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ABSTRACT: In geostatistical studies, spatial dependence can generally be described 
by means of the semivariogram or, in complementary form, with a single index followed 
by its categorization to classify the degree of such dependence. The objective of this 
study was to construct a categorization for the spatial dependence index (SDI) proposed 
by Seidel and Oliveira (2014) in order to classify spatial variability in terms of weak, 
moderate, and strong dependence. Theoretical values were constructed from different 
degrees of spatial dependence, which served as a basis for calculation of the SDI. In view 
of the form of distribution and SDI descriptive measures, we developed a categorization 
for posterior classification of spatial dependence, specific to each semivariogram model. 
The SDI categorization was based on its median and 3rd quartile, allowing us to classify 
spatial dependence as weak, moderate, or strong. We established that for the spherical 
semivariogram: SDISpherical (%) ≤ 7 % (weak spatial dependence), 7 % < SDISpherical (%) ≤ 15 % 
(moderate spatial dependence), and SDISpherical (%) > 15 % (strong spatial dependence); 
for the exponential semivariogram: SDIExponential (%) ≤ 6 % (weak spatial dependence), 
6 % < SDIExponential (%) ≤ 13 % (moderate spatial dependence), SDIExponential (%) > 13 % 
(strong spatial dependence); and for the Gaussian semivariogram: SDIGaussian (%) ≤ 9 % 
(weak spatial dependence), 9 % < SDIGaussian (%) ≤ 20 % (moderate spatial dependence), 
and SDIGaussian (%) > 20 % (strong spatial dependence). The proposed categorization 
allows the user to transform the numerical values calculated for SDI into categories of 
variability of spatial dependence, with adequate power for explanation and comparison.

Keywords: geostatistics, spatial dependence, spatial variability, semivariogram, 
summary measures.
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INTRODUCTION

The correct description of spatial dependence is fundamental for revealing both the 
degree of spatial continuity and the structure of variability of the spatial phenomenon 
studied (Seidel and Oliveira, 2014). For such description, we can use the semivariogram 
alone, as a whole, or complement the semivariogram with a single spatial dependence 
index. According to Seidel and Oliveira (2014), given that the semivariogram is 
a highly informative descriptor, with abundant graphic detailing, it may need a 
complementary single measure to summarize all the semivariogram information in 
regard to spatial dependence.

In geostatistical applications for soil science, agricultural engineering, forest science, 
and agriculture, among others, two consolidated single indexes have been used. 
The first index is the relative nugget effect (NE), initially suggested by Trangmar 
et al. (1985) and further explored in Cambardella et al. (1994), which relates the 
nugget effect parameter with the sill parameter. The second index, the degree 
of spatial dependence (SPD), less frequently used and presented in Biondi et al. 
(1994), relates the contribution parameter to the sill parameter. Both these indexes 
are complementary and, according to Biondi et al. (1994), are useful for comparing 
different spatial dependence scenarios. In addition to these two summary indexes, 
the NE single index has been the index chosen for most analyses of the spatial 
dependence structure in Brazil.

Since the indexes mentioned here do not consider all aspects of the semivariogram 
geometry, such as the influence of the range parameter and the relevance of the use 
of a single index, Seidel and Oliveira (2014) proposed the spatial dependence index 
(SDI). In addition to considering the contribution, nugget effect, and sill parameters, 
this index also considers the range parameter, the model factor (which reflects 
the specific shape of the adjusted curve), and the maximum distance between 
sampled points. According to Seidel and Oliveira (2014), the SDI presented useful 
results when applied to real data, and it can be used to substitute or combine with 
the previously existing indexes. However, when presenting the index, the authors 
did not propose a categorization of the SDI value scale. This limits its use for 
classification of the degree of spatial dependence, given that the user frequently 
expects to declare such a degree of dependence in non-numerical categories, such 
as weak, moderate, and strong.

The main reason for categorizing a numerical index is to allow for comparison and 
classification. In soil science, and more generally in the agricultural and environmental 
sciences, the task of comparing and classifying is fundamental in driving decisions and 
managing the systems under study. This study is justified by practices already consolidated 
in spatial research, given that in geostatistical studies an index is generally used to 
describe spatial dependence and is followed by use of the categorization to classify the 
degree of such dependence.

