-ROSAR, M.; KATZUR, J.; SCHÖDER, D. Impact of application of organic waste materials on microbial and enzyme activies of mine soils in the Lusatian coal mining region. Plant and Soil, Dordrecht, v. 220, n. 1/2, p. 129-138, 2000.
- FEIGL, B. J.; SPARLING, G. P.; ROSS, D. J.; CERRI, C. C. Soil microbial biomass in Amazonian soils: evaluation of methods and estimates of pool sizes. Soil Biology and Biochemistry, Oxford, v. 27, n. 11, p. 1467-1472, Nov. 1995.
- FERNANDES, L. A. R.; FURTINI NETO, A. E.; CURI, N.; LIMA, J. M.; GUEDES, G. A. A. Fósforo e atividade de fosfatase em dois solos sob diferentes condições de uso. Pesquisa Agropecuária Brasileira, Brasilia, v. 33, n. 7, p. 1159-1170, jul. 1998.

- FERREIRA, A. S.; CAMARGO, F. A. O.; TEDESCO, M. J.; BISSANI C. A. Alterações de tributos químicos e biológicos de solo e rendimento de milho e soja pela utilização de resíduos de curtume e carbonífero. Revista Brasileira de Ciência do Solo, Viçosa, v. 27, p. 755-763, 2003.
- FERREIRA, D. F. SisVar programa estatístico. Versão 4. 2 (Build 39). 1999-2003. Departamento de Ciências Exatas, Universidade Federal de Lavras.
- FRANKENBERGER, W. T.; DICK, W. A. Relationships between enzyme activities and growth and activity indices in soil. Soil Science Society of America Journal, Madiosn, v. 47, n. 5, p. 945-951, Sept./Oct. 1983.
- FURRER, O. J.; STAUFFER, W. Influence of sewage sludge application on physical properties of soils and its contribution to the humus balance. In: The influence of sewage sludge application on physical and biological properties of soils. Dordrecht: D. Reidel, 1983. p. 65-74.
- GAGNON. B.; LALANDE, R.; SIMARD, R. R.; ROY, M. Soil enzyme activities following paper sludge addition in a winter cabbage-sweet corn rotation. Canadian Journal of Soil Science, Ottawa, v. 80, n. 1, p. 91-97, Feb. 2000.
- GAMA-RODRIGUES, E. F. Biomassa microbiana e ciclagem de nutrientes. In: SANTOS, G. A.; CAMARGO, F. A. O. de (Ed.). Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais. Porto Alegre: Genesis, 1999. p. 227-243.
- GAMA-RODRIGUES, E. F. da; DE-POLLI, H. Biomassa na Ciclagem de Nutrientes. In: FERTIBIO 2000, Santa Maria (RS). Anais.... Santa Maria (RS), 2000. CD-ROM.
- GARCÍA, C.; HERNANDEZ, T.; ALBALADEJO, J.; CASTILLO, V.; ROLDAN, A. Revegetation in semiarid zones: influence of terracing and organic refuse on microbial activity. Soil Science Society of America Journal, Madison, v. 62, n. 3, p. 670-676, May/June 1998.
- GARCÍA-GIL, J. C.; PLAZA, C.; SOLER-ROVIRA, P.; POLO, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology & Biochemistry, Oxford, v. 32, n. 13, p. 1907-1913, Nov. 2000.

- GERALDES, A. P. A.; CERRI, C. C.; FEIGL, B. J. Biomassa microbiana de solo sob pastagens na Amazônia. Revista Brasileira de Ciência do Solo, Campinas, v. 19, n. 1, p. 55-60, jan./abr. 1995.
- GERDEMANN, J. W.; NICOLSON, T. H. Spores of mycorrhizal endogamous species extracted from soil by wet sieving and decanting. British Mycological Society Transactions, Cambridge, v. 46, p. 235-244, 1963.
- GIOVANNETTI, M.; MOSSE, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, Cambridge, v. 84, n. 3, p. 489-500, 1980.
- GOH, K. M.; CONDRON, L. M. Plant availability of phosphorus accumulated from long-term applications of superphosphate and effluent to irrigated pastures. New Zealand of Agricultural Research, Wellington, v. 32, n. 1, p. 45-51, 1989
- GONÇALVES, C. N.; CERETTA, C. A. Plantas de cobertura de solo antecedendo o milho e seu efeito sobre o carbono orgânico do solo, sob plantio direto. Revista Brasileira de Ciência do Solo, Viçosa, v. 23, n. 2, p. 307-313, abr./iun. 1999.
- HARRIS, J. A.; BIRCH, P. Soil microbial activity in opencast coal mine restoration. Soil Use and Management, Wallingford, v. 5, n. 4, p. 155-160, Dec. 1989.
- HUE, N. V. Sewage sludge. In: RECHEIGL, J. E. (Ed.). Sopil amendments and environmental quality. Boca Raton: Lewis Publishers, 1995. p. 199-247.
- HYSEK K.; SARAPATKA B. Relationship between Phosphatase active bacteria and Phosphatase activities in forest soils. Biology and Fertility of Soils, Berlin, v. 26, n. 2, p. 112-115, Jan. 1998.
- JENKINSON, D. S.; LADD, J. M. Microbial biomass in soil: movement and turnover. In: PAUL, E. A.; LADD, J. M. (Ed.). Soil biochemistry. New York: Marcel Dekker, 1981. p. 368-386.
- JOHNS, G. G.; McCONCHIE, D. M. Irrigation of bananas with secondary treated sewage sludge effluent. I. Field evaluation of effect on plant nutrients and additional elements in leaf, pulp and soil. Australian Journal of Agricultural Research, Melbourne, v. 45, n. 8, p. 1601-1617, 1994.

- JORGE, J. A.; CAMARGO, O. A.; VALADARES, J. M. A. S. Condições físicas de um Latossolo Vermelho-Escuro quatro anos após aplicação de lodo de esgoto e calcário. Revista Brasileira de Ciência do Solo, Campinas, v. 15, n.3, p. 237-240, set./dez. 1991.
- KANNAN, K.; OBLISAMI, G. Influence of paper mill effluent irrigation on soil enzyme activities. Soil Biology and Biochemistry, Oxford, v. 22, n. 7, p. 923-926, 1990.
- KEMPER, W. D.; ROSENAU, R. C. Aggregate stability and size distribution. In: KLUTE, A. (Ed.). Methods of soil analysis. 2. ed. Madison: American Society of Agronomy, 1986. v. 1, p. 425-442.
- KIEHL, E.J. Manual de edafologia. São Paulo: Agronômica Ceres, 1979. 262p.
- KOOMEN, I.; McGRATH, S. P.; GILLER, K. E. Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications. Soil Biology and Biochemistry, Oxford, v. 22, n. 7, p. 871-873, 1990.
- KUMARI, K. K.; SINGARAM, P. Relationship among soil chemical, biochemical properties and enzyme activities. Madras Agricultural Journal, Coimbatore, v. 82, n. 1, p. 69-70, Jan. 1995.
- LE BISSONNAIS, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, Oxford, v. 47, n. 4, p. 425-442, Dec. 1996.
- LEITA, L.; DE NOBILI, M.; MUHLBACHOVA, G.; MONDINI, C.; MARCHIOL, L.; ZERBI. G. Bioavailability and effects of heavy metals on soil microbial biomassa survival during laboratory incubation. Biology and Fertility Soils, Berlin, v. 19, n. 2/3, p. 103-108, Feb. 1995.
- LOGAN, T. J.; HARRISON, B. J.; McAVOY, D. C.; GREFF, J. A. Effects of olestra in sewage sludge on soil physical properties. Journal of Environmental Quality, Madison, v. 25, n. 1, p. 153-161, Jan./Feb. 1996.
- MARCIANO, C. R.; MORAES, S. O.; OLIVEIRA, F. C.; MATTIAZZO, M. E. Efeito do lodo de esgoto e do composto de lixo urbano sobre a condutividade hidráulica de um Latossolo Amarelo saturado e não saturado. Revista Brasileira de Ciência do Solo, Viçosa, v. 25, n. 1, p. 1-9, jan/mar. 2001.

- MATHAN, K. K. Studies on the influence of long-term municipal sewage-effluent irrigation on soil physical properties. **Bioresource Technology**, Essex, v. 48, p. 275-276, 1994.
- MELO, V. P.; BEUTLER, A. N.; SOUZA, Z. M.; CENTURION, J. F.; MELO, W. J. Atributos físicos de Latossolos adubados durante cinco anos com biossólido. Pesquisa Agropecuária Brasileira, Brasilia, v. 39, n. 1, p. 67-72, jan. 2004.
- MELO, W. J.; MARQUES, M. O.; SANTIAGO, G.; CHEELI, R. A.; LEITE, S. A. A. Efeito de doses crescentes de lodo de esgoto sobre frações da matéria orgânica e CTC de um latossolo cultivado com cana-de-açucar. Revista Brasileira de Ciência do Solo, Campinas, v. 18, n. 3, p. 449-455, set./dez. 1994.
- MELO, W. J.; MARQUES, O. M. Potencial do lodo de esgoto como fonte de nutrientes para as plantas. In: BETTIOL, W.; CAMARGO, O. A. (Ed.). Impacto ambiental do uso agrícola do lodo de esgoto. Jaguariúna, SP: EMBRAPA Meio Ambiente, 2000, p. 109-141.
- MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e bioquímica do solo. Lavras: Editora UFLA, 2002. 626 p.
- NANNIPIERI, P.; PECHOZZINI, F.; ARCADA, P. G.; PIORANELLI, C. Changes in amino acids, enzyme activities and biomass during soil microbial growth. Soil Science, Baltimore, v. 127, n. 1, p. 24-36, July 1979.
- NAVAS, A.; BERMÚDEZ, F.; MACHÍN, J. Influence of sewage sludge application on physical and chemical properties of Gypsisols. Geoderma, Amsterdam, v. 87, n. 1/2, p. 123-135, Dec. 1998.
- NETO, R. T.; SOUZA, A. F; FILHO, M. V. M.; CARMONA, R.; RAMAGEM, R. D. Alteração dos atributos químicos e da matéria orgânica de um Latossolo do Distrito Federal em função de doses crescentes de biossólido. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais... Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003. CD-ROM.
- OADES, J. M. Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, Dordrecht, v. 76, n. 1/3, p. 319-337, Apr. 1984.

- OLIVEIRA, F. C.; MATTIAZZO, M. E. Mobilidade de metais pesados em um Latossolo Amarelo distrófico tratado com lodo de esgoto e cultivado com canade-açúcar. Scientia Agricola, Piracicaba, v. 58, n. 4, p. 807-812, out./dez. 2001.
- OLIVEIRA, F. C.; MATTIAZZO, M. E.; MARCIANO, C. R.; ABREU JUNIOR, C. H. Movimentação de metais pesados em Latossolo adubado com composto de lixo urbano. Pesquisa Agropecuária Brasileira, Brasília, v. 37, n. 12, p. 1787–1793, dez. 2002.
- ORTEGA, E.; NOGALES, R.; DELGADO, M. Modificación en la porosidad de un suelo por la adición de un compost de basura urbana. Anales de Edafología y Agrobiología, Madrid, v. 15, p. 1735-1747, 1981.
- PAGANINI, W. S. Disposição de esgotos no solo: escoamento à superficie. 2. ed. São Paulo: Fundo Editorial da AESABESP, 1997. 232 p.
- PASCUAL, J. A.; GARCIA, C.; HERNANDEZ, T.; MORENO, J. L.; ROS, M. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology and Biochemistry, Oxford, v. 32, n. 13, p. 1977-1883, Nov. 2000.
- PERUCCI, P. Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biology and Fertility Soils, Berlin, v. 14, n. 1, p. 54-60, Sept. 1992.
- PHILLIPS, J. M.; HAYMAN, D. S. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. British Mycological Society Transactions, Cambridge, v. 55, n. 1, p. 158-160, Jan. 1970.
- REIS, T. C. Distribuição e biodisponibilidade do níquel aplicado ao solo como NiCl₂ e biossólido. 2002. 105 p. Tese (Doutorado) Escola Superior de Agricultura Luiz de Queiroz, Piracicaba.
- RESENDE, M.; CURI, N.; REZENDE, S. B. de; CORRÊA,G. F. Pedologia, base para distinção de ambientes. 2. ed. Viçosa: NEPUT, 1997. 367 p.
- SANTOS, D. S.; ANDRADE, C. A.; MATTIAZZO, M. E. Capacidade de Troca Catiônica (CTC) em solo tratado com doses de biossólidos. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais... Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003. CD-ROM.

- SCHNÜRER, J.; ROSSWALL, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology, Washington, v. 43, n. 6, p. 1256-1261, June 1982.
- SILVA NETO, J. P. da. Efeito da inoculação de fungos micorrízicos em mudas de maracujazeiro amarelo (*Passiflora edulis Sims f. flavicarpa* Deg) em substrato com biossólido. 2001. 105 p. Dissertação (Mestrado) Universidade Federal Rural de Pernambuco.
- SIQUEIRA, J. O.; MOREIRA, F. M. S.; GRISI, B. M.; HUNGRIA, M.; ARAÚJO, R. Microrganismos e processos biológicos do solo: perspectiva ambiental. Brasília: EMBRAPA-CNPAF, 1994. 142 p.
- SMITH, J. L.; PAUL, E. A. The significance of soil microbial biomass estimations. In: BOLLAG, J. M.; STOTZKY, G. (Ed.). Soil biochemistry. New York: M. Dekker, 1990. v. 6, p. 357-396.
- SMITH, S. E.; READ, D. J. Mycorrhizal symbiosis. 2. ed. London: Academic Press, 1997. 605 p.
- SOUZA, R. F. Micorriza e fósforo no crescimento de espécies forrageiras em solo de baixa fertilidade. 1998. 145 p. Dissertação (Mestrado) Universidade Federal de Lavras, Lavras.
- SPARLING, G. P. Ratio of biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, Victoria, v. 30, n. 2, p. 195-207, 1992.
- STEVENSON, F. J. Cycles of soil, carbon, nitrogen, phosphorus, sulfur, micronutrients. New York: John Wiley, 1986. 380 p.
- TABATABAI, M. A.; BREMNER, J. M. Assay of urease activity in soil. Soil Biology and Biochemistry, Oxford, v. 4, p. 479-487, 1972.
- TARDIF, J. Impact des résidus de désencrage sur la microflore d'un sol en culture de pomme de terre. 1996. Thesis (M.Sc.) Université Laval, Québec, QC.
- TÓTOLA, M. R.; CHAER, G. M. Microrganismos e processos microbiológicos como indicadores da qualidade dos solos. In: SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO. Tópicos em ciência do Solo. Viçosa, 2002. v. 2, p. 195-276.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY – USEPA. 40 CFR – Part 503. Standards for the use and disposal of sewage sludge. Federal Register, Washington, v. 58, p. 9387-9415, 1993.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY – USEPA. Background report on fertilizer use, contaminants and regulations. United States Environmental Protection Agency/Office of Pollution Prevention and Toxics. EPA 747-R-98-003, 1999. 395 p.

VALSECCHI, G.; GIGLIOTTI, C.; FARINI, A. Microbial biomass, activity and organic matter accumulation in soils contaminated with heavy metals. Biology and Fertility Soils, Berlin, v. 20, n. 4, p. 253-259, Sept. 1995.

