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ABSTRACT Here, we report the draft genomic sequences and annotation of Strep-
tomyces misionensis ACT66 and Streptomyces albidoflavus ACT77, which are two bac-
teria with potential application for phytopathogen biocontrol.

Phytopathogen biocontrol using bacteria is a promising and eco-friendly strategy for
replacing or reducing the application of agrochemicals (1). The knowledge of

genomic features may help us to understand the mechanisms involved in the interac-
tion between biological control agents and the target phytopathogen, which is crucial
for enhancing the use of these organisms in agriculture. Streptomyces misionensis strain
ACT66 and Streptomyces albidoflavus strain ACT77 are Gram-positive bacteria com-
monly found in soil, as are the other Actinobacteria. Preliminary analyses have indicated
that these isolates show in vitro fungicidal activity, suggesting their potential applica-
tion for phytopathogen biocontrol in situ (data not shown). To gain insight into the use
of these bacteria for biological control of phytopathogens, we performed whole-
genome sequencing (WGS). Several Streptomyces spp. have been used to promote
plant growth and for phytopathogen biocontrol, for example, against Magnaporthe
oryzae in rice (2), Fusarium spp. (3), and some wood decay fungi (WDF) (4). S. misionensis
strain ACT66 and S. albidoflavus strain ACT77 were isolated from soil under agriculture
management in Brazil, by the dilution plating technique onto 5% tryptone soy agar
(TSA; Bacto BD, USA) supplemented with 50 mg ml�1 of benomyl. The plates were
incubated at 28°C, and the isolates were kept as pure cultures. To perform the WGS, the
isolates were cultivated in nutrient agar for 48 h, at 28°C, and the genomic DNA was
extracted using the Wizard genomic DNA purification kit (Promega) following the
manufacturer’s instructions.

Paired-end sequencing libraries (2 � 250 bp) were constructed using the Nextera XT
kit (Illumina, San Diego, CA) following the manufacturer’s instructions and sequenced
using the Illumina MiSeq platform (Illumina). After quality filtering using Trimmomatic
version 0.33 (5) (parameters [paired-end reads] included trailing, 10; leading, 10;
slidingwindow, 4:10), a total of 1,185,642 paired-end reads were obtained for S.
misionensis strain ACT66, and 540,058 paired-end reads were obtained for S. albidofla-
vus strain ACT77, consisting of a genome coverage of �70� and �36�, respectively.
All reads were reference-based assembled with SPAdes version 3.12 (6), using S. mision-
ensis strain DSM 40306 (GenBank accession number NZ_FNTD00000000) for S. misionensis
ACT66 and S. albidoflavus strain NRRL B-1271 (NZ_JOII00000000) for S. albidoflavus
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strain ACT77 as references. The obtained contigs were further processed with the SIS
software (7) to generate a set of contig scaffolds representing the draft genomes. The
REAPR pipeline (8) was used to improve the assembly accuracy. Default parameters
were used for all software unless otherwise noted.

This assembly procedure resulted in 210 scaffolds for S. misionensis strain ACT66 and
95 scaffolds for S. albidoflavus strain ACT77. Genome completeness and contamination
were estimated using CheckM (9) in the lineage-specific mode. The estimated genome
size for S. misionensis strain ACT66 is 8,312,220 bp, with a G�C content of 72.3% and
an N50 value of 70,083 bp. The estimated genome size for S. albidoflavus strain ACT77
is 7,446,125 bp, with a G�C content of 73.2% and an N50 value of 1,152,190 bp. The
genome completeness estimated by CheckM was 98.28% and 99.89%, and the con-
tamination was 0.45% and 1.17% for S. misionensis strain ACT66 and S. albidoflavus
strain ACT77, respectively, and they were classified as nearly complete with low
contamination. We applied the method proposed by Parks and colleagues (10), which
uses the software GTDBk and the Genome Taxonomy Database (GTDB; http://gtdb
.ecogenomic.org) for assigning taxonomy to each assembled genome using the default
parameters. Based on this software, our two isolates were classified as S. misionensis and S.
albidoflavus.

Genome annotation was performed with PATRIC version 3.5.23 (11). It identified
7,936 coding DNA sequences (CDS) and 86 predicted noncoding RNAs (68 tRNAs and
18 rRNAs, encompassing 6 rRNA operons) for S. misionensis strain ACT66 and 6,819 CDS
and 89 predicted noncoding RNAs (68 tRNAs and 21 rRNAs, encompassing 7 rRNA
operons) for S. albidoflavus strain ACT77.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/

EMBL/GenBank under the accession numbers VOGW00000000 and VOGX00000000 for
Streptomyces misionensis strain ACT66 and Streptomyces albidoflavus strain ACT77,
respectively. The versions described in this paper are the first versions. Raw reads are
available under the BioProject accession number PRJNA557451.
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