
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Generalized Scalar Duffin-Kemmer-Petiau
Electrodynamics (GSDKP)
To cite this article: R Bufalo et al 2016 J. Phys.: Conf. Ser. 706 052002

 

View the article online for updates and enhancements.

Recent citations
Transition amplitude, partition function and
the role of physical degrees of freedom in
gauge theories
A.A. Nogueira et al

-

This content was downloaded from IP address 177.105.44.230 on 03/09/2019 at 18:14

https://doi.org/10.1088/1742-6596/706/5/052002
http://dx.doi.org/10.1016/j.nuclphysb.2018.07.024
http://dx.doi.org/10.1016/j.nuclphysb.2018.07.024
http://dx.doi.org/10.1016/j.nuclphysb.2018.07.024
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/91032720/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


Generalized Scalar Duffin-Kemmer-Petiau
Electrodynamics (GSDKP)

R Bufalo, T R Cardoso, A A Nogueira and B M Pimentel
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Abstract. The main goal of this work is to investigate the quantum interaction between scalar field
and gauge field in the context of Generalized Scalar Duffin-Kemmer-Petiau Electrodynamics (GSDKP)
by a quantum theory in the functional approach. The Hamiltonian structure is obtained with the Dirac
method and the Faddeev-Senjanovic procedure is established in order to write the transition amplitude in
an alternative gauge fixing, known as the non-mixing gauge. As a consequence, the Schwinger-Dyson-
Fradkin equations and the Ward-Takahashi-Fradkin identities are obtained.

1. Introduction
The purpose of this work is to study the covariant dynamics of systems with constraints and the
quantization procedure in a particular case (GSDKP), so let us make a brief introduction to the subject.

The quantization problem of a classical dynamics was first put in a formal language by Dirac [1]
because he observed that the classical dynamics described in the phase space by the observable and
Poisson brackets was associated to a quantum dynamics described in the Hilbert space by the operators
and commutators\anti-commutators via correspondence principle

{,}P→−i[, ]±. (1)

Later the existence of constraints in the hamiltonian dynamics led Dirac to extend its mechanical
analysis of the phase space by the parenthesis of Dirac and the classification (first class\second class)
always being able to make connection to quantum dynamics with the correspondence principle [2],

{,}D→−i[, ]±. (2)

This is the first look at the connection between classical\quantum dynamics.
The second look begins in a Dirac study [3] about the connection between a dynamics described in

the configuration space and its resulting quantum dynamics. In this study we see the emergence of an
object very important called transition amplitude

Z =
∫

Dµ exp[iS], (3)

where Dµ is the integration measure and S is the action.
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Feynman uses the idea of Dirac to formulate a way to describe the quantum mechanics via path
integral [4]. However elegantly Schwinger infers that because the quantum equations in the Heisenberg
description preserve its classic form it should be a principle of quantum action [5]. We have now that
the amplitude transition, or functional generator is a solution of the functional equation arising from a
dynamic

[ϕ̇−{ϕ,H0−ϕJ}D]|ϕ= δ

iδJ
Z[J] = 0 (4)

where H0 is the initial hamiltonian.
Continuing, Faddeev explores the integration measure properties Dµ to study connections between

classical\quantum dynamics of the physical systems with first-class constraints [6]. Later Senjanovic
extends the ideas of Faddeev [7] for second-class constraints. Finally Fradkin and Vilkovisky make an
overview of the problem in view of covariant formalisms and its connection with BRST symmetry [8].
See, for more details on quantization of systems with constraints [9].

2. Constraint analysis and transition amplitude
To construct the transition amplitude we will use the Faddeev-Senjanovic [6, 7] analysis where we must
first do a short study of constraint.