VANCE, E. D.; BROOKES, P. C.; JENKINSON, D. S. An extraction method for measuring microbial biomass C. Soil Biology and Biochemistry, Oxford, v. 19, n. 6, p. 703-707, June 1987.

WALDROP, M. P.; BALSER, T. C.; FIRESTONE, M. K. Linking microbial community composition to function in a tropical soil. Soil Biology & Biochemistry, Oxford, v. 32, n. 13, p. 1837-1846, Nov. 2000.

WEISSENHORN, I.; MENCH, M.; LEYVAL, C. Bioavailability of heavy metals and arbuscular mycorrhiza in a sewage-sludge-amended sandy soil. Soil Biology and Biochemistry, Oxford, v. 27, n. 3, p. 287-296, 1995.

CAPÍTULO 4

LIXIVIAÇÃO DE ESPÉCIES QUÍMICAS DE SOLO TRATADO COM DOSES CRESCENTES DE BIOSSÓLIDO INDUSTRIAL

RESUMO

TRANNIN, Isabel Cristina de Barros. Lixiviação de espécies químicas de solo tratado com doses crescentes de biossólido industrial. In:

Avaliação agronômica de um biossólido industrial e de seus efeitos sobre atributos do solo. Lavras: UFLA, 2004. Cap.4, p. 123-160. (Tese - Doutorado em Solos e Nutrição de Plantas)

A avaliação do potencial de lixiviação de espécies químicas em solos tratados com biossólidos é de extrema importância para a segurança ambiental da utilização agrícola destes resíduos. No presente estudo, conduzido em lisimetro, avaliaram-se os efeitos de doses crescentes, equivalentes a 0, 6, 12, 18, 24, 48, 96 e 144 Mg ha-1 em base seca de um biossólido de indústria de fibras e resinas PET, na lixiviação química de um Cambissolo distrófico. Os oito tratamentos foram feitos em triplicata e distribuídos ao acaso. Após 210 dias de incubação, iniciou-se o processo de lixiviação com solução de CaC12 0.01 mol L' adicionada em quantidade correspondente a quatro vezes a capacidade de retenção do solo, dividida em 5 eventos de lixiviação realizados a cada 35 dias. Para a especiação iônica, foram utilizadas as concentrações médias dos componentes químicos no volume total lixiviado de cada tratamento, empregando-se o modelo geoquímico Visual MINTEQ A2. As concentrações das espécies químicas presentes no lixiviado aumentaram com as doses de biossólido, mas apresentaram dinâmica temporal diferenciada. As concentrações de carbono orgânico dissolvido (COD), NO3, NH4, SO4, Ca+2, Mg+2, Cu+2, Pb⁺², Zn⁺², Fe⁺², Mn⁺², Ni⁺² e Cd⁺² foram maiores nos dois primeiros eventos de lixiviação, as de Na⁺ e K⁺ diminuíram gradativamente e as de PO₄³⁻ aumentaram com os eventos de lixiviação. O COD teve influência na lixiviação de Pb⁺² e de Cu⁺² que, em formas livres ou complexadas, apresentaram baixas atividades em solução. Entre as principais espécies lixiviadas, NO₃, Zn⁺² e Na⁺, foram as que apresentaram maiores concentrações, representando risco ambiental. Entretanto, estes riscos podem ser minimizados se a aplicação do resíduo obedecer aos critérios técnicos e limites estabelecidos para o uso agronômico de biossólidos.

^{*} Comitê orientador. José Oswaldo Siqueira – UFLA (Orientador) e Fátima M. de Souza Moreira – UFLA (Co-orientadora).

ABSTRACT

TRANNIN, Isabel Cristina de Barros. Leaching of chemical species from a soil amended with increasing rates of an industrial biosolid. In: Agronomic evaluation of an industrial biosolid and its related effects on soil attributes. Lavras: UFLA, 2004. Chap.4, p.123–160. (Thesis – PhD. in Soils and Plant Nutrition)

Evaluation of the chemical leaching potential from soils amended with biosolid is of crucial importance for environmental safety of agricultural use these residues. In the present study, conducted in a lisimeter with a dystrophic Cambisol, the effects of application of increasing rates (0, 6, 12, 18, 24, 48, 96 and 144 Mg ha⁻¹ dry matter) of a biosolid generated by PET fiber and resins industry on soil chemical leaching were evaluated. The experiment was composed of eight treatments with three replications consisting of soil incubation with the biosolid rates for 210 days, when the soil was submitted to five leaching events carried out at 35 day intervals. Chemical leaching was made by application of CaCl₂ 0,01 mol L⁻¹ solution in volume four fold higher than the water retention capacity of the soil. The chemical concentrations in collected leachates were used for ionic speciation by Visual MINTEQ A2. Biosolid application increased the concentrations of all chemical species analyzed and leaching of individual species showed differentiated temporal dynamics. The concentrations of dissolved organic carbon, NO₃, NH₄⁺, SO₄⁻², Ca⁺², Mg⁺², Cu⁺², Pb⁺², Zn⁺², Fe⁺², Mn⁺², Ni⁺² and Cd⁺² were higher in initial leaching events. Na⁺ and K⁺ decreased and PO₄⁻³ increased with the leaching events. Dissolved organic carbon had strong influence on Pb+2 and Cu+2 leaching, but these elements in free or complexed forms presented low activities in solution. Leaching of NO₃, Zn⁺² and Na⁺ represent the main environmental risk of agricultural use this residue. However these risk can be minimized if technical criteria and critical limits for the agronomic use of biosolids were observed.

Guidance Committee: José Oswaldo Siqueira – UFLA (Major Professor), Fátima M. de Souza Moreira – UFLA and Luiz Roberto Guimarães Guilherme – UFLA.

4.1 INTRODUÇÃO

A aplicação de biossólidos em solos agrícolas tem sido motivo de preocupação ambiental em virtude da possibilidade de aumento de espécies químicas solúveis, originadas do processo de mineralização da fração orgânica, que podem atingir teores fitotóxicos ou, por meio de lixiviação, causar eutrofização e poluição das águas subsuperficiais. Dessa forma, a avaliação prévia do potencial de lixiviação e a caracterização das espécies químicas que compõem o lixiviado de solos a serem tratados com biossólido são cruciais na análise da segurança e da viabilidade de uso agronômico destes resíduos.

Estudos realizados com colunas de solo tratado com doses crescentes de biossólido, sem o cultivo de plantas, refletem o potencial máximo de lixiviação de espécies químicas da camada arável do solo que, normalmente, é avaliado por lixiviação contínua em material de solo saturado. No entanto, como em condições de campo, a lixiviação ocorre em ciclos de umedecimento e secagem, em estudos realizados com colunas de solo é ideal que se faça uma simulação desse processo, realizando a lixiviação de forma intermitente. Sanchez et al. (2002) verificaram que durante os períodos de incubação em ambiente insaturado, os processos bioquímicos de transformação da fração orgânica de biossólidos influenciaram o potencial de lixiviação de constituintes inorgânicos.

Na avaliação do potencial agronômico e dos possíveis impactos ambientais da utilização de biossólidos em condições brasileiras tem-se dado relativa atenção à lixiviação de nitrato e de metais pesados. Em estudo com colunas de solo, Oliveira (1995) verificou que, após 119 dias de incubação, os solos tratados com doses de 13 a 40 Mg ha⁻¹ de biossólido urbano perderam por lixiviação cerca de 47,5% do N adicionado para camadas inferiores a 40 cm, sendo estas perdas mais evidentes em solo arenoso. Anjos & Mattiazzo (2000) observaram que a dose de 388 Mg ha⁻¹ de biossólido urbano, dividida em 5

aplicações durante um ano, em dois Latossolos, aumentou a concentração de NO₃ na solução lixiviada a partir da segunda aplicação e após a quinta atingiu 96 mg L⁻¹. Esta concentração é superior ao padrão de potabilidade, de 10 mg N L⁻¹, estabelecido pela FUNASA – Portaria 1.469/01, indicando que a aplicação contínua deste resíduo apresentou risco de contaminação das águas subsuperficiais.

Estudos sobre lixiviação de metais indicam que a quantidade perdida é, geralmente, menor que 1% do total adicionado via resíduos orgânicos, mas pode elevar-se em solos arenosos, ácidos e com baixos teores de matéria orgânica. Bertoncini & Mattiazzo (1999) realizaram um experimento em tubos de percolação com solos de diferentes classes texturais tratados com 156 Mg ha⁻¹ de biossólido urbano alcalino. Após 310 dias de incubação, as autoras verificaram que o arraste de Cu, Cd, Cr e Ni, adicionados via biossólido, promovido por soluções de KCl e K₂SO₄, superou o da água deionizada e que a retenção dos metais aumentou com a elevação dos teores de óxidos de Fe e Al e de matéria orgânica dos solos.

Além dos riscos oferecidos pela lixiviação de NO₃ e de metais pesados, é preciso considerar que a aplicação contínua de biossólidos pode aumentar a concentração de sais solúveis, como o Na, e causar salinização dos solos e das águas subsuperficiais (Anjos & Mattiazzo, 2000). Do mesmo modo, processos bioquímicos que atuam na solubilidade da matéria orgânica podem causar a movimentação de carbono orgânico dissolvido (COD) no perfil do solo em grandes quantidades (Christ & David, 1996), especialmente em temperaturas elevadas (McDowell & Likens, 1988; Christ & David, 1996), podendo atingir níveis superiores aos normalmente encontrados, em solos de regiões tropicais. A lixiviação de COD é importante na redistribuição de elementos como N, P, S e de metais, como o Cu e o Pb, com os quais pode formar complexos solúveis (Andersson et al., 2000). De fato, Donald et al. (1993) verificaram que o COD

atuou na movimentação de P e causou deficiência deste elemento na camada superficial de solos sob floresta. Por outro lado, alguns autores sugerem que a deficiência de P é causada pela predominância de P-orgânico na solução de solos tratados com resíduos orgânicos. Chardon et al. (1997) observaram que mais de 70% do P total encontrado em 70 cm de profundidade estavam sob a forma de fósforo orgânico dissolvido, sendo esta predominante no lençol freático de solos agrícolas tratados com estercos de animais.

A solubilidade e a mobilidade dos elementos químicos no perfil do solo dependem de seus atributos, tais como pH, teor de matéria orgânica, textura, composição das argilas, potencial redox, competição entre íons por sítios de adsorção, reações de complexação, temperatura e atividade microbiana (Lindsay, 1979). Desse modo, é importante identificar as espécies químicas predominantes na solução do solo e os riscos ambientais, agronômicos e à saúde humana que estas oferecem. Entre os métodos de especiação iônica de sistemas aquosos diluídos, tem-se o emprego do programa computacional Visual MINTEQ, disponibilizado pela USEPA em 1999, que é um dos modelos de equilíbrio geoquímico mais utilizados. Jordão et al. (2003), empregando este modelo para a especiação iônica de Cd e Ni em Latossolo Vermelho acriférrico tratado com o biossólido da ETE de Barueri (SP) em sistema de câmara dupla de difusão. Os metais contidos em solução 0,005 mol L-1 Ca(NO₃)₂ + 0,003 mol L-1 CaSO₄ foram determinados em espectrofotômetro de plasma. As formas livres predominaram, mas apresentaram baixas atividades (10-10 a 10-06 mol L-1).

O presente estudo teve como objetivo avaliar o potencial de lixiviação e caracterizar as espécies químicas presentes no lixiviado de um Cambissolo distrófico tratado com doses crescentes de biossólido industrial e, assim, gerar informações sobre o potencial poluente e os riscos associados ao uso agrícola deste resíduo.

4.2 MATERIAL E MÉTODOS

O experimento foi conduzido em casa de vegetação, no Departamento de Ciência do Solo da Universidade Federal de Lavras, MG, por um ano, no período de março de 2000 a março de 2001. Foram utilizadas amostras da camada de 0-20 cm do Cambissolo distrófico utilizado no estudo de campo com a cultura do milho, após receber calagem, cujas características químicas e físicas foram apresentadas no capítulo 2.

O solo foi seco ao ar e peneirado, em malha de 4 mm, antes de ser tratado com doses crescentes do biossólido úmido (80 dag kg-1 de água), obtido da ETE da indústria de fibras e resinas PET, Rhodia-ster S.A de Poços de Caldas, MG. As características químicas do lote de biossólido em base seca (Eaton et al., 1985) utilizado neste experimento e a estimativa das quantidades totais dos elementos adicionadas ao solo em cada tratamento encontram-se na Tabela 4.2.1.

O delineamento experimental empregado para incubação do solo tratado com biossólido foi o inteiramente casualizado com três repetições. Os tratamentos constaram de um controle, sem adição de resíduo e de sete doses de biossólido sendo estas de 3, 6, 9, 12, 24, 48 e 72 g kg⁻¹, o equivalente a 6; 12; 18; 24; 48; 96 e 144 Mg ha⁻¹ de biossólido em base seca. As doses de biossólido foram definidas em função da quantidade de N mineralizável, adotando-se uma taxa de 20% ao ano (Cetesb, 1999) e corresponderam a 0,5; 1,0; 1,5; 2,0; 4,0; 8,0 e 12 vezes a quantidade de N recomendada pela Comissão de Fertilidade do Solo do Estado de Minas Gerais (CFSEMG, 1999) para a produtividade de 6000 – 8000 kg ha⁻¹ de milho, conforme avaliação realizada a campo para as doses de 6 a 24 Mg ha⁻¹, apresentada no capítulo 2.

TABELA 4.2.1 Características químicas do biossólido em base seca e estimativa das quantidades totais adicionadas à camada de 0-20 cm de solo em cada tratamento

Característica 1	Base	Biossólido, Mg ha-1									
	seca -	6	12	18	24	48	96	144			
pH CaCl ₂ 0,01mol L ⁻¹	6,6		-	-	tal, g vas		-	-			
	g kg ^{-l}										
M.O. total	755	34	68	102	136	272	543	815			
M.O. compostável	638	29	57	86	115	230	460	689			
C-total	419	19	38	57	75	151	302	453			
C-orgânico	355	16	32	48	64	128	256	384			
Resíduo mineral total	245	11	22	33	44	88	177	265			
Residuo mineral insolúvel	75	3	7	10	14	27	54	81			
Resíduo mineral solúvel	170	8	15	23	31	61	123	184			
N-total	54	2	5	7	10	19	39	58			
Fósforo (P ₂ O ₅)	76	3	7	10	14	27	55	82			
Potássio (K ₂ O)	4,9	0,2	0,4	0,7	0,9	1,8	3,5	5,3			
Cálcio	9,8	0,4	0,9	1,3	1,8	3,5	7,1	10,6			
Magnésio	8,3	0,4	0,7	1,1	1,5	3,0	6,0	9,0			
Enxofre	1,6	0,1	0,1	0.2	0.3	0.6	1,2	1,7			
	mg kg ⁻¹	<u> </u>									
Cobre	180	8	16	24	al, mg va	65	· 130	194			
Manganês	360	16	32	49	65	130	259	389			
Zinco	1047	47	94	141	188	377	754	1131			
Ferro .	14943	672	1345	2017	2690	5379	10759	16138			
Chumbo	12	0,5	1,1	1,6	2,2	4,3	8,6	13,0			
Cádmio	8	0,4	0,7	1,1	1,4	2,9	5,8	8,6			
Niquel	43	1,9	3,9	5,8	7,7	15,5	31,0	46,4			
Sódio	3633	163	327	490	654	1308	2616	3924			

¹¹ Conforme metodología de Eaton et al. (1985).