The objective of this study was to propose a categorization system for the spatial 
dependence index (SDI) proposed by Seidel and Oliveira (2014) to allow classification 
of spatial variability in terms of weak, moderate, and strong dependence. 

MATERIALS AND METHODS

The first traditional index, conceptualized by Trangmar et al. (1985) and found in 
Cambardella et al. (1994), which expresses the relative nugget effect (NE), is given 
by the expression:
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NE(%) =
C0

C0 + C1
 × 100 							           Eq. 1

in which C0 is the nugget effect and C1 is the contribution, both semivariogram parameters. 
According to Cambardella et al. (1994), NE has the following classification: strong spatial 
dependence (NE (%) ≤ 25 %), moderate spatial dependence (25 % < NE (%) ≤ 75 %), 
and weak spatial dependence (NE (%) > 75 %). This categorization seems inspired in 
the statistical quartile concept because Cambardella et al. (1994) did not use any real 
data analysis to come to this classification.

The second traditional index of spatial dependence (SPD), presented in Biondi et al. 
(1994), is given by the expression:

SPD(%) =
C1

C0 + C1

× 100 							           Eq. 2

in which C0 is the nugget effect and C1 is the contribution, both semivariogram 
parameters like the NE index. Adjusting the classification given by Cambardella et al. 
(1994), we have the following induced SPD classification: weak spatial dependence 
(SPD (%) ≤ 25 %), moderate spatial dependence (25 % < SPD (%) ≤ 75 %), and strong 
spatial dependence (SPD (%) > 75 %). We can observe that NE (%) = 100 % - SPD (%), 
that is, NE and SPD essentially provide the same information. Therefore, because 
of equivalence between the two indexes, in this article we will not regard the NE 
index as essentially different from the SPD index. Moreover, the SPD measure has 
a geometric justification shown by comparing spatial dependence areas as seen in 
Seidel and Oliveira (2015).

The spatial dependence index (SDI), proposed by Seidel and Oliveira (2014), is given by 
the following expressions for the spherical, exponential, and Gaussian models, respectively:

SDISpherical(%) = 0.375 ×
C1

C0 + C1
× 100

a
0.5MD

× 				        Eq. 3

SDIExponential(%) = 0.317 ×
C1

C0 + C1
× 100

a
0.5MD

× 				        Eq. 4

SDIGaussian(%) = 0.504 ×
C1

C0 + C1
× 100

a
0.5MD

× 				        Eq. 5

in which C0 is the nugget effect, C1 is the contribution, and a is the practical range, 
both semivariogram parameters like the NE and SPD indexes, and 0.5MD are half 
of the maximum distance (MD) between sampled points, given that in the cases in 
which the ratio a

0.5MD  results in a value superior to 1, this ratio is then truncated 
into 1, in order to assume values only between zero and 1. In expressions 3, 4, and 
5, we use 0.5MD since Seidel and Oliveira (2014), when studying simulation and the 
application of real data, considered half of the largest distance between sampled 
points. In addition, the  0.5MD factor is inspired on practical recommendations for 
using pairs of points up to half of the largest sampling distance in order to estimate 
semivariances (Journel and Huijbregts, 2003; Landim, 2006; Olea, 2006; Soares, 
2006). The constants 0.375 (for spherical semivariogram), 0.317 (for exponential 
semivariogram), and 0.504 (for Gaussian semivariogram) are the respective values 
of the model factor (MF) of each of the three models. According to Seidel and Oliveira 
(2014), this MF is the constant that expresses the strength of the spatial dependence 
that the specific model can reach, given that the higher its value, the larger the 
strength of the spatial dependence of the model.
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In order to build the SDI categorization, we considered 13 variations of the C1

C0 + C1
 

component: 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, and 1. Those values 
represent 0, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, and 100 % of the generic sill parameter, 
respectively. In addition, we considered 13 variations of the a

0.5MD
 component: 0, 0.1, 

0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, and 1. Those values represent 0, 10, 20, 
25, 30, 40, 50, 60, 70, 75, 80, 90, and 100 % of the half of the generic maximum distance, 
respectively. Thus, the 13 variations of the C1

C0 + C1
, combined with the 13 variation of the 

a
0.5MD

, generate the distribution of 169 values of SDI proposed in this study. In each 
model, the 169 theoretical values were multiplied by the value of the respective MF×100 
% to generate a specific distribution of the SDI corresponding to each of the three models.