The Lagrangian density describing the GSDKP is defined by

L =
i
2

ψ̄β
µ
(
∂µψ

)
− i

2
(
∂µ ψ̄β

µ
)

ψ−mψ̄ψ + eAµ ψ̄β
µ

ψ− 1
4

FµνFµν +
a2

2
∂

µFµβ ∂αFαβ (5)

where Fµν = ∂µAν−∂νAµ is the usual electromagnetic field-strength tensor and β µ are the DKP matrices
that obey the algebra [10]

β
µ

β
ν
β

θ +β
θ

β
ν
β

µ = β
µ

η
νθ +β

θ
η

νµ . (6)

This theory is invariant under local gauge transformations

ψ → eiα(x)
ψ, Aµ → Aµ +

1
e

∂µα (x) . (7)

The matter (scalar field, mesons) are described by the Duffin-Kemmer-Petiau (DKP) theory [11], a first-
order relativistic theory for the description of spin 0 and spin 1 bosons with a similar form as the Dirac
equation, and the radiation (vector field, photons) are described by the Podolsky theory [12]. We can see
this gauge theory with U(1) symmetry as an extension of the work on DKP Quantum Electrodynamics
[13].

The translational space-time invariance of the Lagrangian density leads us to write the canonical
Hamiltonian

Hc =
∫

d3x
[
(∂0ψ̄)

∂L

∂ (∂0ψ̄)
+

∂L

∂ (∂0ψ)
(∂0ψ)+

∂L

∂ (∂0Aν)
(∂0Aν)

−∂θ

(
∂L

∂ (∂0∂θ Aν)

)
(∂0Aν)+

∂L

∂ (∂0∂θ Aν)
(∂θ ∂0Aν)−L

]
, (8)

where we define the momenta expressions

p =
∂L

∂ (∂0ψ̄)
=− i

2
β

0
ψ, (9)

p̄ =
∂L

∂ (∂0ψ)
=

i
2

ψ̄β
0, (10)

Π
ν = Fν0 +a2[η iν

∂i∂αFα0−∂0∂αFαν ], (11)

Φ
ν = a2[∂αFαν −η

ν0
∂αFα0]. (12)
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From the above momentum expressions, we shall study the constraint structure of the theory following
Dirac’s approach to singular systems [2]. In this approach it is possible to obtain the set of first-class
constraints

ϕ1 =Φ0 ≈ 0, (13)

ϕ2 =Π0−∂kΦ
k ≈ 0, (14)

ϕ3 =eψ̄β
0
ψ−∂

k
Πk ≈ 0 (15)

and the set of second-class constraints

χ
(1) = p+

i
2

β
0
ψ ≈ 0, (16)

χ̄
(1) = p̄− i

2
ψ̄β

0 ≈ 0, (17)

χ
(2) = [1− (β 0)2][iβ i

∂iψ(x)−mψ(x)+ eβ
iAi(x)ψ(x)]≈ 0, (18)

χ̄
(2) = [−i∂iψ̄(x)β i +mψ̄(x)− eψ̄(x)β iAi(x)][1− (β 0)2]≈ 0. (19)

The weak equality ≈ is understood in according to Dirac’s sense.
With the full set of first-class and second-class constraints determined, we are now in a position

to obtain the functional generator. The transition amplitude in the Hamiltonian form is written in the
following way:

Z = N
∫

Dµ exp
{

i
∫

d4x [(∂0ψ̄) p+ p̄(∂0ψ)+Π
ν (∂0Aν)+Φ

ν (∂0Γν)−H c]

}
(20)

where the canonical Hamiltonian is given by

Hc = Π0Γ
0 +ΠkΓ

k +Φk(∂
k
Γ0−∂lF lk +

Φk

2a2 )−
i
2

ψ̄β
i←→

∂ iψ +mψ̄ψ

− eψ̄Âψ +
1
4

Fk jFk j +
1
4
(Γ j−∂ jA0)

2− a2

2
(∂ j

Γ j−∂
j
∂ jA0)

2, (21)

and the integration measure

Dµ = DΦ
νDΓνDΠ

µDAµDψ̄DψDp̄Dpδ (Θl)det‖{Θl,Θm}‖
1
2 . (22)

We have that the complete set of constraints for the GSDKP is

Θl =
{

χ
(1), χ̄(1),χ(2), χ̄(2),ϕ1,ϕ2,ϕ3,Σ1,Σ2,Σ3

}
, (23)

in which suitable gauge conditions for the first-class constraints are chosen as the generalized radiation
conditions [14]