O experimento foi instalado em microlisímetro de aço inox contendo 24 compartimentos de 0,30 x 0,30 x 0,35 m e capacidade de aproximadamente 32 kg, revestidos por embalagens plásticas, mantendo uma abertura na base protegida por tela plástica fina para impedir a passagem de partículas de solo com a solução lixiviada para o recipiente coletor, conforme representação esquemática da Figura 4.2.1. Cada compartimento do microlisímetro foi preenchido com 15 kg de solo nos diferentes tratamentos, mantendo uma altura de 20 cm. Em seguida, adicionou-se água deionizada em quantidade suficiente para ocupar 60% da porosidade total do solo. Esta prática teve a finalidade de proporcionar condições de umidade para a degradação da matéria orgânica do

biossólido pela microbiota do solo, sem permitir lixiviação e foi mantida durante 210 dias de incubação por meio de adições periódicas de água deionizada, quando iniciou-se o processo de lixiviação intermitente, com periodos de incubação de 35 dias.

Para promover a lixiviação do solo nos diferentes tratamentos foi adicionada solução de CaCl₂ 0.01 mol L⁻¹, concentração ajustada para manter o mesmo valor da força iônica do solo. A quantidade adicionada correspondeu a matro vezes a capacidade de retenção do solo, um total de 6 litros, que foi dividido em 5 eventos de lixiviação, realizados aos 210; 245; 280; 315 e 350 dias de incubação. A solução lixiviada de cada tratamento foi coletada e armazenada em frascos de polietileno de 2 litros, previamente lavados com solução 0.1 mol L-1 de HCl. Os frascos foram mantidos sob refrigeração de 4°C imediatamente após a coleta até o momento da análise, que não excedeu o período de 24 horas para as determinações de N-total, N-NO₃, N-NH₄⁺, carbono dissolvido e pH. Para as determinações de carbono orgânico e inorgânico dissolvido utilizou-se um analisador de carbono da marca Dohrmann - DC 190 (Total Organic Carbon Analyser). O N-NH₄⁺ e o N-NO₃⁻ foram determinados por colorimetria após destilação com MgO para NH₂⁺ e com liga Devarda para NO₃. O N-orgânico foi calculado pela fórmula: N-orgânico = [N-total - (N-NH₄⁺ + N-NO₃)]. O P foi determinado por colorimetria pelo método do ácido ascórbico e o S-SO₄-2, por turbidimetria, após precipitação com Ba. Cálcio, Mg. Zn. Cu. Fe. Mn. Pb. Ni e Cd foram determinados por espectrofotometria de absorção atômica de chama. A solução lixiviada foi concentrada em 50 vezes para a determinação de Cd. Pb e Ni, sendo 100 mL acondicionados em frascos fechados, mantidos em estufa até a evaporação para posterior resuspensão com 2 mL de solução de ácido nítrico 0,005 mol L-1. Potássio e Na foram quantificados por fotometria de chama.

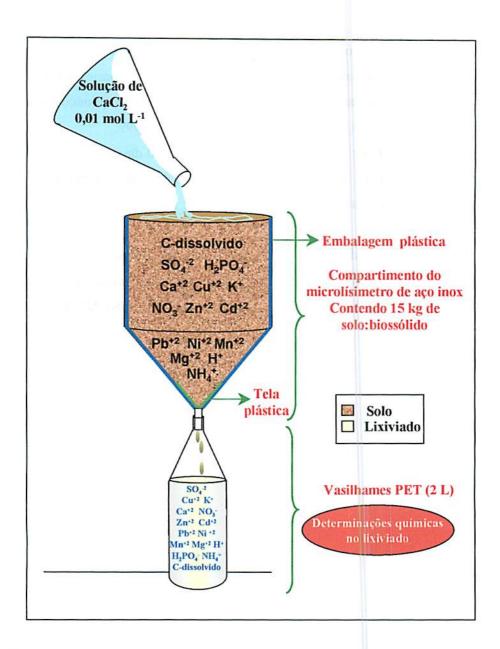


FIGURA 4.2.1 Representação esquemática de uma parcela do ensaio de lixiviação.

Os valores médios de pH e as concentrações médias de cátions, de

ânions e do carbono orgânico dissolvido no volume total lixiviado de cada tratamento foram utilizados para a determinação das espécies livres e complexadas e de suas atividades, empregando-se o modelo geoquímico Visual MINTEQ A2 versão 4.0, disponibilizado pela USEPA, em 1999.

Antes de iniciar o processo de lixiviação (aos 210 dias de incubação) e após o último evento, o solo foi amostrado nos diferentes tratamentos e analisado quanto aos atributos químicos, conforme metodologias descritas no capítulo 2.

Os efeitos das doses de biossólido nos atributos químicos do solo e na composição das soluções lixiviadas foram avaliados por meio de análises de variância e regressão, utilizando-se o programa estatístico SISVAR (Ferreira, 1999).

4.3 RESULTADOS E DISCUSSÃO

4.3.1 Alterações nos atributos químicos do solo

Os resultados apresentados na Tabela 4.3.1 mostram que os teores de Corgânico, N-total, N-NO₃, N-NH₄⁺, K e de Na e a soma de bases (S), a CTC a pH 7,0 (T), a CTC efetiva (t) e a porcentagem de sódio trocável (PST) aumentaram linearmente em resposta às doses crescentes do biossólido, mas estas não tiveram efeito significativo sobre a porcentagem de saturação por bases (V%). Entre os macronutrientes, os aumentos das formas minerais de N em resposta às doses de biossólido foram os mais acentuados. Os teores de N-NO₃ e de N-NH₄⁺ aumentaram em nove e dez vezes, passando respectivamente, de 9,3 e 7,6 mg dm⁻³ no tratamento controle para 83,2 e 76,2 mg dm⁻³ com a aplicação da dose máxima de biossólido. Estes aumentos provavelmente ocorreram em função da baixa relação C:N do biossólido, que era 8 no momento de sua incorporação. Segundo Hue (1995), a mineralização do N predomina quando o biossólido está maturado e com relação C:N inferior a 15.

Os teores de K e Na responderam linearmente às doses de biossólido. Quanto ao Na, mesmo tendo aumentado em 22 vezes no tratamento com a dose máxima de biossólido, a PST atingiu apenas 4% e, segundo Tisdale et al. (1993), esta só oferece problemas às culturas quando corresponde a 10 a 20% da CTC do solo. No entanto, é preciso considerar que a calagem, prática comum em áreas agrícolas, pode favorecer a substituição do Na por Ca nos sítios de troca do solo (Marschner, 1995), permitindo a lixiviação do Na. Se para a agricultura isso é favorável, do ponto de vista ambiental é preocupante, pois o Na pode causar a salinização das águas subsuperficiais após sucessivas aplicações do biossólido em regiões úmidas e de lençol freático pouco profundo, condições típicas da região de Poços de Caldas, MG, onde se pretende viabilizar o uso agronômico deste resíduo.

TABELA 4.3.1 Atributos químicos do solo tratado com biossólido, após 210 dias de incubação, antes do processo de lixiviação¹¹

Atributo				Regressão	R ²					
Químico	0	6	12	18	lo, Mg ha ⁻¹ 24	48	96	144	_	
CO, dag kg-1	2,6	3,3	3,6	3,7	3,7	3,9	4,2	5,0	Y = 0.0123x + 3.215	0,82**
pH _{H2O} (1:2,5)	5,6	5,5	5,5	5,4	5,4	5,2	5,0	4,6	Y = -0,0065x + 5,5568	0,98**
N-total, dag kg 1	2,2	2,4	2,5	2,8	3,0	3,5	3,7	4,2	Y = 0.0131x + 2.4692	0,90**
N-NO ₃ , mg dm ⁻³	9,3	24,3	30	41,5	48,5	63,6	74,7	83,2	Y = 0.4564x + 27.036	0,82**
N-NH4, mg dm ⁻³	7,6	17	22,5	28	36,4	50,9	59,7	76,2	Y = 0.4353x + 18.354	0,91**
P, mg dm ⁻³	1,0	1,2	1,5	2,2	3,0	3,4	3,7	4,0	$Y = -0.0003x^2 + 0.058x + 1.11$	0,91**
K, mg dm ⁻³	128	136	137	141	142	149	163	172	Y = 0.2839x + 133.65	0,96**
Ca, emole dm ⁻³	4,2	5,8	5,9	6,1	6,0	6,2	6,5	6,7	$Y = -0.0002x^2 + 0.032x + 5.183$	0,60*
Mg, cmole dm ⁻³	1,8	2,1	2,4	2,6	2,8	2,9	3,4	4,7	$Y = 1E-05x^2 + 0.0157x + 2.114$	0,94**
Al, cmole dm ⁻³	0	0	0	0	Ò	Ô	0,1	0,2	n.s.	•
H+Al, cmole dm ⁻³	3,7	4,0	4,0	4,2	4,3	4,7	5,0	6,8	Y = 0.0186x + 3.7768	0,93**
S-SO ₄ , mg dm ⁻³	30,8	36,4	40	42,7	44,3	46,9	49,6	56,7	$Y = -0.001 x^2 + 0.2875 x + 35.222$	0,88**
Zn, mg dm ⁻³	0,7	11,3	12,4	14,6	16,8	18,5	22,4	26,1	$Y = -0,0014x^2 + 0,3226x + 7,085$	0,83**
Cu, mg dm ⁻³	0,8	3,2	3,7	4,1	4,5	4,9	5,4	5,7	$Y = -0.0004x^2 + 0.0759x + 2.314$	0,76*
Fe, mg dm ⁻³	25	69	102	135	192	211	225	248	$Y = -0.0198x^2 + 4.0707x + 56.06$	0,88**
Mn, mg dm ⁻³	7,6	9,9	10,8	11,3	12,6	17,9	25,6	35,8	$Y = 4E-05x^2+0.184x+8.2735$	0,99**
Ni, mg dm ⁻³	1,0	1,1	1,1	1,2	1,1	1,3	1,1	1,2	n.s.	
Cd, mg dm ⁻³	0,06	0,07	0,08	0,08	0,09	0,09	0,12	0,16	n.s.	-
Pb, mg dm ⁻³	1,6	1,6	1,6	1,8	1,9	1,9	2,0	2,1	$Y = -3E - 05x^2 + 0,0078x + 1,6039$	0,87**
Na, mg dm ⁻³	7,5	17,2	25,7	36,2	48,5	72	93,7	163,2	Y = 0.9889x + 14.985	0,97**
PST, %	0,3	0,6	0,9	1,2	1,5	2,2	2,6	3,7	Y = 0.0215x + 0.6835	0,94**
S, emole dm ⁻³	6,4	8,3	8,8	9,1	9,3	9,8	10,7	12,5	Y = 0.032x + 7.9717	0,84**
T, cmole dm ⁻³	10,1	12,3	12,8	13,4	13,7	14,5	15,7	19,3	Y = 0.0504x + 11.784	0,90**
t, emole dm ⁻³	6,4	8,3	8,8	9,2	9,3	9,8	10,8	12,7	Y = 0.0332x + 7.9672	0,85**
V, %	63	67	69	69	68	68	68	65	n.s.	0,00

¹¹CO: carbono orgânico; S: soma de bases (K+Ca+Mg+Na), T: CTC a pH 7; t: CTC efetiva; V: Porcentagem de saturação por bases da CTC a pH 7; n.s.:não significativo, * e ** significativo, respectivamente, a 5 e 1 % de probabilidade.

Os teores de P, Ca, Mg, S-SO₄⁻² e dos micronutrientes Zn, Cu, Fe e Mn apresentaram respostas quadráticas às doses de biossólido. É interessante notar que, mesmo o biossólido apresentando uma quantidade considerável de P₂O₅ (Tabela 4.2.1), a aplicação de 2.386 mg P kg⁻¹ solo na dose equivalente a 144 Mg ha⁻¹, foi sufficiente para aumentar em apenas quatro vezes o teor de P (4 mg dm⁻³) no solo após o período de incubação. A aplicação do biossólido também teve pequena contribuição para a elevação dos teores de S-SO₄⁻², Ca e Mg no solo.

Quanto aos micronutrientes, não houve efeito significativo para os teores de Ni, enquanto os de Zn, Cu, Fe e Mn apresentaram respostas quadráticas às doses de biossólido. Com a aplicação da dose máxima, o teor de Zn aumentou em 37 vezes em relação ao controle e para Fe, Cu e Mn estes aumentos foram de dez, sete e cinco vezes. Com relação aos metais pesados, os teores de Cd não diferiram entre os tratamentos e os de Pb apresentaram resposta quadrática ao aumento das doses de biossólido, passando de 1,6 mg dm⁻³ no tratamento controle para 2,1 mg dm⁻³ com a aplicação de 144 Mg ha⁻¹ de biossólido. No entanto, mesmo no tratamento com a dose máxima de biossólido, os teores de metais foram muito inferiores aos limites máximos para carga cumulativa no solo de 1400; 750; 210; 150 e 19,5 mg kg-1, para Zn, Cu, Ni, Pb e Cd. respectivamente (Cetesb. 1999). Por outro lado, é preciso considerar que a diminuição do pH e o aumento da acidez potencial (H+Al) foram lineares em resposta às doses de biossólido, condição que aumenta a disponibilidade dos metais e, após sucessivas aplicações deste resíduo em solos agrícolas, pode causar fitotoxicidade por metais, especialmente por Zn.

A análise química do solo após os cinco eventos de lixiviação mostrou que os anmentos nos teores de C-orgânico, macro e micronutrientes e sódio e a redução do pH em resposta às doses crescentes de biossólido foram mantidos (Tabela 4.3.2).