First, we calculate the SDI for each model (spherical, exponential, and Gaussian), based on 
the 169 theoretical values. These 169 calculated values are then considered the data set over 
which we construct the boxplot graph to evaluate the form of distribution of the SDI values, 
and, subsequently, we categorize the SDI. To do this, we calculate the position measures: 
minimum, 1st quartile, median, 3rd quartile, and maximum. The intent is to construct SDI 
categorization from the position measures calculated and generate the classification as 
weak, moderate, or strong spatial dependence. This procedure is based on the classification 
suggested by Cambardella et al. (1994), given that the limits SPD = 25 % and SPD = 75 % 
can correspond to the 1st and 3rd quartiles of the SPD index, respectively. This strategy of 
creating categories by the establishment of cut-off points of values is chosen based on the 
rationale that is virtually impossible to establish what is weak, moderate, or strong spatial 
dependence categories using data of real spatial variability because of the infinite number 
of different scenarios and variables around the world (and also in Brazil), and the conflicting 
opinion of specialist in regard to the cut-off values among the categories. So, these cut-off 
points are suitable for all types of variables and phenomena, like the cut-off points of the SPD 
index, which uses the same rationale implicit in the criterion of Cambardella et al. (1994) 
for classification, because there is no other reasonable criterion.

Finally, to exemplify the proposal of categorization and classification of SDI and to compare 
it with classification based on the SPD index (whether the two criteria are equivalent, or 
not), real data, from papers of the Soil Science area, were used. A search was made on the 
Scientific Electronic Library Online (SciElo Brazil) journal portal according to the following 
guidelines: we searched for papers published in the Revista Brasileira de Ciência do Solo 
(RBCS) in which spherical, exponential, and Gaussian models were fitted, published in the 
period 2006-2015, and which had some kind of information for obtaining the maximum 
distance from the sampling grid in order to calculate the SDI and to obtain at least 100 values 
of the SDI in each model. If the total values for each model were not complete, a search 
was made in papers from other journals in the soil science area. The following papers were 
found: Simões et al. (2006), Camargo et al. (2010), Cavallini et al. (2010), Lima et al. (2010), 
Montanari et al. (2010), Zanão Júnior et al. (2010), Gontijo et al. (2012), Rodrigues et al. 
(2012a,b), Silva Júnior et al. (2012), Teixeira et al. (2012), Vitória et al. (2012), Camargo et 
al. (2013), Oliveira et al. (2013), Dalchiavon et al. (2013), Aquino et al. (2014), Costa et al. 
(2014), Dalchiavon et al. (2014), Luciano et al. (2014), Nascimento et al. (2014), Resende 
et al. (2014), Oliveira et al. (2015a,b), Santos et al. (2015), and Siqueira et al. (2015). These 
papers present real data dealing with different soil types, soil layers, spatial dependencies, 
and sizes of sampling grids. Thus, SDI exemplification and classification equivalence with 
the SPD index was performed for different soil types, soil layers, and spatial dependencies. 
All procedures were performed on the software R (R Core Team, 2012).

RESULTS AND DISCUSSION
In order to verify the distribution of the theoretical values of the index we used the 
boxplot graph as presented in figure 1, in which we can observe that the SDI have positive 
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asymmetric distribution (higher concentration of values at the lower extreme of the 
distribution). But, theoretically, the SPD index has approximately symmetrical distribution.

This positive asymmetry of SDI is because of consideration of the model factor, the 
range parameter, and the maximum distance of the grid in its calculation, creating a 
more realistic and conservative measure of spatial dependence.