Σ1 = Γ0(x)≈ 0, Σ2 = A0 ≈ 0, Σ3 = (1+a2�)(~∇.~A)≈ 0. (24)

After integrating over the gauge and fermionic momenta, the transition amplitude Z is explicitly
written

Z = N
∫

DAµDψ̄Dψ det
∥∥∥(1+a2~∇2)~∇2

∥∥∥δ ((1+a2�)(~∇.~A))

exp[i
∫

d4x{ψ̄(iβ µ
∇µ −m)ψ− 1

4
FµνFµν +

a2

2
∂

µFµβ ∂αFαβ}]. (25)
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Hence, with the Faddeev-Popov-DeWitt ansatz in the non-mixing gauge condition [15]

Ω(A) =
(
1+a2�

) 1
2 ∂

µAµ (26)

the transition amplitude can be written in a covariant form

Z = N
∫

DAµDψ̄Dψ exp{i
∫

d4x[ψ̄
(
iβ µ

∇µ −m
)

ψ− 1
4

FµνFµν

+
a2

2
∂

µFµβ ∂αFαβ − 1
2ξ

(
∂

µAµ

)(
1+a2�

)(
∂

µAµ

)
]}. (27)

Although initially Podolsky used the Lorenz gauge fixing condition Ω(A) = (∂µAµ) to fix the physical
degrees of freedom in generalized electrodynamics, lately with a rigorous study of constraint analysis
we see that this is not really true [14]. As a consequence, the natural way to fix the physical degrees
of freedom was the generalized Lorenz gauge fixing condition Ω(A) = (1+ a2�)(∂µAµ), however it
complicates the theory’s quantization once it increases the order of the field equation. Today we think

that the non-mixing gauge fixing condition [15] Ω(A) =
(
1+a2�

) 1
2 ∂ µAµ combines with the theory

because it preserves the order of the field equation, but it has a pseudo-differential structure.

3. The Schwinger-Dyson-Fradkin equations
The most elegant way of studying the set of field equations in the Heisenberg description is in a functional
formulation, consisting in an infinite chain of differential equations that relate different Green’s function
in a exact manner. This infinite tower of equations is referred to as the Schwinger-Dyson-Fradkin (SDF)
equations [17].

3.1. The Schwinger-Dyson-Fradkin equations for the gauge-field propagator
The complete expression of the gauge-field propagator can be determined by means of the functional
generator leading to the Schwinger variational equation for the gauge field, δS

δAγ (x)

∣∣∣∣
δ

δ iη ,
δ

δ iη̄ ,
δ

δ iJµ

+ Jγ (x)

Z
[
η , η̄ ,Jµ

]
= 0. (28)

In terms of the functional Z [J] = exp{iW [J]} for the connected Green’s functions we obtain the
equation

−Jγ (x) =− ie
δ

δη (x)
β

γ

(
δW

δ η̄ (x)

)
+ e

δW
δη (x)

β
γ δW

δ η̄ (x)

+

[
T γµ +

1
ξ

Lγµ

](
1+a2�

)
�

δW
δJµ (x)

. (29)

The last equation can be interpreted as the complete Podolsky field equation subjected to an external
source Jγ . On this equation T γµ and Lγµ are differential projectors

T γµ +Lγµ = gγµ , Lγµ =
∂ γ∂ µ

�
. (30)

In order to obtain the complete gauge-field propagator it proves convenient to introduce also the
generating functional for the one particle irreducible (1PI) Green’s functions, which is related to W by a
functional Legendre transformation

Γ
[
ψ, ψ̄,Aµ

]
=W

[
η , η̄ ,Jµ

]
−
∫

d4x
(
ψ̄η + η̄ψ +AµJµ

)
. (31)
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Hence, rewriting (29) in terms of the 1PI functional

δ 2Γ

δAν (y)δAγ (x)
=

[
T γν +

1
ξ

Lγν

](
1+a2�

)
�δ

(4) (x,y)

+ ie2
∫

d4ud4wTr [S (x,u;A)β
γS (w,x;A)Γ

ν (u,w;y)] . (32)

The second term of (32) can be identified with the polarization operator, Pγν ,

Pγν (x,y) = ie2
∫

d4ud4wTr [S (x,u;A)β
γS (w,x;A)Γ

ν (u,w;y)] . (33)

The expression for the inverse of the gauge-field complete propagator in momentum representation is

(Dγν)−1 (p) = (Dγν)−1 (p)+Pγν (p) . (34)

This equation can be viewed as

= +
-1 -1

Figure 1. The SDF equation for the gauge-field propagator.

