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Abstract

Background: Elephant grass [Cenchrus purpureus (Schumach.) Morrone] is used for bioenergy and animal feed. In
order to identify candidate genes that could be exploited for marker-assisted selection in elephant grass, this study
aimed to investigate changes in predictive accuracy using genomic relationship information and simple sequence
repeats for eight traits (height, green biomass, dry biomass, acid and neutral detergent fiber, lignin content,
biomass digestibility, and dry matter concentration) linked to bioenergetics and animal feeding.

Results: We used single-step, genome-based best linear unbiased prediction and genome association methods to
investigate changes in predictive accuracy and find candidate genes using genomic relationship information.
Genetic variability (p < 0.05) was detected for most of the traits evaluated. In general, the overall means for the traits
varied widely over the cuttings, which was corroborated by a significant genotype by cutting interaction. Knowing
the genomic relationships increased the predictive accuracy of the biomass quality traits. We found that one marker
(M28_161) was significantly associated with high values of biomass digestibility. The marker had moderate linkage
disequilibrium with another marker (M35_202) that, in general, was detected in genotypes with low values of
biomass digestibility. In silico analysis revealed that both markers have orthologous regions in other C4 grasses
such as Setaria viridis, Panicum hallii, and Panicum virgatum, and these regions are located close to candidate genes
involved in the biosynthesis of cell wall molecules (xyloglucan and lignin), which support their association with
biomass digestibility.

Conclusions: The markers and candidate genes identified here are useful for breeding programs aimed at
changing biomass digestibility in elephant grass. These markers can be used in marker-assisted selection to grow
elephant grass cultivars for different uses, e.g., bioenergy production, bio-based products, co-products, bioactive
compounds, and animal feed.

Keywords: Gene annotation, Napier grass, Pennisetum purpureum, SSR marker, Trait-marker association

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: juarez.machado@embrapa.br
3Embrapa Gado de Leite, Juiz de Fora, MG 36038-330, Brazil
Full list of author information is available at the end of the article

Rocha et al. BMC Plant Biology          (2019) 19:548 
https://doi.org/10.1186/s12870-019-2180-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-019-2180-5&domain=pdf
http://orcid.org/0000-0002-0976-0917
http://orcid.org/0000-0001-9340-065X
http://orcid.org/0000-0003-2551-2080
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:juarez.machado@embrapa.br


Background
Elephant grass [Pennisetum purpureum Schumach. syn.
Cenchrus purpureus (Schumach.) Morrone] is a peren-
nial tropical grass with high photosynthetic efficiency
(C4 photosynthetic pathway) that is naturally found in
several African countries [1]. It has a range of adaptation
to different levels of altitude, precipitation, and soils, and
has important agronomic traits [2], particularly its high
biomass production. Depending on the environment and
cultivar characteristics, green biomass can reach 300Mg
ha− 1 year− 1 [3]; consequently, elephant grass is used for
multiple purposes, including the production of bio-based
compounds [4] and molecules with pharmaceutical and
industrial applications [5–7]. It has been targeted by
bioenergy programs, because its annual dry matter pro-
duction is greater than that of sugarcane or eucalyptus,
which are the most-used biomass energy sources in
Brazil [2, 8]. However, the most common use for ele-
phant grass in Brazil is in animal feed, particularly for
dairy cattle.
Elephant grass is a tetraploid species (2n = 4x = 28)

with two genomes (A′A′BB) [9]. Its genome is homolo-
gous to that of pearl millet [Pennisetum glaucum (L.) R.
Br. syn. Cenchrus americanus (L.) Morrone], and cyto-
genetic studies have been conducted on these species in
order to identify hybrids [9, 10]. Elephant grass has not
been significantly studied, so its genomic information is
little-known compared to that of more economically im-
portant crops. An RNAseq study [11], two studies on
genome sequencing [12, 13], and one transcriptomic and
metabolomic study [7] have been published for elephant
grass. However, much is still needed to be elucidated for
the next-generation breeding of elephant grass [14]. For
example, few trait-marker association studies have been
conducted because of the low availability of molecular
markers, but simple sequence repeat (SSR) markers have
been transferred from pearl millet to elephant grass [15]
and used in genetic diversity studies to increase gene
bank diversity [16]. Although SSR markers appear in the
genome at a lower frequency than single nucleotide
polymorphisms (SNPs), they can be used in genomic as-
sociation studies. For example, SSR markers have been
used to identify loci associated with yield components
and fiber quality in cotton [17], resistance to Sclerotinia
sclerotiorum in Brassica napus [18], and quantitative
traits contributing to yield in sugarcane [19]. In general,
many SSR markers are used in trait-marker association
studies, but few may provide satisfactory results in spe-
cies with limited sequence information, such as creeping
bentgrass (Agrostis stolonifera L.) [20].
Genomic association studies identify candidate genes