TABELA 4.3.2 Atributos químicos do solo tratado com biossólido após o processo de lixivisção $^{1\!\!1}$

K ₃	Regressão				Fart gM .	Biossólido				otudintA
		ÞÞI	96	48	24	81	71	9	0	Químico
♦€ L'0	$Y = -0.0001x^2 + 0.0215x + 2.9878$	2,4	6 ' E	L' E	3'6	3,5	3'4	ε'ε	2,5	O., dag kg ⁻¹
++86 '0	Y = -0.0072x + 5.4398	b 'b	8't	0'\$	z 's	£,2	þ'S	4 'S	5'\$	H स्ट्रा (१५३)
•• Þ 6′0	$A = -6E - 02x_3 + 0.0232x + 1.9965$	L'E	Z,E	1'E	L' Z	2'4	2,2	2,1	6'I	V-total, dag kg
++E8'O	Z+8'9I + x5\$19'0 + x9200'0~ = X	8,52	5'44	9'6£	P'LE	32,5	74,7	22,3	€'9	mb gm ¿OM-N
** 96'0	Y = -0,0035x2 + 0,8642x + 8,4283	þ '£9	<i>L</i> '75	0 ' \$†	33'4	22,4	9'81	12,7	þ'þ	'mb gmHW-i
•• 06'0	$X = -0.0004x^2 + 0.0736x + 1.3023$	8't	þ'þ	£,4	3,6	L' Z	8,1	9'1	1,0	் யூ 8ய
••16 '0	X = 0,1962x + 110,23	LEI	139	123	SII	L11	511	011	†01	, wp 8m
•09'0	$A = -0.0002x^2 + 0.0324x + 4.9929$	۶'9	€'9	0'9	6'\$	6'\$	L'S	9'\$	0 ʻ Þ	e, emolo dm ²
++96 '0	$A = E^{-}0e^{x_3} + 0^{\circ}013e^{x} + 1^{\circ}0148$	6 ' Þ	\$'\$	5'6	7,2	7'7	2,2	0'2	9'1	mb olomo Al
••E6'0	$X = 1E-02x^2 - 0.0009x + 0.1087$	2,0	1'0	1'0	1,0	1'0	1'0	1'0	1'0	mb olomo (l
••E6'0	Y = 0,0216x + 3,8963	E'L	9'\$	L'b	5'7	E't	4,2	S'\$	9,€	*mb olomo (IA+
0'85*	$A = -0.0016x^2 + 0.3898x + 29.903$	£'\$\$	9'47	L'\$\$	4۱ ع	0'01	8,75	32,7	6,22	- 804, որց ժու
•87,0	$1601'9 + x9867'0 + x \times 10010^{-4} = X$	21,3	p'81	5'91	£,21	s'E1	<i>L</i> '01	ε'6	ε'0	c mb gm .n
•6L'0	4128,1 + x1770,0 + xx4000,0- = Y	ε'ς	I'S	5'7	6 ' E	L'E	3,2	2,8	p '0	, mg dm
•• † 6'0	L'LV + X96E8'Z + ZXIZIO'O' = X	213	681	LS I	123	102	L 6	99	81	e, mg dm
••66'0	Y = 0,1664x + 5,8115	8'6Z	21,5	9'£1	ε'01	7 '6	€'8	9'L	6'€	լաթ Ձա 'սլ
++ 18 '0	$\lambda = -\lambda E - 02xS + 0.0147x + 0.592$	E'I	2,1	2,1	1'1	8,0	L'O	L'0	\$'0	emb 8m ,ii
•	n.s.	60'0	60'0	60'0	60'0	80,0	80,0	80'0	۷0 , 0	_mb გm ,b/
** \$8 '0	$Y = -0.0001x^2 + 0.0253x + 1.1045$	2,4	2,2	0,2	2,0	9'I	s'1	2,1	8'0	⁵ mb 8m .d'
0,92*	L8 = 0'1408x + 4'1184	<i>L</i> ,22	0,81	p'pī	L'6	Z,T	I'S	4,5	5'I	e, mg dm. ³
**L6'0	$A = \neg t E - 02x_s + 0.0089x + 0.0865$	2 2,0	05'0	. \$7'0	16,0	6,24	81,0	21,0	70,0	% 'IS
**S8,0	$A = 0.0304 \times + 7.5019$	8,11	1,01	7'6	6'8	9'8	. Z,8	6'L	6 ' \$	emb olomo ,
++68 '0	Y = 0,0521x + 11,398	1,91	L'SI	6,51	Þ'E1	12,9	4,21	12,4	5 '6	emb olomo ;
••28,0	Y = 0,0312x + 7,5675	12,0	2,01	ε'6	0'6	L'8	£,8	0,8	6,8	, wp olomo
+99 '0	758,63 + x740,09 + xx8000,0-	79	5 9	99 .	99	<i>L</i> 9	99	1-9	79	0/ 1

²⁶ CO: carbono orgánico; S: soma de bases (K+Ca+Mg+Na); T: CTC a pH 7; t: CTC efetiva; V: Porcentagem de saturação por bases da CTC a pH 7; não significativo; • e •• significativo, respectivamente, a 5 e 1 % de probabilidade.

No entanto, ao contrário do que foi observado para os demais atributos químicos, o teor de P apresentou pequena elevação nos tratamentos com biossólido em relação aos teores encontrados no solo antes do início do processo de lixiviação, sugerindo que, na medida em que ocorreu mineralização, o P foi mantido em formas pouco solúveis ou adsorvido aos colóides do solo.

4.3.2 Variação temporal dos componentes químicos nas soluções lixiviadas

A análise das cinco frações do lixiviado mostrou a ocorrência de variações temporais significativas (P < 0.05) nas concentrações dos componentes químicos das soluções em todos os tratamentos. Para N-NH₄⁺ e N-NO₃⁻ as maiores perdas ocorreram quando o solo foi tratado com doses superiores a 24 Mg ha⁻¹, especialmente aos 245 dias de incubação, representando cerca de 30% e 25% dos totais de N-NH₄⁺ e N-NO₃ lixiviados nestes tratamentos (Figura 4.3.1).

Cálcio, Mg e S-SO₄² apresentaram comportamentos semelhantes, com pequena elevação das concentrações no lixiviado aos 245 dias e diminuição nos períodos posteriores de coleta em todos os tratamentos. As concentrações de K e Na reduziram gradativamente durante o período experimental, tendo as maiores perdas ocorrido em doses superiores a 48 Mg ha⁻¹.

As concentrações de PO₄³, após apresentarem um pequeno aumento em todos os tratamentos aos 245 dias de incubação, permaneceram constantes nas soluções lixiviadas do solo tratado com doses de até 48 Mg ha⁻¹ de biossólido. Em doses superiores, ao contrário do que foi observado para os demais macromutrientes, as concentrações de PO₄³ aumentaram gradativamente nas soluções lixiviadas, indicando que a mineralização do P-orgânico presente no biossólido foi mais lenta que para os demais mutrientes. Esse comportamento explica, em parte, o pequeno aumento nos teores de P observado no solo tratado com biossólido após o processo de lixiviação.

Zinco, Fe, Mn, Ni e Cd apresentaram comportamentos semelhantes e

foram perdidos em maiores quantidades no primeiro evento de lixiviação, aos 210 dias de incubação. Após esse período, as concentrações nas soluções lixiviadas reduziram drasticamente e mantiveram-se constantes em todos os tratamentos até o final do experimento, o que pode ser atribuído à diminuição das formas solúveis ou trocáveis destes elementos presentes no biossólido com o tempo de incubação.

Para Cu e Pb, as maiores perdas ocorreram aos 245 dias e as reduções das concentrações foram gradativas em todos os tratamentos até o último evento de lixiviação. Esse comportamento diferenciado em relação aos demais metais pode estar associado à afinidade que o Pb e, especialmente, o Cu apresentam com os ligantes dos compostos orgânicos dissolvidos, com os quais formam complexos solúveis (Zhu & Alva, 1993). Segundo Andersson et al. (2000), o aumento do

pH pode favorecer a solubilidade de compostos orgânicos devido à dissociação de grupos funcionais ácidos, aumentando a concentração de carbono orgânico dissolvido (COD) e, consequentemente, de cátions que formam complexos solúveis com ácidos fúlvicos e húmicos. De fato, aos 245 dias de incubação foram observadas elevações nos valores de pH das soluções lixiviadas, bem como nas concentrações de COD, Cu, Pb e na maior parte dos macronutrientes, que diminuíram posteriormente em todos os tratamentos. Este comportamento sugere que as variações do pH em função dos processos bioquímicos de transformação do biossólido influenciaram a solubilidade do COD e dos demais componentes químicos. Observações feitas por Obrador (1997) atestam que o pH é o fator mais importante na distribuição dos micronutrientes e metais pesados em solos tratados com biossólido. Silveira (2002) também verificou que a diminuição do pH de solo tratado com biossólido promoveu aumento da solubilização dos metais, especialmente de Cd e Zn.

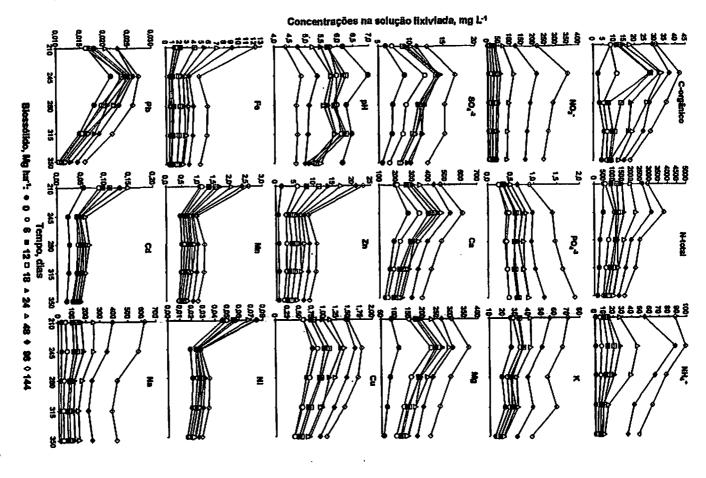


FIGURA 4.3.1 Variação temporal das concentrações dos componentes químicos nas soluções lixiviadas do solo tratado com biossólido.

As variações temporais nas concentrações dos diferentes componentes químicos mostraram que estes apresentam dinâmica diferenciada quanto ao processo de lixiviação. Maiores teores de Zn, Fe, Mn, Ni e Cd foram encontrados nas amostras coletadas no primeiro evento de lixiviação, aos 210 dias de incubação, mas decresceram drasticamente a partir da segunda coleta até o final do experimento. As maiores perdas de C-orgânico, N-total, N-NO₃, N-NH₄⁺, S-SO₄⁻², Ca, Mg, Cu e Pb ocorreram aos 245 dias de incubação, mas estas diminuíram ao longo do período experimental. Para Na e K as perdas diminuíram gradativamente, enquanto para o PO₄³, as perdas foram maiores com o tempo de incubação, especialmente nos tratamentos com doses superiores a 48 Mg ha⁻¹ de biossólido. Nos estudos de Anjos & Mattiazzo (2000), com biossólido e de Oliveira et al. (2001b), com composto de lixo urbano, os autores constataram que, no período de um a dois anos, a lixiviação de NO3 em Latossolos apresentou maior risco ao ambiente que os elevados teores de metais pesados presentes nos residuos, por permaneceram em grande parte retidos nos solos. No entanto, é preciso considerar que, ao contrário do biossólido avaliado no presente estudo, que possui baixos teores de metais pesados, mas não apresenta capacidade corretiva, os resíduos utilizados por aqueles autores elevaram o pH dos solos, diminuindo a solubilidade dos metais.

4.3.3 Concentrações dos componentes químicos no lixiviado

As concentrações médias dos principais componentes químicos e os valores de pH das soluções lixiviadas do solo tratado com doses crescentes de biossólido são apresentadas na Tabela 4.3.3. As concentrações de N-NO₃ e de N-NH₄ aumentaram linearmente com as doses de biossólido, sendo estas de 272 mg N-NO₃ L⁻¹ e de 72 mg N-NH₄ L⁻¹ no tratamento com a dose máxima de biossólido, correspondendo a aumentos de 85 e 88 vezes em relação ao controle, o que representou um alto fator de impacto à aplicação do biossólido neste solo.

TABELA 4.3.3 Concentrações médias dos principais componentes químicos e valores de pH das soluções lixiviadas do solo tratado com biossólido e respectivos valores referenciais de qualidade da água

K_{SR}	Bioasólido, Mg ha ⁻¹ Regressão								Componente	
*****		bbl	96	48	54	18	71	9	0	Químico
• <u>•</u> 06'0	$\lambda = -0.0098x + 6.0274$	L'b	I'S	9'\$	9'5	<u>6'S</u>	8,8	8,2	þ '9	H
* * 96'0	$\xi + 6.9014 \times^2 + 0.3677 \times + 6.943$	5,15	0,72	2,12	9'L1	811	12,4	7 &	0.2	animann (
•07,0	$\lambda = 3E - 02 x^2 - 0.0078 x + 1.917$	s'i	9'I	S '1	8'1	8,1		9'L	0,2	-organico
••26'0	\$2,8ET + XTI I,\$I = Y	9097	2149	6891	1329	9011	776 1'8	<i>L</i> 0L <i>L</i> '1	2,1	ooinagroni-!
++66 <u>'</u> 0	$y = 0.518 \times + 2.9313$	SL	LS	72	91	£1	6	ç (0)	341	[atot-l
**66 <u>'</u> 0	y = 1.8491x + 1.1234	772	171	68	bb	LE	23	15	8,0 5.£	'HN'
••88,0	y = 11,75x + 734,48	2259	1921	1223	1268	SSOI	716	069	2, 6 337	ON-
••96'0	$268\xi'0 + x $900'0 = x$	þ'l	6'0	L'0	9'0	\$'0	s'o	b '0		[™] ooinßgro-l
* 66'0	$y = 0.2504 \times + 23.759$	2,13	6'SÞ	34,6	59,9	1,62	7,82	<i>L</i> '\$7	4,0	ro
••06'0	$y = 1,7307 \times + 237,83$	472	402	336	318	767	717	516	75,2 190	u;
* 08,0	$y = 1,107 \times + 142,86$	767	242	213	161	641	173	751	18	
*£7,0	V = 0.0367x + 8.9037	14,2	L'II	0'11	0,11	10,2	9'01	8,5	8'9	83
+ * 76'0	$\lambda = -0.0008 x^2 + 0.1908 x + 2.741$	8,51	6,11	6'6	<i>L</i> '8	0°L	I,è	9,ε	6'0	uy PO
••06'0	y = 0.0063x + 0.6834	5 '1	þ'l	ĽŢ	0,1	8,0	8,0	9'0	9,0	n
••Z6'0	y = 0.0435x + 1.2583	E'L	ľS	0,4	5 'E	2,4	s, i	6'0	L'O	ə ,
**68 '0	1277,0+x6200,0=y	s't	E.I.	7'1	11	6'0	8,0	L'O	9'0	uy
** †8 '0	y = 0.0001x + 0.0316	SO'0	b 0'0	1 0,0	10,0	60,03	60,0	60,0	£0,0	1!
•	n,s,n	6 00	1000	70'0	20,0	60,03	£0,0	20,0	20,0	q _e
+£L'0	$\lambda = -2E-06x2 + 0.0009x + 0.0466$	80,0	L 0'0	60'0	<i>L</i> 0'0	70,0	90'0	90,0	€0,0	PC
**86 '0	$y = 3,1265 \times + 40,366$ pelo teste F; \(\frac{V}{2}\) Morgánico= [Miotal – (MO	LOS	10£	707	145	90 l	88	. 97	O1	o _r

As altas concentrações de N-NH₄⁺ resultam da desaminação de aminoácidos durante a quebra de compostos orgânicos (Crawford & Smith, 1985). No entanto, em todos os tratamentos, as concentrações de N-NH₄⁺ foram inferiores às de N-NO₃⁻ na solução lixiviada, o que pode ser atribuído à rápida oxidação da forma amoniacal para a nítrica nos períodos de incubação do solo tratado com o biossólido. Observações semelhantes foram feitas por Oliveira et al. (2001a) em Latossolo Amarelo distrófico tratado com doses crescentes de biossólido de origem urbana. Além disso, segundo White (1987), N-NO₃⁻ é, normalmente, a forma de N-inorgânico encontrada em maior quantidade e é o ânion dominante na água percolada da maioria dos solos, devido à sua elevada mobilidade e, portanto, elevado potencial de lixiviação.