The expression (34) can be solved in order to find

iDγν (p) =−

(
ηγν − pγ pν

p2

)
[P(p)− (1−a2 p2) p2]

+
ξ

p2 (1−a2 p2)

pγ pν

p2 , (35)

in which the scalar polarization P(p) it is related to the polarization tensor Pγν (p), through the structure

Pγν (p) =
(
−p2

η
γν + pγ pν

)
P(p) . (36)

For the free propagator, namely taking P(p) = 0 on (35) and a = m−1
p , one has the expression

iDγν (p) =

[
η

γν − (1−ξ )
pγ pν

m2
p

][
1
p2 −

1
p2−m2

p

]
− (1−ξ )

pγ pν

(p2)2 (37)

3.2. The Schwinger-Dyson-Fradkin equations for the DKP propagator
The expression to the full DKP propagator can be derived starting from Schwinger variational equation δS

δψ̄ (x)

∣∣∣∣
δ

δ iη ,
δ

δ iη̄ ,
δ

δ iJµ

+η (x)

Z
[
η , η̄ ,Jµ

]
= 0. (38)

Now, writing the equation (38) in terms of the generating functional W and then differentiating the
resulting expression with respect to the source η (y), we obtain

iδ (4) (x− y) =−
[

iβ µ
∂µ −m+ eβ

µ 〈Aµ〉− ieβ
µ δ

δJµ (x)

]
S (x,y;A) . (39)
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By solving the derivative of the last term we can identify

Σ(x,z) = ie2
β

µ

∫
d4ud4vDα

µ (u,x)S (x,v;A)Γα (v,z;u) , (40)

as the DKP self-energy function Σ. Hence, by taking the limit of null sources, we find that

iδ (4) (x− y) =−
[
iβ µ

∂µ −m
]
S (x,y;A)+

∫
d4zΣ(x,z)S (z,y;A) . (41)

In momentum representation the above equation becomes S −1 (p) = S−1(p)+Σ(p) . The later equation
can be viewed as

= +
-1 -1

Figure 2. The SDF equation for the scalar propagator.

The equation (39) can formally be written as

S (p) =
i

β µ pµ −M(p)
(42)

where we defined the mass operator M,

M(p) = m+Σ(p). (43)

Besides, the expression for the DKP free propagator can be obtained with help of the DKP algebra
(6),

S(p) = i
1
m

[
p̂(p̂+m)

(p2−m2)
−1
]
, p̂ = β

µ pµ . (44)

3.3. The Schwinger-Dyson-Fradkin equations for the vertex part
The starting point to get the vertex function is the equation (39). In a similar way, we take the derivative
of the resulting expression with respect to the field Aσ (z), and after some manipulations, we find the
following expression for the vertex function

iΓσ (q, p;k) =−β
σ (2π)4

δ (q− p− k)+ iΛσ (k, p;q) (45)

where we have introduced a new quantity, the vertex part

iΛσ (q, p;k) = ie2
β

µ 1

(2π)4

∫
d4tDµρ (t)S (t + k)Φ

σρ (t + k, p;q, t)+

+e2
β

µ 1

(2π)4

∫
d4 p1d4 p2Dµρ (p1)S (p1 + k)Γ

σ ((p1 + k) , p2;q)S (p2)Γ
ρ (p2, p; p1) , (46)

in this expression we have defined the four-point vertex function

e2
Φ

σρ (a,w;z,s) =
δ 4Γ

δAρ (s)δAσ (z)δψ (w)δψ̄ (a)
. (47)

From Eq.(46) we clearly see that the three-point vertex function depends on the four-point one.
Diagrammatically, the irreducible vertex part can be visualized
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= + +

Figure 3. The SDF equation for the vertex function.