Given that the SDI (spherical, exponential, and Gaussian) exhibit positive asymmetric 
distribution, they must be categorized having the median and the 3rd quartile as limits, in order 
to have a classification that is more coherent and in fitting with the index distribution form.

Thus, based on the results of figure 1, we propose the following classification (categorization) 
for the SDI:

For the spherical semivariogram:

SDISpherical (%) ≤ 7 % → weak spatial dependence;

7 % < SDISpherical (%) ≤ 15 % → moderate spatial dependence;

SDISpherical (%) > 15 % → strong spatial dependence.

For the exponential semivariogram:

SDIExponential (%) ≤ 6% → weak spatial dependence;

6 % < SDIExponential (%) ≤ 13 % → moderate spatial dependence;

SDIExponential (%) > 13 % → strong spatial dependence.

For the Gaussian semivariogram:

SDIGaussian (%) ≤ 9 % → weak spatial dependence;

9 % < SDIGaussian (%) ≤ 20 % → moderate spatial dependence;

SDIGaussian (%) > 20 % → strong spatial dependence.
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Figure 1. Boxplot graphs of the distribution of the theoretical values of the spatial dependence index 
(SDI) and boxplot graphs of the distribution of the SDI obtained from real data, for the exponential 
model (Exp), Gaussian model (Gaus), and spherical model (Sph). * (n = 169). Exp: minimum = 0.0, 
1st quartile = 1.9, median = 5.7, 3rd quartile = 12.7, maximum = 31.7; Gaus: minimum = 0.0, 
1st quartile = 3.0, median = 9.1, 3rd quartile = 20.2, maximum = 50.4; Sph: minimum = 0.0, 
1st quartile = 2.3, median = 6.8, 3rd quartile = 15.0, maximum = 37.5; ** (n = 109). Exp: 
minimum = 0.5, 1st quartile = 7.6, median = 10.4, 3rd quartile = 15.8, maximum = 30.8, n = 112; 
Gaus: minimum = 2.6, 1st quartile = 5.8, median = 11.7, 3rd quartile = 20.7, maximum = 50.1, 
n = 110; Sph: minimum = 2.0, 1st quartile = 7.9, median = 11.0, 3rd quartile = 15.4, maximum = 37.5.
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The Gaussian semivariogram model represented the highest potential strength of spatial 
dependence, with a higher MF (Seidel and Oliveira, 2014), which led to a wider scope 
of values for the SDI. The difference among the limits for the categories according to 
the many different models is consistent with the semivariograms, and it is not natural 
that we fix these limits among all of the possible models at the values proposed by 
Cambardella et al. (1994), because the spatial dependencies in those models are 
different. In this respect, the SDI categorization with its many different limits according 
to the semivariogram model is more reasonable than SPD categorization.

Based on real data obtained from selected papers, it was possible to obtain the distributions 
of SDI for spherical, exponential, and Gaussian models, respectively (Figure 1). In accordance 
with evaluation of figure 1, the proposed theoretical behavior based on the 169 theoretical 
values and the behavior observed from the real data are similar, highlighting the same 
positive asymmetry of the SDI in both cases, as well as the approximately equal values 
of the median and the 3rd quartile in both cases.

For different soil types, different soil layers, and different degrees of spatial dependence 
was calculated the SDI and its distribution evaluated for spherical model (Figure 2), 
exponential model (Figure 3) and Gaussian model (Figure 4), respectively.

In all cases there was a positive asymmetric distribution of SDI. Furthermore, the median 
values ranged from 9 to 13 in the spherical case, from 9 to 15 in the exponential case, 
and from 6 to 16 in the Gaussian case. The 3rd quartile values, for their part, ranged 
from 12 to 19 in the spherical case, from 13 to 21 in the exponential case, and from 17 
to 29 in the Gaussian case. This shows that similar behavior is observed from the real 
data evaluated in different situations of soil types, soil layers, and spatial dependencies 
compared to the proposed classification based on these measures, despite some variation 
in values (between the determination of theoretical values of the SDI and the values 
obtained from sampling of papers).