Estes resultados confirmam o aumento na movimentação de N-NO₃ no perfil do solo em resposta à aplicação de doses crescentes deste biossólido. observada no capítulo 3, ao final de dois anos agrícolas de milho. Naquele estudo, os tratamentos com doses de biossólido superiores a 12 Mg ha⁻¹. equivalente à quantidade de N mineral recomendada para o cultivo de milho. foram responsáveis pelas maiores concentrações de N-NO₃ na camada de 40-60 cm solo, provavelmente por exceder a quantidade de N absorvida pelo milho. No entanto, considerando que o padrão de potabilidade da água estabelecido pela Fundação Nacional da Saúde - FUNASA, Portaria 1.469/01 do Ministério da Saúde, de 44,2 mg L⁻¹ de N-NO₃ (i.e. 10 mg L⁻¹ de N expresso como NO₃), as análises das soluções lixiviadas mostram que os tratamentos com até 24 Mg ha-1 de biossólido (1,3 Mg ha⁻¹ de N-total) não representaram potencial poluente, mesmo quando aplicados sem cobertura vegetal. Iglesias-Jimenes & Alvarez (1993), em experimento semelhante ao do presente estudo e considerando o mesmo limite para o teor de N-NO3, verificaram que os riscos de poluição de águas subsuperficiais pela aplicação de composto de lixo urbano em solos pouco profundos foram significativos apenas para doses superiores a 50 Mg ha⁻¹ do

material seco, equivalente à adição de 1,5 Mg ha⁻¹ de N-total, muito próxima à quantidade fornecida pela dose de 24 Mg ha⁻¹ do biossólido avaliado no presente estudo. Por outro lado, há possibilidade de acúmulo de N-orgânico na camada arável, após disposições pesadas e sucessivas deste resíduo. A implicação imediata deste fato é que, mesmo para a mais baixa dose de biossólido, que não apresentou indícios de potencial poluente por N-NO₃, o aumento das quantidades mineralizáveis e passíveis de lixiviação, oriundas do N-orgânico acumulado, podem passar a ser significativamente maiores em solos descobertos, como em áreas de disposição de resíduos em sistema de landfarming e causar preocupações do ponto de vista ambiental.

As concentrações médias de PO₄-3 nos totais lixiviados aumentaram linearmente em resposta às doses de biossólido, mas a concentração de 1,4 mg L-1, alcançada com a aplicação de 144 Mg ha-1, correspondeu a um aumento de apenas quatro vezes em relação ao controle, o que representa um baixo fator de impacto da aplicação do biossólido em relação a este nutriente. O baixo potencial de lixiviação de PO₄-3 indica que este não oferece preocupações relacionadas à eutrofização de águas subsuperficiais. Além disso, esta concentração máxima manteve-se muito abaixo da relatada por El-Fadel et al. (2002), de 154 mg L-1, para lixiviados de solos tratados com biossólidos de origem urbana em condições de clima temperado.

O pH das soluções lixiviadas decresceu com o aumento das doses de biossólido, passando de 6,4 no tratamento controle para 4,7 com a aplicação de 144 Mg ha⁻¹. A redução nos valores de pH e o consequente aumento de cargas positivas nas superficies minerais do solo provavelmente influenciaram a maior lixiviação de cátions e a maior retenção dos ânions, S-SO₄⁻² e PO₄⁻³ (Uehara & Gillman, 1981). Embora o S apresente um ciclo bastante semelhante ao do N, o ion SO₄⁻² é mais fortemente retido pelos colóides do solo que o N-NO₃ e, portanto, sua remoção por lixiviação é menor (Vitousek, 1983). Segundo Nodvin

et al. (1986), além do PO₄³⁻, o COD também compete com o S-SO₄⁻² por sítios de adsorção do solo, sendo que, em solos tratados com resíduos orgânicos, a competição torna-se mais efetiva, aumentando a concentração de S-SO₄⁻² em solução. No presente estudo, as concentrações de S-SO₄⁻² aumentaram linearmente nas soluções lixiviadas em resposta às doses de biossólido. No entanto, a concentração máxima de 14,2 mg L⁻¹, atingida com a aplicação de 144 Mg ha⁻¹, foi apenas duas vezes maior que aquela do controle, manteve-se muito abaixo do padrão de potabilidade, de 250 mg S-SO₄⁻² L⁻¹ (FUNASA, 2001) e representou baixo fator de impacto à aplicação do biossólido. Este resultado sugere que, mesmo com a possibilidade de competição com o PO₄⁻³ e COD por sítios de adsorção, as concentrações de S-SO₄⁻² nas soluções lixiviadas não representaram preocupação de ordem ambiental e à saúde pública, devido ao baixo teor de enxofre no biossólido e ao baixo potencial de lixiviação no solo.

As concentrações de COD nas soluções lixiviadas apresentaram resposta quadrática às doses de biossólido e a aplicação de doses acima de 6 Mg ha¹¹ resultou em concentrações superiores às normalmente encontradas em lençóis freáticos que, segundo Gron et al. (1996), são < 1 mg L¹¹. Por outro lado, a concentração de 31,3 mg COD L¹¹ no lixiviado do solo tratado com a dose máxima de biossólido, aumentou em apenas seis vezes em relação ao tratamento controle, apresentando baixo fator de impacto à aplicação do biossólido. Além disso, essa concentração máxima é muito inferior à reportada por El-Fadel et al. (2002), de 335.000 mg L¹¹, para lixiviados de solos tratados com biossólidos de origem urbana em países de clima temperado. A baixa concentração de COD nas soluções lixiviadas pode ter ocorrido pela diminuição do pH e conseqüente aumento da quantidade de grupos de carga positiva sobre os colóides do solo, reduzindo sua solubilidade e, portanto, seu potencial de lixiviação (Nodvin et al., 1986) e de poluição das águas subsuperficiais.

Os aumentos lineares das concentrações de K, Ca, Mg e Na nas soluções

lixiviadas em resposta às doses crescentes de biossólido provavelmente estão relacionados ao fato destes cátions serem apenas fracamente adsorvidos aos colóides e também devido à acidificação do solo, o que os torna particularmente susceptíveis à lixiviação. As concentrações de Ca foram elevadas em todos os tratamentos e, de acordo com Tisdale et al. (1993), este é o cátion dominante na água percolada da maioria dos solos. As concentrações de K e Ca, em todos os tratamentos e as de Na, para doses superiores a 24 Mg ha⁻¹, estão acima daquelas relatadas por Santos (2000) para águas subterrâneas que são, geralmente, <10; 10–100 e 0,1–100 mg L⁻¹ para K, Ca e Na, respectivamente. Apesar de Mg, K e Ca apresentarem alto potencial de lixiviação, suas concentrações no biossólido são baixas e nas soluções aumentaram em apenas 4, 3 e 2 vezes, respectivamente, com a aplicação da dose máxima, representando baixo fator de impacto da aplicação deste resíduo em solos agrícolas. Além disso, estes elementos são nutrientes, não apresentam caráter poluente, não oferecem perigo à saúde humana e estão presentes em baixos teores no biossólido.

Com relação ao Na, além do alto potencial de lixiviação, a aplicação da dose máxima aumentou em 27 vezes a concentração obtida na solução lixiviada do tratamento controle, o que representa um considerável fator de impacto à disposição do biossólido em solos agrícolas, em vista dos possíveis problemas relacionados à salinização. No entanto, o padrão de potabilidade de 200 mg Na L-1 (FUNASA, 2001) só foi superado com a aplicação de doses maiores que 48 Mg ha-1 de biossólido.

Quanto às concentrações de micronutrientes nas soluções lixiviadas, exceto para as de Zn, que se ajustaram ao modelo quadrático, para os demais, as concentrações aumentaram linearmente em resposta às doses crescentes de biossólido. O Zn apresentou alto potencial de lixiviação e com a aplicação da dose máxima de biossólido sua concentração na solução lixiviada aumentou em quinze vezes. Para Fe esse aumento foi de onze vezes e para Mn, Cu e Ni de

duas vezes. Embora sejam nutrientes, estes elementos apresentam potencial poluente por tornarem-se fitotóxicos em altas concentrações na solução do solo, o que é favorecido pela acidificação (McBride, 1994). Nas condições do estudo, o Zn foi o micronutriente que apresentou maior potencial poluente da disposição deste biossólido em solo.

Com relação aos metais pesados, a aplicação do biossólido não teve efeito significativo para as concentrações de Pb nas soluções lixiviadas, enquanto as de Cd apresentaram resposta quadrática ao aumento das doses. A aplicação da dose máxima de biossólido aumentou em apenas 3 vezes o teor de Cd em relação à solução lixiviada do controle, apresentando baixo fator de impacto. É preciso considerar que o biossólido estudado apresentou teores de metais muito inferiores aos limites estabelecidos para uso agrícola e manteve teores no solo também abaixo dos limites para carga cumulativa (Cetesb, 1999), não oferecendo, portanto, preocupações de ordem ambiental, quando utilizado de acordo com as normas e critérios técnicos para aplicação agronômica.

Embora estas análises sejam restritas à ocorrência de perdas em condições simuladas, que podem não ser confirmadas em situações reais de campo, este ensaio de lixiviação comprovou a elevada mobilidade de N-NO₃⁻ e Na e moderada de Zn, constatadas no estudo de campo. O elevado potencial de lixiviação e o aumento das concentrações no lixiviado indicam que estes componentes são os potenciais poluentes deste biossólido. Entretanto, é preciso avaliar as formas ou espécies químicas presentes na solução lixiviada, as quais podem apresentar diferenças quanto à mobilidade e aos riscos ambientais e à saúde humana.

4.3.4 Espécies químicas presentes no lixiviado

De acordo com os resultados de especiação iônica, apresentados na Tabela 4.3.4, cerca de 50% do COD permaneceram como espécie livre nas soluções lixiviadas de todos os tratamentos e o restante formou complexos com Ca (~ 40%), Mg (2,9 a 4,5%) e Cu (~ 5%).

Entre os ânions, a espécie de N-NO₃ livre correspondeu a 99% e foi a que dominou em todos os tratamentos, seguida de SO₄-² (51 a 62%) e de H₂PO₄ (60 a 94%). Com a elevação das doses de biossólido e redução do pH, verificou-se diminuição das espécies HPO₄-², CaHPO₄ e MgHPO₄ e aumento de H₂PO₄ e CaH₂PO₄⁺, o que também foi observado por Silveira (2002). Esse comportamento ocorre porque as formas de P em solução são altamente dependentes do pH, sendo que em valores próximos à neutralidade as espécies HPO₄-² e H₂PO₄ existem em quantidades equivalentes, porém à medida que o pH é reduzido, o H₂PO₄ passa a ser a espécie química dominante em solução. As espécies de SO₄-² ligadas ao Ca e ao Mg mantiveram proporções constantes nas soluções lixiviadas de todos os tratamentos, sendo estas de 24% para CaSO₄ e 19% para MgSO₄.

Quanto aos cátions, verificou-se que Na⁺, K⁺, Ca⁺², Mg⁺², Fe⁺² e Mn⁺² ocorreram em 99% como espécies livres no lixiviado. As formas livres de Zn⁺², Ni⁺² e Cd⁺² corresponderam a 98% dos totais lixiviados e apenas cerca de 2% foram complexados por COD com a aplicação das doses mais elevadas de biossólido. Por outro lado, as espécies de Cu e Pb ligadas ao COD aumentaram com as doses, tendo as formas livres diminuído de 73% e 60% no tratamento controle para 58% e 40% para Cu e Pb, respectivamente, com a aplicação de 144 Mg ha⁻¹ de biossólido. A menor ocorrência de espécies de Zn, Ni e Cd ligadas ao COD nas soluções lixiviadas provavelmente está relacionada à menor afinidade que estes metais apresentam com grupos funcionais da matéria orgânica comparados ao Cu e Pb (Tyler & McBride, 1982).

TABELA 4.3.4 Especiação iônica da solução lixiviada do Cambissolo distrófico tratado com doses crescentes de biossólido industrial

Espécie química	Biossólido, Mg ha ⁻¹										
	0	6	12	18	24	48	96	144			
_	 %										
N-NH4+1	99,8	99,9	99,9	99,9	99,9	99,9	99,9	99,9			
N-NO ₃	99,1	98,9	98,8	98,7	98,6	98,5	98,3	98,0			
HPO₄-2	14,0	5,0	5,0	6,1	3,4	3,5	1,2	0,5			
H ₂ PO ₄	59,7	79,1	77,2	73,0	79,8	78,9	83,9	83,9			
MgHPO ₄	10,4	5,8	6,0	7,3	4,2	4,3	1,5	0,6			
CaHPO ₄	10,6	3,6	4,1	5,2	2,9	2,9	1,1	0,5			
CaH ₂ PO ₄ ⁺	3,7	5,2	6,0	6,0	6,9	7,0	8,5	9,2			
K ⁺	99,9	99,9	99,9	99,9	99,9	99,9	99,9	99,8			
Ca ⁺²	99,3	99,3	99,0	99,0	98,9	98,7	98,6	98,4			
Mg ⁺²	99,7	99,7	99,6	99,7	99,7	99,7	99,7	99,7			
SO ₄ -2	62,4	58,3	56,3	55,7	54,8	54,3	52,8	51,4			
MgSO ₄	13,3	19,5	19,3	19,0	19,3	19,7	19,3	19,9			
CaSO ₄	23,7	21,3	23,0	23,6	23,9	23,5	24,4	24,0			
Zn ⁺²	98,2	98,2	97,6	97,4	97,2	96,8	96,5	96,5			
Zn COD	1,2	1,4	1,9	2,2	2,4	2,7	2,9	2,8			
Cu ⁺²	72,6	72,6	65,5	63,3	61,5	57,9	56,7	57,7			
Cu COD	22,8	26,1	33,2	35,2	37,6	41,0	42,7	41,6			
CuOH ⁺	3,9	0,9	0,8	0,9	0,5	0,4	0,1	0,05			
Fe ⁺²	99,4	99,5	99,4	99,5	99,5	99,5	99,5	99,4			
Mn ⁺²	99,6	99,7	99,7	99,7	99,7	99,6	99,6	99,5			
Ni ⁺²	98,9	98,7	98,4	98,2	98,0	97,8	97,6	97,5			
Ni COD	0,8	0,9	1,3	1,4	1,5	1,7	1,8	1;8			
Pb ⁺²	59,6	59,6	49,2	46,9	44,7	41,0	39,6	40,4			
Pb COD	37,3	41,3	49,8	51,9	54,5	58,0	59,4	58,2			
PbOH ⁺	2,6	0,6	0,5	0,6	0,3	0,2	0,1	0,03			
Cd*2	98,7	98,7	98,3	98,1	98,0	97,7	97,5	97,4			
C4 COD	0,8	0,9	1,3	1,4	1,5	1,7	1,8	1,8			
Na ⁺¹	99,9	99,9	99,9	99,9	99,9	99,9	99,9	99,9			
COD	49,3	50,0	49,3	49,1	48,8	49,1	48,8	48,9			
Ca COD	41,1	38,8	39,6	39,8	39,3	38,9	38,6	37,6			
Cu COD	6,0	4,9	4,8	4,4	4,8	4,7	4,8	4,4			
Mg COD	2,9	4,5	4,2	4,0	3,9	4,1	3,8	3,9			

COD: carbono orgânico dissolvido

A aplicação de doses superiores a 6 Mg ha⁻¹ de biossólido aumentou a atividade do COD em relação aos valores obtidos na solução lixiviada do tratamento controle (Tabela 4.3.5). As atividades aniônicas seguiram a ordem: N-NO₃⁻ (10⁻⁰⁵-10⁻⁰⁵) > S-SO₄⁻² (10⁻⁰⁵) > H₂PO₄⁻ (10⁻⁰⁶ - 10⁻⁰⁵).