4. Ward-Takahashi-Fradkin identities
It is of our understanding that when we formulate the equations of electrodynamics in a covariant way
we can describe them by a Lagrangian that has at its cornerstone a gauge symmetry. Classically the
matter field (scalar) has a global U(1) gauge symmetry. When we impose a local gauge symmetry
we need intermediaries fields of interaction (vector). Therefore when we write the dynamics of this
electrodynamics (GSDKP) in a covariant way we have a local gauge symmetry U(1). Similarly we can
describe the equations of quantum electrodynamics in a covariant way in the Heisenberg representation.
On the other hand when we quantize the theory covariantly using the functional formalism we lost the
gauge symmetry, to fix the physical degrees of freedom and define adequately the measure of integration∫

Dµ . To maintain gauge symmetry we impose it in the functional generator and therefore this generates
certain constraints on Green’s functions, relationships between them known as Ward-Takahashi-Fradkin
identities (WTF) [18]. The gauge symmetry is a consequence of a covariant quantum dynamics, the
symmetry is implicit in the quantum equations of motion discussed previously.

The derivation of the WTF identities is formally given in terms of the following identity upon the
functional generator

δZ
[
η , η̄ ,Jµ

]
δα(x)

∣∣∣∣∣
α=0

= 0. (48)

This leads to the equation of motion satisfied by Z
[
η , η̄ ,Jµ

]
[
−i

�
eξ

(
1+a2�

)
∂

µ δ

δJµ
− δ

δη
η + η̄

δ

δ η̄
− 1

e
∂

µJµ

]
Z = 0. (49)

Finally, one can get the desired quantum equation of motion for the theory by writing (49) first in terms
of W , and then as an expression for the 1PI-generating functional Γ

[
ψ, ψ̄,Aµ

]
through the relation (31).

Then

−i
�
eξ

(
1+a2�

)
∂

µ
x Aµ − ψ̄

δΓ

δψ̄
+

δΓ

δψ
ψ +

1
e

∂
µ
x

δΓ

δAµ
= 0. (50)

This is the equation that will supply all the WFT identities.
The first identity comes by applying the derivatives of (50) with respect to ψ (y) and ψ̄ (z), yielding

∂
µ

Γµ(z,y;x) =−δ (x− z)Γ(x,y)+Γ(x,z)δ (x− y). (51)

In momentum representation

kµΓ
µ
(

p, p′,k = p− p′
)
= S −1 (p′

)
−S −1 (p) . (52)

Furthermore, we may consider the limit of this equation as k→ 0, in which we find that the vertex part
is related to the DKP self-energy function as

Λ
µ (p, p,k = 0) =− ∂

∂ pµ

Σ
−1 (p) . (53)
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On the other hand, upon the differentiation of (50) with respect to Aν(y), it follows the identity

∂µΓ
µν (x,y) =

�
ξ

(
1+a2�

)
∂

ν
δ
(4) (x− y) (54)

which together with equation (33) implies that

kµP
µν (k) = 0. (55)

5. Conclusions
In this work we have analyzed the covariant dynamics of interaction between scalar particles and
generalized photons. The first point to note is that we have implemented the non-mixing gauge in the
constraint analysis. The second point to note is that we have used the DKP field to describe the scalar
particles. The complete quantum structure of the scalar field, seen by means of SDF diagrams, is exactly
as those from GQED4. In this case the same diagram phenomenology for the electromagnetic interaction
between scalar or fermionic fields happens. But the DKP fields are described by the DKP algebra
(mesonic algebraic structure), while the fermionic field obeys a Clifford algebra (fermionic algebraic
structure). This work complements previous studies on covariant quantum dynamics [19] and opens
the door to a more complete approach, with the study of renormalization, first radiative corrections and
quantum covariant dynamics in equilibrium (Matsubara-Fradkin formalism).
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