In addition to these results, we applied the current classification proposal from the SDI to 
the data of the research papers and made a comparison with the previous classification, 
given by Cambardella et al. (1994), as shown in Table 1.

Most of the classifications changed (58.9 %) (Table 1). The spherical model had fewer changes 
(50.5 %) and the Gaussian model showed higher classification change (73.6 %). Also, it can 
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Figure 2. Boxplot graphs of the distribution of the SDI for the spherical model in different soil 
types, soil layers, and spatial dependencies, obtained from real data. Soil type: A = Ultisol (n = 40), 
B = Oxisol (n = 46), C = Others (n = 23). Soil layer: I = Surface layer (0.0-0.1, 0.0-0.15, 0.0-0.2 m) 
(n = 83), II = Bottom layer (0.1-0.2, 0.15-0.30, 0.2-0.3, 0.2-0.4, 0.3-0.4, 0.4-0.6 m) (n = 23). 
SPD: 1 = 0 ≤ SPD ≤ 75 % (n=80), 2 = SPD > 75 % (n = 29).



Seidel and Oliveira. A Classification for a Geostatistical Index of Spatial Dependence

7Rev Bras Cienc Solo 2016;40:e0160007

be observed that the weak classifications of spatial dependence increased and the moderate 
classifications decreased. Strong classifications did not show many changes. This is consistent 
with the positive asymmetric shape of the SDI. These changes between SDI and the classification 
of Cambardella et al. (1994) show that these two classifications are not equivalent.

Because of the short time for the scientific community to consider the use of SDI, few 
studies have used it yet. Pazini et al. (2015) was one of the first to use the SDI (Exponential 
and Gaussian form) to quantify the degree of spatial dependence, but with no classification 
defined at the time of producing the score. However, with the categorization proposed in 
this study, it is possible to classify the spatial dependence obtained in the study conducted 
by Pazini et al. (2015). Considering that SDIExponential (%) = 22.3 %, it would be classified 
as indicating strong spatial dependence (SDIExponential (%) > 13 %); SDIGaussian (%) = 8.9 % 
would indicate weak spatial dependence (SDIGaussian (%) ≤ 9 %); and SDIGaussian (%) of 44.5 
to 50.4 % would indicate strong spatial dependence (SDIGaussian (%) > 20 %).

SDI Exponential SDI Exponential SDI Exponential

0

5

10

15

20

25

30

SD
I

0

5

10

15

20

25

30
SD

I

0

5

10

15

20

25

30

SD
I

C
Soil type

II
Soil layer SPD

A B I 1 2

Figure 3. Boxplot graphs of the distribution of the SDI for the exponential model in different 
soil types, soil layers, and spatial dependencies, obtained from real data. Soil type: A = Ultisol 
(n = 44), B = Oxisol (n = 47), C = Others (n = 21). Soil layer: I = Surface layer (0.0-0.1, 0.0-0.2 m) 
(n = 71), II = Bottom layer (0.1-0.2, 0.15-0.30, 0.2-0.3, 0.2-0.4, 0.4-0.5, 0.4-0.6 m) (n = 34). 
SPD: 1 = 25 ≤ SPD ≤ 75 % (n = 72), 2 = SPD > 75 % (n = 40).
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Figure 4. Boxplot graphs of the distribution of the SDI for the Gaussian model in different soil 
types, soil layers, and spatial dependencies, obtained from real data. Soil type: A = Oxisol (n = 70), 
B = Others (n = 40). Soil layer: I = Surface layer (0.0-0.1, 0.0-0.15, 0.0-0.2, 0.0-0.3 m) (n = 71), 
II = Bottom layer (0.1-0.2, 0.2-0.4, 0.4-0.6 m) (n = 30). SPD: 1 = 0 ≤ SPD ≤ 75 % (n = 53), 
2 = SPD > 75 % (n = 57).
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CONCLUSIONS
The SDI categorization was based on its median and 3rd quartile over a wide set of 
possible values, allowing to create a classification for spatial dependence as weak, 
moderate, or strong.

The proposed categorization allows the user to transform the numerical values calculated 
for the SDI into categories of degree of spatial variability, with adequate power for 
explanation and comparison.
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