Para os cátions, verificou-se a seguinte ordem de atividade das espécies

livres: $Ca^{+2} (10^{-03}) = Mg^{+2} > Na^{+} (10^{-04} - 10^{-02}) \ge K^{+} (10^{-04} - 10^{-03}) > Zn^{+2} (10^{-06} - 10^{-05}) \ge Fe^{+2} (10^{-06} - 10^{-05}) \ge Mn^{+2} (10^{-06} - 10^{-05}) \ge Cu^{+2} (10^{-06}) > Ni^{+2} (10^{-07}) = Cd^{+2} > Pb^{+2} (10^{-08})$. Em doses superiores a 48 Mg ha⁻¹ de biossólido o Na⁺ apresentou maior atividade que o Ca^{+2} e o Mg^{+2} .

TABELA 4.3.5 Atividade das principais espécies presentes nas soluções lixiviadas do Cambissolo distrófico tratado com doses crescentes de biossólido industrial

Espécie	Biossólido, Mg ha ⁻¹									
química	0	6	12	18	24	48	96	144		
				Atividad	, mol L"-					
N-NH4	3,9E-05	2,4E-04	4,2E-04	6,1E-04	7,4E-04	1,2E-03	2,6E-03	3,4E-03		
N-NO ₃	4,5E-05	1,6E-04	3,1E-04	5,0E-04	5,9E-04	1,2E-03	2,2E-03	3,5E-03		
HPO ₄ -2	3,5E-07	1,1E-07	1,4E-07	1,6E-07	1,1E-07	1,2E-07	5,2E-08	3,2E-08		
H ₂ PO ₄	2,2E-06	2,9E-06	3,4E-06	3,2E-06	4,2E-06	4,8E-06	6,5E-06	1,0E-05		
MgHPO ₄	4,4E-07	2,4E-07	3,2E-07	3,9E-07	2,7E-07	3,2E-07	1,5E-07	1,0E-07		
CaHPO ₄	4,5E-07	1,5E-07	2,2E-07	2,7E-07	1,9E-07	2,2E-07	1,1E-07	7,1E-08		
CaH ₂ PO ₄ ⁺	1,4E-07	1,9E-07	2,7E-07	2,7E-07	3,7E-07	4,3E-07	6,6E-07	1,1E-06		
K ⁺	5,0E-04	5,6E-04	6,2E-04	6,3E-04	6,4E-04	7,4E-04	.9,6E-04	1,3E-03		
Ca ⁺²	2,8E-03	2,9E-03	3,5E-03	3,7E-03	3,9E-03	3,9E-03	4,5E-03	4,9E-03		
Ca COD	1,4E-05	1,8E-05	3,1E-05	3,6E-05	4,3E-05	5,2E-05	6,6E-05	7,3E-05		
Mg ⁺²	1,9E-03	3,4E-03	3,7E-03	3,7E-03	3,9E-03	4,2E-03	4,5E-03	5,1E-03		
Mg COD	9,6E-07	2,0E-06	3,2E-06	3,7E-06	4,3E-06	5,5E-06	6,6E-06	7,6E-06		
SO ₄ -2	2,6E-05	2,8E-05	3,2E-05	3,0E-05	3,1E-05	3,0E-05	2,9E-05	3,2E-05		
MgSO ₄	9,5E-06	1,7E-05	2,1E-05	2,0E-05	2,2E-05	2,3E-05	2,4E-05	3,0E-05		
CaSO ₄	1,7E-05	1,9E-05	2,6E-05	2,5E-05	2,8E-05	2,7E-05	3,0E-05	3,6E-05		
Zn ⁺²	8,1E-06	2,9E-05	3,9E-05	5,3E-05	6,4E-05	7,0E-05	8,0E-05	8,6E-05		
Zn COD	1,6E-07	7,0E-07	1,4E-06	2,1E-06	2,8E-06	3,7E-06	4,6E-06	5,1E-06		
Cu ⁺²	4,1E-06	3,7E-06	4,3E-06	4,1E-06	4,8E-06	4,8E-06	5,7E-06	5,8E-06		
Cu COD	2,0E-06	2,2E-06	3,8E-06	4,0E-06	5,3E-06	6,3E-06	8,3E-06	8,6E-06		
CuOH ⁺	3,3E-07	7,5E-08	8,6E-08	1,0E-07	6,1E-08	6,1E-08	2,3E-08	9,2E-09		
Fe ⁺²	7,4E-06	8,7E-06	1,1E-05	2,2E-05	3,0E-05	3,4E-05	4,1E-05	5,5E-05		
Mn ⁺²	6,5E-06	6,9E-06	7,5E-06	8,3E-06	9,9E-06	1,0E-05	1,1E-05	1,1E-05		
Ni ⁺²	3,0E-07	2,7E-07	2,6E-07	2,6E-07	3,3E-07	3,2E-07	3,0E-07	3,5E-07		
Ni COD	3,7E-09	4,1E-09	5,8E-09	6,3E-09	9,2E-09	1,1E-08	1,1E-08	1,3E-08		
Pb ⁺²	3,4E-08	3,0E-08	3,7E-08	3,5E-08	2,1E-08	3,8E-08	3,5E-08	3,3E-08		
Pb COD	3,3E-08	3,6E-08	6,5E-08	6,8E-08	4,7E-08	1,0E-07	1,0E-07	9,8E-08		
Cd ⁺²	1,6E-07	2,9E-07	2,7E-07	3,1E-07	3,0E-07	3,8E-07	2,7E-07	2,9E-07		
Cq COD	1,9E-09	4,3E-09	6,0E-09	7,7E-09	8,4E-09	1,2E-08	1,0E-08	1,1E-08		
Na ⁺¹	7,3E-04	1,7E-03	3,2E-03	3,9E-03	5,2E-03	7,3E-03	1,1E-02	1,8E-02		
COD	6,4E-06	7,6E-06	1,2E-05	1,3E-05	1,5E-05	1,8E-05	2,0E-05	2,0E-05		

COD: carbono orgânico dissolvido

A especiação iônica mostrou aumento das concentrações de COD nas

soluções lixiviadas com a elevação das doses de biossólido, sendo este, importante na lixiviação de Cu e Pb, que em formas livres ou complexadas, apresentaram baixas atividades em solução. Por outro lado, as espécies N-NO₃ e de Na⁺ livres dominaram nas soluções lixiviadas e apresentaram atividades elevadas, principalmente com a aplicação de doses superiores a 24 Mg ha⁻¹ de biossólido.

4.3.5 Riscos relacionados às principais espécies químicas do lixiviado

Para a avaliação dos riscos das principais espécies químicas presentes nas soluções lixiviadas do solo tratado com biossólido, foram consideradas suas características nas condições do estudo, como o potencial de lixiviação e o fator de impacto calculado pela razão entre a concentração máxima na solução lixiviada do solo tratado e a obtida no controle, mencionados no item 4.3.4, bem como os possíveis problemas ambientais e a toxicidade aos seres vivos (Tabela 4.3.6).

Entre as principais espécies químicas, N-NO₃ foi a que apresentou o maior fator de impacto no lixiviado em resposta à aplicação do biossólido, tendo sua concentração aumentada em 85 vezes em relação ao controle, com a aplicação da dose máxima, sendo este valor tomado como referência para avaliar o fator de impacto das demais espécies químicas. Os riscos associados ao aumento das concentrações de NO₃ na solução lixiviada de solos tratados com resíduos orgânicos referem-se à possibilidade de poluição de águas subsuperficiais e, principalmente, à elevada toxicidade que esta espécie química apresenta, podendo causar problemas à saúde humana quando ingerida em altas concentrações. No trato digestivo, NO₃ pode ser reduzido a NO₂ (Boink e Speijers, 2001) que, entrando na corrente sangüínea, oxida o ferro da hemoglobina, produzindo a meta-hemoglobina, que é incapaz de transportar o O₂ para a respiração normal das células dos tecidos e causa meta-

praticamente nulo, à aplicação do biossólido em solos agrícolas. Por outro lado, a utilização agrícola de biossólido contendo altos teores de Na⁺, como o do presente estudo, pode trazer problemas ambientais relacionados à salinização do solo (Tanji, 1990), com consequente desequilíbrio nutricional em plantas (Marschner, 1995) e, por meio de lixiviação causar salinização também das águas subsuperficiais. Considerando que o Na⁺ apresentou alto potencial de lixiviação e fator de impacto médio da aplicação do biossólido e os problemas ambientais e agronômicos apontados, esta espécie oferece risco médio à utilização agrícola do biossólido.

Quanto aos micronutrientes, o Zn⁺², devido ao alto potencial de lixiviação, favorecido pelo baixo pH (Hayes & Traina, 1998), por apresentar fator de impacto médio e toxicidade aos seres vivos (McBride, 1994; Guilherme et al., 2002) oferece risco médio à disposição deste biossólido em solos agrícolas. As demais espécies de micronutrientes e de metais pesados não representam fator limitante, por apresentarem baixo potencial de lixiviação e fator de impacto e, portanto, oferecerem baixos riscos à utilização agrícola deste biossólido. No entanto, o fato deste biossólido não apresentar poder corretivo e acidificar o solo merece atenção e, como medida preventiva, não deve ser aplicado em solos de reação também ácida. Isso porque, mesmo apresentando baixos teores de metais, sua aplicação em doses elevadas e sucessivas pode aumentar a disponibilidade destes elementos, atingindo concentrações fitotóxicas (McBride, 1994). Ainda do ponto de vista agronômico, a acidificação do solo implica em maior lixiviação de nutrientes catiônicos e adsorção de oxiânions, especialmente de PO₄-3, podendo causar deficiência nutricional em plantas como, de fato, foi observado para fósforo, no primeiro ano de cultivo de milho, em estudo apresentado no capítulo 2.

Considerando as concentrações no lixiviado e os problemas ambientais e toxicológicos das principais espécies presentes no lixiviado do solo tratado com

biossólido, conclui-se que NO₃-, Na⁺ e Zn⁺² são as que apresentam riscos ao uso deste material. Entretanto, estes fatores não se caracterizam como limitantes à utilização agronômica deste biossólido, desde que normas específicas e critérios técnicos estabelecidos para a reciclagem agrícola sejam respeitados.

4.4 CONCLUSÕES

- A aplicação do biossólido aumentou os teores de C orgânico, macronutrientes, micronutrientes e sódio e reduziu o pH do solo, mantendo esta tendência após a lixiviação.
- A aplicação de biossólido aumentou a concentração das espécies químicas no lixiviado, que apresentaram dinâmica temporal diferenciada. Maiores perdas de macro e micronutrientes e metais pesados ocorreram nos primeiros eventos de lixiviação, enquanto para PO₄⁻³ estas foram crescentes com o tempo de incubação.
- O carbono orgânico dissolvido teve influência na lixiviação de Pb⁺² e Cu⁺², os quais, em formas livres ou complexadas apresentaram baixas atividades nas soluções lixiviadas.
- Entre as espécies químicas lixiviadas, NO₃, Na⁺ e Zn⁺² representam riscos ao uso agronômico do biossólido, que podem ser minimizados se sua utilização agrícola for feita de acordo com as normas e critérios técnicos e de segurança à saúde pública e ao ambiente.

4.5 REFERÊNCIAS BIBLIOGRÁFICAS

ANDERSSON, S.; NILSSON, S. I.; SAETRE, P. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology and Biochemistry, Oxford, v. 32, n. 1, p. 1-10, Jan. 2000.

ANJOS, A. R. M.; MATTIAZZO, M. E. Lixiviação de íons inorgânicos em solos repetidamente tratados com biossólido. Revista Brasileira de Ciência do Solo, Viçosa, v. 24, n. 4, p. 927-938, out./dez. 2000.

BAHAM, J.; SPOSITO, G. Adsorption of dissolved organic carbon extracted from sewage sludge on montmorilonite and kaolinite in the presence of metal ions. Journal Environmental Quality, Madison, v. 23, n. 1, p. 147-153, Jan./Feb. 1994.

BATAGLIA, O. C.; BERTON, R. S.; CAMARGO, A. O.; VALADARES, J. M. A. S. Resíduos orgânicos como fontes de nitrogênio para capim-braquiária. Revista Brasileira de Ciência do Solo, Campinas, v. 7, n. 3, p. 277-284, set./dez. 1983.

BERTONCINI, E. I.; MATTIAZZO, M. E. lixiviação de metais pesados em solos tratados com lodo de esgoto. Revista Brasileira de Ciência do Solo, Vicosa, v. 23, n. 3, p. 737-744, jul./set. 1999.

BOINK, A.; SPEIJERS, G. Health effect of nitrates and nitrites, a review. Acta Horticulturae, Amsterdam, n. 563, p. 29-36, 2001.

BREMNER J. M.; MULVANEY, R. L. Urease activity in soils. In: BURNS, R. G. (Ed.). Soil enzymes. London: Academic Press, 1978. p. 149-196.

CHARDON, W. J.; OENEMA, O.; DEL CASTILHO, P.; VRIESEMA, R.; JAPENGA, J.; BLAAUW, D. Organic phosphorus in solutions and leachates from soils treated with animal slurries. **Journal of Environmental Quality**, Madison, v. 26, n. 2, p. 372-378, Mar./Apr. 1997.

CHRIST, M. J.; DAVID, M. B. Temperature and moisture effects on the production of dissolved organic carbon in a spodsol. Soil Biology and Biochemistry, Oxford, v. 28, n. 9, p. 1191-1199, Sept. 1996.

COMISSÃO DE FERTILIDADE DO SOLO DO ESTADO DE MINAS GERAIS – CFSEMG. Recomendações para uso de corretivos e fertilizantes em Minas Gerais: 5ª Aproximação. Viçosa-MG, 1999. 359 p.

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL – CETESB. Aplicação de biossólidos de sistemas de tratamento biológico em áreas agrícolas: critérios para projeto e operação. São Paulo, 1999. 29 p. (CETESB, Norma P. 4. 230).

CRAWFORD, J. F.; SMITH, P. G. Landfill technology. London: Butterworths, 1985, p. 84-85.

DONALD, R. G.; ANDERSON, D. W.; STEWART, J. W. B. Potential role of dissolved organic carbon in phosphorus transport in forested soils. Soil Science Society of American Journal, Madison, v. 57, n. 6, p. 1611-1618, Nov./Dec. 1993.

EATON, A. D.; CLESCERI, L. S.; GRENNBERG, A. E. Standard methods for the examination of water and wastewater. 19. ed. Washington: APHA, AWWA, WEF, 1995. 1082 p.

EL-FADEL, M.; BOU-ZEID, E.; CHAHINE, W.; ALAYLI, B. Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Management, Oxford, v. 22, n. 3, p. 269-282, 2002.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro, 1997. 212 p. (EMBRAPA-CNPS, Documentos, 1).

FERREIRA, D. F. SisVar - programa estatístico. Versão 4. 2 (Build 39). 1999-2003. Departamento de Ciências Exatas, Universidade Federal de Lavras.

FUNDAÇÃO NACIONAL DE SAÚDE – FUNASA. Controle e vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Portaria no. 1. 469. Ministério da Saúde, Brasília (DF), outubro de 2001.

GRON, C.; WASSENAAR, L.; KROG, M. Origin and structure of ground-water humic substances from three Danish aquifers. Environment International, Oxford, v. 22, n. 5, p. 519-534, 1996.

- GUILHERME, L. R. G.; MARQUES, J. J. G. S. M.; PIERANGELI, M. A. P.; ZULIANI, D. Q.; CAMPOS, M. L. Elementos-traço em solos, sedimentos e águas. In: SIMPÓSIO NACIONAL SOBRE RECUPERAÇÃO DE ÁREAS DEGRADADAS, 5., 2002, Belo Horizonte. Palestras... Belo Horizonte: SOBRADE, 2002. v. 2, p. 30-55.
- HAYES, K. F.; TRAINA, S. J. Metal speciation and its significance in ecosystem health. *In*: Huang, P. M. (ed.) Soil chemistry and ecosystem health. Soil Science Society of America, Madison: ASA, 1998. p. 45–84. (SSSA Special Publication n. 52).
- HUE, N. V. Sewage sludge. In: RECHEIGL, J. E. (Ed.). Soil amendments and environmental quality. Boca Raton: Lewis Publishers, 1995. p. 199-247. IGLESIAS-JIMENES, E.; ALVAREZ, C. E. Apparent availability of nitrogen in composted municipal refuse. Biology and Fertility Soils, Berlin, v. 16, n. 4, p. 313-318, Oct. 1993.
- JORDÃO, C. B.; MELFI, A. J.; ALLEONI, L. R. F.; BERTON, R. S.; CAMARGO, O. A. Especiação iônica de cádmio e níquel em Latossolo Vermelho acriférrico tratado com biossólido industrial. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 29., 2003, Ribeirão Preto SP. Anais... Ribeirão Preto: Sociedade Brasileira de Ciência do Solo: UNESP, 2003. CD-ROM.
 - KALBITZ, K.; SOLINGER, S.; PARK, J. H.; MICHALZIK, B.; MATZNER, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science, Philadelphia, v. 165, n. 4, p. 277-304, Apr. 2000.
 - KEENEY, D. R.; NELSON, D. W. Nitrogen organic forms. In: PAGE, A. L. (Ed.) Methods of soil analysis: chemical and microbiological properties. 2. ed. Madison: American Society of Agronomy/Soil Science Society of America, 1982. cap. 33. p. 643-698.
 - LAMY, I.; BOURGEOIS, S.; BERMOAD, A. Soil cadmium mobility as a consequence of sewage disposal. Journal of Environmental Quality, Madison, v. 22, n. 4, p. 731-737, Oct./Dec. 1993.
 - LEIFERT, C.; FITE, A.; LI, H.; GOLDEN, M.; MOWET, A.; FRAZER, A. Human health effects of nitrate. In: IFA AGRICULTURAL CONFERENCE ON MANAGING PLANT NUTRITION, 1999, Barcelona. Proceeding... Barcelona: IFA, 1999. 9 p.

- LINDSAY, W. L. Chemical equilibria in soils. New York: John Wiley, 1979. 449 p.
- MARSCHNER, H. Mineral nutrition of higher plant. 2 ed. New York: Academic Press, 1995. 889 p.
- MATTIAZZO, M. E.; BARRETO, M. C. V.; RODELLA, A. A. Organic matter kinetics mineralization in soils amended with four different organic wastes. In: WORLD CONGRESS OF SOIL SCIENCE, 16., 1998, Montpellier, France. Proceedings... Montpellier, 1998. CD-ROM.
- McBRIDE, M. B. Environmental chemistry of soils. New York: Oxford University Press, 1994.
- McDOWELL, W. H.; LIKENS, G. E. Origin, composition and flux of dissolved organic carbon in the Hubbard Brook Valley. **Ecological Monographs**, Washington, v. 58, n. 3, p. 177–195, Sept. 1988.
- MENGEL, K.; KIRKBY, E. A. Principles of plant nutrition. 5. ed. Dordrecht: Kluwer Academic Publishers, 2001. 849 p.
- NODVIN, S. C.; DRISCOLL, C. T.; LIKENS, G. E. Simple partitioning of anions and dissolved organic carbon in a forest soil. Soil Science, Baltimore, v. 142, n. 1, p. 27-35, July 1986.
- OBRADOR, A.; RICO, M. I.; MINGOT, J. I.; ALVAREZ, J. M. Metal mobility and potential bioavailability in organic matter-rich soil-sludge mixtures: effect of soil type and contact time. The Science of the Total Environment, Amsterdam, v. 206, n. 2/3, p. 117-126, Nov. 1997.
- OLIVEIRA, F. C. Metais pesados e formas nitrogenadas em solos tratados com lodo de esgoto. 1995. 90 p. Dissertação (Mestrado) Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.
- OLIVEIRA, F. C.; MATTIAZZO, M. E.; MARCIANO, C. R.; MORAES, S. O. Lixiviação de nitrato em um Latossolo Amarelo distrófico tratado com lodo de esgoto e cultivado com cana-de-açúcar. Scientia Agricola, Piracicaba, v. 58, n. 1, p. 171–180, jan./mar. 2001a.
- OLIVEIRA, F. C.; MATTIAZZO, M. E.; MARCIANO, C. R.; MORAES, S. O. Percolação de nitrato em Latossolo Amarelo distrófico afetada pela aplicação de

- composto de lixo urbano e adubação mineral. Revista Brasileira de Ciência do Solo, Viçosa, v. 25, n. 3, p. 731-741, jul./set. 2001b.
- SANCHEZ, F.; GERVAIS, C.; GARRABRANTS, A. C.; BARNA, R.; KOSSON, D. S. Leaching of inorganic contaminants from cement-based waste materials as a result of carbonation during intermittent wetting. Waste Management, Oxford, v. 22, n. 2, p. 249-260, 2002.
- SANTOS, A. C. Noções de hidroquímica. In: FEITOSA, F. A. C.; FILHO, J. M. Hidrogeologia: conceitos e aplicações. 2. ed. Fortaleza: CPRM/REFO, 2000. Cap. 5. p. 81-108.
- SAWHNEY, B. L.; BUGBEE, G. T.; STILWELL, D. E. Leachability of heavy metals from growth media containing source-separated municipal solid waste compost. Journal of Environmental Quality, Madison, v. 23, n. 3, p. 718-722, May/June 1994.
- SCHIRADO, T.; VERGARA, I.; SCHALSCHA, E. B.; PRATT, P. F. Evidence for movement of heavy metals in a soil irrigated with untreated wastewater.

 Journal of Environmental Quality, Madison, v. 15, n. 1, p. 9-12, Jan./Feb. 1986.
- SILVEIRA, M. L. A. Extração sequencial e especiação iônica de zinco, cobre e cádmio em Latossolos tratados com biossólido. 2002. 166 p. Tese (Doutorado) Escola Superior de Agricultura Luiz de Queiroz, Piracicaba.
- TANJI, K. K. Agricultural salinity assessment and management. New York: American Society of Civil Engineering, 1990. (ASCE Manuals n. 71).
- TAYLOR, R. W.; XIU, H.; MEHADI, A. A.; SHUFORD, J. W.; TADESSE, W. Fractionation of residual cadmium, copper, nickel, lead, and zinc in previously sludge-amended soil. Communications in Soil Science and Plant Analysis, New York, v. 26, n. 13/14, p. 2193-2204, 1995.
- TISDALE, S. L.; NELSON, W. L.; BEATON, J. D.; HAVLIN, J. L. Soil fertility and fertilizers. New York: MacMillan, 1993. 1634 p.
- TYLER, L. D.; MCBRIDE, M. B. Influence of Cd, pH and humic acid on Cd uptake. Plant and Soil, Dordrecht, v. 64, n. 1/3, p. 259-262, 1982.

UEHARA, G.; GILLMAN, G. P. The mineralogy, chemistry, and physics of tropical soils with variable charge clays. Colorado: Westview Press, 1981. 170 p.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY – USEPA. Background report on fertilizer use, contaminants and regulations. United States Environmental Protection Agency/Office of Pollution Prevention and Toxics. EPA 747-R-98-003, 1999. 395 p.

VETTORI, L. Métodos de análises do solo. Rio de Janeiro: Ministério da Agricultura, 1969. 24 p. (Boletim Técnico 7).

VITOUSEK, P. M. The effects of deforestation on air, soil, and water. In: BOLIN, B.; COOK, R. B. (Ed). The major biogeochemical cycles and their interactions. New York: John Wiley, 1983. p. 223-245. (Scope 21)

WALKLEY, A.; BLACK, I. A. An examination of the Degjareff method for determining soil matter and proposed modification of the cromic acid titration method. Soil Science Society of America Proceedings, Madison, v. 37, n. 1, p. 29-38, Jan./Feb. 1934.

WESTERHOFF, P.; PINNEY, M. Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater. Waste Management, Oxford, v. 20, n. 1, p. 75-83, 2000.

WHITE, R. E. Leaching. In: WILSON, J. R. Advances in nitrogen cycling in agricultural ecosystems. Wallinggord: C. A. B. International, 1987. p. 193-211.

ZHU, B.; ALVA, A. K. Trace metal and cation transport in a sandy soil with various amendments. Soil Science Society of American Journal, Madison, v. 57, n. 3, p. 723-727, May/June 1993.

CONSIDERAÇÕES FINAIS

A utilização de biossólidos na agricultura brasileira ainda é uma prática pouco expressiva. Por outro lado, a geração de volumes cada vez maiores destes resíduos e as evidências científicas do aumento na produtividade de diferentes culturas, resultante de sua aplicação, têm incentivado o aproveitamento agricola desta fonte de matéria orgânica e de nutrientes. No entanto, o uso agrícola exige a adequação destes resíduos como insumos e o esclarecimento aos usuários sobre beneficios, fatores limitantes e riscos desta prática, para que sejam utilizados de forma eficiente e segura.

Neste estudo, o biossólido gerado pela indústria de fibras e resinas PET, quando aplicado por dois anos consecutivos a um Cambissolo distrófico, melhorou a fertilidade do solo e o estado nutricional do milho, aumentando a produtividade desta cultura, que atingiu equivalência à adubação mineral com a aplicação de 10 Mg ha⁻¹ de biossólido. Com base na equivalência à adubação mineral, o valor do biossólido foi estimado em R\$ 43,70 Mg⁻¹ em base seca e R\$ 8.74 Mg⁻¹ em base úmida e, considerando o custo de transporte, a aplicação deste, é economicamente viável até 66 km da fonte geradora. Após dois anos de aplicação do biossólido e cultivo de milho, verificou-se melhoria da fertilidade do solo, havendo aumento nos teores de C orgânico, nutrientes e no complexo sortivo do solo e diminuição do pH. A aplicação de 12 Mg ha-1 de biossólido dobrou o teor de NO3 e aumentou em quinze vezes o de Na+ em relação à adubação mineral na camada de 40-60 cm do solo, representando potencial poluente de solo e águas subsuperficiais. A aplicação do biossólido promoveu aumento da estabilidade de agregados, da porosidade total e da microporosidade e diminuição da Ds. Houve aumento do C e do N da biomassa microbiana e da respiração basal e redução dos valores de qCO2 com a elevação das doses de biossólido. Isto indica que a aplicação de até 24 Mg ha-1 de biossólido não causou efeito adverso à microbiota e processos do solo, exceto uma redução observada na atividade da fosfatase ácida. Os efeitos positivos da aplicação do biossólido sobre os atributos químicos, físicos e biológicos do solo evidenciaram seu potencial como fertilizante e condicionador do solo. O ensaio de lixiviação indicou que a aplicação do biossólido; em doses de até 144 Mg ha⁻¹, promoveu incrementos na lixiviação de espécies químicas, especialmente de NO₃, Na⁺ e Zn⁺², que representam riscos ao uso agronômico deste biossólido.

Portanto, o presente estudo indica que a utilização agrícola deste biossólido apresenta muitas vantagens, como aumento de produtividade das culturas, economia com fertilizantes minerais e melhoria dos atributos do solo, mas pode representar riscos ambientais. No entanto, estes riscos podem ser minimizados se sua aplicação atender aos critérios técnicos e de segurança à saúde e ao ambiente estabelecidos para o uso agronômico deste tipo de resíduo.

ANEXOS

ANEXO A		Página
ANEXO A1	Caracterização do biossólido industrial	164
ANEXO A2	Análises de atributos microbiológicos e bioquímicos do solo	166

ANEXO A1 - Caracterização do biossólido Industrial

Indústria geradora do biossólido: a Rhodia é uma multinacional do grupo francês Rhône-Poulenc, líder em química de especialidades, possuindo 110 fábricas distribuídas em 135 países. No Brasil, a Rhodia atua desde 1919, com fábricas nos estados de São Paulo, Minas Gerais e Pernambuco. Em 1994, unindo-se à Celbrás, fabricante de resinas e embalagens PET, a Rhodia criou a Rhodia-ster e a Recipet, encarregada da reciclagem de embalagens PET. Em outubro de 2002 a Rhodia-ster, com fábrica em Poços de Caldas, MG, Paulínia, SP e Indaiatuba, SP, foi adquirida pelo grupo italiano Mossi & Ghisolfi, um dos líderes mundiais neste setor. Atualmente tem capacidade de produção de 200 mil Mg ano-1 de resina PET e 90 mil Mg ano-1 de fibra de poliéster e lidera a fabricação e comercialização destes produtos na América do Sul.

Matéria-prima utilizada no processo industrial: as fibras de poliéster e resinas PET originam-se da nafta, um subproduto do petróleo. Embora o PET tenha sido descoberto pelos químicos ingleses, Winfield e Dickson em 1941, as garrafas produzidas com este polímero só começaram a ser fabricadas na década de 1970, após cuidadosa revisão dos aspectos de segurança à saúde e ao meio ambiente. O poliéster mais simples e mais importante no processo industrial é obtido pela reação do éster metílico do ácido tereftálico com o etilenoglicol.

Tratamento do esgoto industrial e geração do biossólido: o tratamento do esgoto industrial empregado na ETE da Rhodia-ster é a digestão biológica aeróbia. O biossólido foi classificado quanto aos seus riscos potenciais ao meio ambiente e à saúde pública como "Classe II – resíduo não inerte" e quanto aos aspectos sanitários, como "Classe A", pela Ecolabor Comercial e Análises Ltda., laudo de 20/05/1999 NR 21930/CA, que também realizou a análise química do biossólido em massa bruta e em ensaios de lixiviação e de solubilização, apresentada na Tabela 1A.

TABELA 1A Componentes químicos do biossólido em massa bruta, no lixiviado e no extrato solúvel, com respectivos limites máximos (Ecolabor Comercial e Análises Ltda., laudo de 20/05/1999 NR 21930/CA)

Componentes		sa bruta	Ensaio d	le lixiviação	Ensaio de solubilização mg L-1		
químicos	m	g kg ⁻¹		g L·1	1118		
		Limites ¹¹		Limites 2		Limites ¹³	
pН	7,5	-	7,5	-	7,5 - 4,81	•	
Nitrato	-	-	-	- ,	<0,017	10	
Alumínio	-	-	-	= '	<0,2	0,2	
Arsênio	<2	1.000	<0,01	5	<0,01	0,05	
Bário	340	20.000	<0,3	100	<0,3	1	
Berilio	<4	150	-	•	-	•	
Cádmio	<0,5	200	<0,04	1	<0,04	0,005	
Chumbo	12	2.000	<0,05	5	<0,05	0,05	
Cianeto	<1,7	1.000	-		<0,017	0,1	
Cobre	112	5.000	-	-	<0,01	1	
Ferro	-	-	-	-	2,08	0,3	
Manganês .	-	-	-	•	0,517	0,1	
Sulfato	-	-	-	- : .	1,08 10 ³	400	
Estanho	291	-	-	-	<u>.</u>	-	
Mercúrio	<1,25	100	<0,001	0,2	<0,001	0,001	
Niquel	. 35,7	4.000	-	-	- .	=	
Prata	Ŕ	1.000	<0,009	5	>0,009	0,05	
Selênio	<3	200	<0,003	1	<0,003	0,01	
Cloreto	-	-	-	-	<0,5	250	
Cromo total	8,8	5.000	<0,016	5	<0,016	0,05	
Fenóis	8,45	10	-	-	2,99	0,001	
Fluoreto	894	36,000	4,31	150	<0,1	1,5	
Óleos e graxas (%)	2,7	-	•	- ,	-	-	
Surfactantes	-,-	-	_	-	<0,2	0,2	
Umidade (%)	77,9	-	-	- .	-	-	
Dureza	-	•	-	• '	67	500	
Sódio	-	-	-	_	44,2	200	
Molibdênio	23	7.000	-	-	•	-	
Zinco	512	10.000	-	-	<0,174	5	
Cobalto	14	16.000	-	_	-	-	
Antimônio	188	1.000	-	- .	-	-	
Tálio	<100	1.400	-	!	-	-	
Telúrio	<100	-	•	-	•	-	
Vanádio	471	4.800	-	-	_	-	

Limites máximos do Anexo I da listagem n.09 da NBR 10.004 e do PN 1:603 06-008

Limites máximos do Anexo H da listagem n.08 da NBR 10.004.

Limites máximos do Anexo G da listagem n.07 da NBR 10.004 e do PN 1:603 06-008

ANEXO A2 – Análises de atributos microbiológicos e bioquímicos do solo

Carbono da biomassa microbiana

O carbono da biomassa microbiana (Cmic) foi avaliado pelo método da fumigação-extração (Vance et al., 1987), sendo determinado após o ataque das amostras com clorofórmio purificado, que provoca a morte dos microrganismos e liberação dos componentes celulares. O carbono de 20 g de solo de amostras fumigadas e não fumigadas foi extraído com 100 mL de K₂SO₄ 0,5 mol L⁻¹ e a uma alíquota de 8 mL deste extrato foram adicionados 2 mL de K₂Cr₂O₇ 0.0667 mol L-1 e uma mistura de H2SO4/H3PO4 na proporção 2:1. A mistura foi aquecida em chapa térmica a 90°C, por 5 minutos, contados após o surgimento das primeiras bolhas de fervura. Após o resfriamento foram adicionados 10 mL de água destilada e determinou-se o K₂Cr₂O₇ consumido por titulação das amostras com sulfato ferroso amoniacal 0,0333 mol L⁻¹, usando difenilamina (1%) como indicador. A quantidade de K₂Cr₂O₇ consumida foi calculada pela diferença entre a digestão em branco de 8 mL do extrator K2SO4 e o excedente da amostra de solo. O Cmic foi calculado por Cmic = (F-NF)/K∞, sendo Cmic = carbono da biomassa microbiana (µg C g-1 solo seco), F= µg C g-1 solo seco da amostra fumigada; NF = µg C g-1 solo seco da amostra não fumigada e Kec = coeficiente de correção 0,30 proposto por Feigl et al. (1995) para solos tropicais.

Nitrogênio da biomassa microbiana

O nitrogênio da biomassa microbiana (Nmic) foi avaliado pelo método da fumigação-extração (Brookes et al., 1985), sendo determinado em 20 g de amostras de solo fumigadas e não fumigadas com clorofórmio e extraído com 100 mL de K₂SO₄ 0,5 mol L⁻¹. O Nmic foi determinado em 5 mL do extrato, após redução de nitrato a amônio sob condições ácidas de digestão Kjedahl e após destilação com NaOH 13 mol L⁻¹, usando solução de H₂SO₄ 0,005 mol L⁻¹

para titulação. Para determinar a quantidade de H₂SO₄ consumida, fez-se uma prova em branco com 5 mL da solução extratora K₂SO₄. O Nmic foi calculado seguindo a expressão: Nmic = (B-S)/(A.M.N), sendo Nmic= nitrogênio da biomassa microbiana (μg N g⁻¹ solo úmido), B= quantidade de H₂SO₄ consumido no branco, S= quantidade de H₂SO₄ consumido na amostra, A= alíquota da amostra (5 mL), M = 0,005 mol L⁻¹ de H₂SO₄ usado para titulação; N= peso molecular no N (14). O Nmic foi corrigido para solo seco e calculado por Nmic = (F-NF)/Ken, sendo Nmic = nitrogênio da biomassa microbiana (μg N g⁻¹ solo seco), F= μg N g⁻¹ solo seco fumigado; NF = μg N g⁻¹ solo seco não fumigado e Ken = coeficiente de correção 0,45, proposto por Brookes et al. (1985).

Quocientes microbianos e relações C/N

O quociente microbiano, ou relação Cmic/Corg, foi calculado de acordo com Sparling (1992), pela expressão Cmic/Corg = (Cmic/Corg)/10, sendo Cmic/Corg = quociente microbiano (%), Cmic = carbono da biomassa microbiana (µg C g-1 de solo seco) e Corg = carbono orgânico total (g kg-1). Da mesma forma, calculou-se a relação Nmic/Ntotal = (Nmic/Ntotal)/10, sendo Nmic/Ntotal = quociente microbiano (%), Nmic = N da biomassa microbiana (µg g N g-1 solo seco), e Ntotal = N Kjeldahl (g kg-1). As relações C/N entre Corg e Ntotal e entre Cmic e Nmic também foram calculadas.

Respiração basal

A taxa de respiração basal foi estimada pela captura do CO₂ liberado de 20 g de solo por 20 mL de solução de NaOH 0,05 mol L⁻¹, durante 72 h de incubação em recipiente hermeticamente fechado, mantido no escuro a 28°C, como descrito em Alef & Nannipieri (1995). Após a incubação, o CO₂ capturado foi precipitado como carbonato de bário, pela adição de 5 mL de BaCl₂ 0,5 mol

L⁻¹ e o excesso de NaOH foi titulado com HCl 0,05 mol L⁻¹ na presença de fenolitaleina (0,1%). A taxa de liberação de CO₂ foi calculada pela fórmula: C-CO₂= [(Vo - V x 1,1 x 1000)/pss]/t, sendo C-CO₂ = μg de C-CO₂ g-¹ de solo seco h⁻¹, Vo = volume de HCl gasto para titular o branco, V= volume de HCl gasto para titular a amostra, pss = peso do solo seco (g), 1,1 = fator de conversão (1 mL de HCl 0,05 mol L⁻¹ corresponde a 1,1 mg CO₂), t = tempo de incubação em horas e 1000 = para expressar os resultados em μg de CO₂ g-¹ de solo seco.

Quociente metabólico

O quociente metabólico (qCO₂) foi calculado pela razão entre a taxa de respiração basal e o carbono da biomassa microbiana das amostras (Anderson & Domsch, 1993), sendo expresso em μg C-CO₂ h⁻¹ μg⁻¹ Cmic.

Atividades enzimáticas

A urease foi avaliada pelo método descrito por Tabatabai & Bremmer (1972), que se baseia na determinação do amônio liberado após incubação do solo com uma solução de uréia. Assim, às amostras de 5 g de solo adicionaram-se 0,2 mL de tolueno, 9 mL de tampão TRIS (50 mmol L⁻¹, pH 9) e 1 mL de solução de uréia (0,2 mol L⁻¹), que em seguida foram incubadas por 2 horas em estufa incubadora a 37°C. Após incubação, adicionaram-se 35 mL de KCl-Ag₂SO₄ para interromper a reação. Da solução obtida, pipetaram-se 20 mL, acrescentaram-se 0,2 g de MgO e o material foi destilado em microdestilador Kjeldhal (Keeney & Nelson, 1982). O destilado foi recolhido em um frasco contendo 5 mL de ácido bórico e uma solução de indicadores (vermelho de metila e verde de bromocresol) e titulado com H₂SO₄ (0,005 mol L⁻¹). Para cada amostra foi feito um controle, sendo que nestes a uréia foi adicionada somente após a solução de KCl-Ag₂SO₄. A atividade da urease foi estimada pela concentração de N-NH₄ (μg de N-NH₄⁺ g⁻¹ de solo seco h⁻¹) = [(C x V)/pss]/t, em que C= volume de ácido gasto na titulação multiplicado por 70 (1 mL de

 H_2SO_4 0,005 mol L^{-1} = 70 (µg de N-NH₄), V= volume de KCl-Ag₂SO₄ adicionado, pss = peso do solo seco e t = tempo de incubação em horas.

A fosfatase ácida foi avaliada seguindo a metodologia de Dick et al. (1996). A amostras de 1 g de solo adicionaram-se 0,2 mL de tolueno, 4 mL de tampão MUB (pH 6,5) e 1 mL ρ-nitrofenol-fosfato (PNF: 0,05 mol L⁻¹). A mistura foi colocada em banho-maria por 1 h, a 37°C. Em seguida, adicionaram-se 1 mL de CaCl₂ 0,5 mol L⁻¹ e 4 mL de NaOH 0,5 mol L⁻¹ para interromper a reação. Os frascos foram levemente agitados e o sobrenadante filtrado (Whatman 42). Após a filtragem do sobrenadante determinou-se a absorbância dos extratos de coloração amarelada em espectrofotômetro a 410 nm. As amostras controle seguiram o mesmo procedimento, exceto para a adição de PNF e pela adição das soluções de CaCl₂ e NaOH. A concentração de PNF foi determinada com o auxilio de uma curva padrão de 10 mL de solução contendo 0, 10, 20, 30, 40 e 50 μg mL⁻¹ de PNF, sendo calculada pela formula: ρ-nitrofenol (μg g⁻¹ de solo seco h⁻¹) = [(C x V)/pss]/t, em que C = concentração de PNF obtida pela curva padrão (μg g⁻¹), V = volume total da suspensão do solo (10 mL), pss = peso do solo seco e t = horas de incubação.

A β-glicosidase foi determinada por espectrofometria do ρ-nitrofenol-β-D-glucosídeo, conforme descrito por Eivazi & Tabatabai (1988). Pesou-se 1 g da mistura em um frasco de 50 mL, adicionaram-se 0,25 mL de tolueno, 4 mL de tampão MUB (pH 6) e 1 mL da solução de ρ-nitrofenol-β-D-glucosídeo (PNG: 0,05 mol L-1). Os frascos foram agitados por alguns segundos, fechados e incubados por uma hora, a 37°C. Em seguida, adicionaram-se 1 mL de CaCl₂ e 4 mL de tampão THAM (0,1 mol L-1, pH 12), sendo os frascos novamente agitados e o sobrenadante filtrado (Whatman 42). Após a filtragem do sobrenadante determinou-se a absorbância dos extratos de coloração amarelada em espectrofotômetro a 410 nm. As amostras controle seguiram o mesmo procedimento, exceto para a adição de PNG, que foi colocado somente após a

adição de THAM (pH 12). A concentração de PNG foi determinada com o auxílio de curva padrão de 10 mL de solução contendo 0, 10, 20, 30, 40 e 50 μg mL⁻¹ de PNG, sendo calculada pela fórmula: ρ-nitrofenol-β-D-glucosídeo (μg g⁻¹) de solo seco h⁻¹) = [(C x V)/pss]/t, em que C = concentração de PNG obtida pela curva padrão (μg g⁻¹), V = volume total da suspensão do solo (10 mL), pss = peso do solo seco e t = horas de incubação.

A hidrólise da fluoresceina diacetato (FDA) por células microbianas viáveis foi avaliada conforme Diack (1997). Amostras de 3 g de solo adicionadas de 50 mL de solução tampão (Na₃PO₄.12H₂O₂ pH 7) contendo 10 ия mL-1 de fluoresceina diacetato lipase (C20H12O5) foram incubadas sob agitação (200 rpm) a 35°C, por 24 horas. Após esse período, foram adicionados 2 mL de acetona (50% v/v) para interromper a reação de hidrólise. Em seguida, a suspensão de solo foi centrifugada a 3.840 rpm, por 5 minutos. Após a filtragem do sobrenadante (Whatman 42), determinou-se a absorbância dos extratos em espectrofotômetro a 490 nm. Para as amostras controle o mesmo procedimento foi aplicado, sem adição do substrato (fluoresceina). A concentração de fluoresceina hidrolisada foi determinada com o auxílio de uma curva padrão com 50 mL de solução contendo 0, 100, 200, 300, 400 e 500 µg mL⁻¹ de fluoresceina sódica (C₂₀H₁₀O₅Na₂), sendo calculada pela fórmula: FDA $(\mu g g^{-1} de solo seco h^{-1}) = [(C \times V)/pss]/t$, onde C = concentração de fluoresceinahidrolisada obtida pela curva padrão (ug g⁻¹). V = volume total da suspensão do solo (50 mL), pss = peso do solo seco e t = horas de incubação.

As atividades específicas das enzimas foram calculadas pela razão entre a atividade total (µg produto g⁻¹ solo seco h⁻¹) e o Cmic (µg C g⁻¹ solo seco) das amostras, sendo expressas em µg de produto h⁻¹ µg⁻¹ Cmic, conforme Waldrop et al. (2000).

Colonização micorrízica

A colonização micorrízica foi avaliada em raízes de *Brachiaria* sp. coletadas na área adjacente e nas parcelas experimentais. Amostras de 1 g de raízes finas foram separadas do solo, lavadas em água e clarificadas em solução aquosa de KOH (100 g L⁻¹) e coloridas com azul de tripane (Philips & Hayman, 1970). A colonização foi estimada pelo método da placa quadriculada (Giovanetti & Mosse, 1980) com auxílio de microscópio estereoscópico (40x). A densidade de esporos foi determinada após peneiramento úmido de amostras de 50 mL de solo e separação dos esporos de partículas de solo por centrifugação e flutuação em sacarose (Gerdemann & Nicolson, 1963). Após lavagem dos esporos em água, estes foram distribuídos em placa de Petri canaletada e contados com o auxílio de microscópio estereoscópico (40x).