and markers linked to important traits. When consider-
ing multipurpose traits (i.e., traits with different pur-
poses, such as animal feeding and bioenergy), the

development of selection procedures based on molecular
markers can radically streamline and accelerate elephant
grass improvement [21]. Appropriate targets for breed-
ing elephantgrass for forage and bioenergy use are agro-
nomic traits (height, green biomass, and dry biomass)
and quality traits (acid and neutral detergent fiber, lignin
content, biomass digestibility, and dry matter concentra-
tion). Because elephant grass is vegetatively propagated
and crosses are not widely used, the use of germplasm
collections for association mapping is based on historical
and naturally occurring recombination events.
In this context, the goals of this study were to (i) in-

vestigate changes in predictive accuracy using genomic
relationship information in statistical models, (ii) investi-
gate significant associations between SSR markers and
eight traits, evaluated in different cuttings, in a germ-
plasm collection of elephant grass genotypes, and (iii)
identify candidate genes linked to these traits with their
respective gene annotations. By achieving these goals, we
aimed to increase the speed and accuracy of breeding
elephant grass for different purposes.

Results
Genetic variation, genotype by cutting interaction, and
predictive accuracy using a single-step, genome-based
best linear unbiased prediction (ssGBLUP) model
Initially, a ssGBLUP model was used to fit the full data-
set in order to investigate genetic variability and the
genotype by cutting interaction and residual genetic
variability and the genotype by cutting interaction. Gen-
etic variability (p < 0.05) was detected for seven traits
(height, green biomass, dry biomass, dry matter concen-
tration, acid detergent fiber, neutral detergent fiber, and
lignin content) but not biomass digestibility (Fig. 1). Re-
garding the genotype by cutting interaction, a significant
effect (p < 0.05) for all traits was observed (Fig. 1). It is
noteworthy that, in the individual analysis of each cut-
ting, significant genetic variability was detected for all
traits.
Log-likelihood ratio tests revealed that residual genetic

effects were significant (p < 0.05) for height, green bio-
mass, and dry biomass but not for biomass quality traits
(i.e., dry matter concentration, acid detergent fiber, neu-
tral detergent fiber, biomass digestibility, and lignin con-
tent) (p > 0.05) (Fig. 1). There was a significant residual
genotype by cutting interaction (p < 0.05) for green bio-
mass, dry biomass, dry matter concentration, and lignin
(Fig. 1).
The predictive accuracy of the ssGBLUP model (con-

sidering the H− 1 matrix) ranged from 0.58 (biomass di-
gestibility) to 0.84 (acid detergent fiber, dry matter
concentration, and lignin). When the model did not in-
clude the relationship between the genotypes (simple re-
peatability plus the genotype by cutting interaction
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model), the accuracy ranged from 0.59 (biomass digest-
ibility) to 0.89 (dry biomass). Inclusion of the relation-
ship matrix in the ssGBLUP model increased the
accuracy of the biomass quality traits (Fig. 2), except for
biomass digestibility.

Overall means and accuracies for each cutting
Because a significant effect of the genotype by cutting
interaction was observed for all traits (ssGBLUP
model, Fig. 1), trait-marker associations were investi-
gated for each cutting. The overall means and accur-
acies of each cutting are presented in Fig. 3. The
accuracy values ranged from 0.47 (acid detergent fiber
and biomass digestibility for the fifth cutting and bio-
mass digestibility for the first cutting) to 0.88 (dry

matter concentration for the second cutting). In gen-
eral, the overall means for all traits varied widely
among the cuttings, corroborating the significant
genotype by cutting interaction. For example, the sec-
ond cutting had the highest values for height, green
biomass, dry biomass, acid detergent fiber, neutral de-
tergent fiber, and lignin, but had the lowest values for
biomass digestibility.

Genome association study
We analyzed 90 elephant grass genotypes that had
phenotypic data and SSR alleles available, and identified
one allele of the M28 marker (M28_161) that was sig-
nificantly associated with biomass digestibility. This
association was detected only for the first cutting. A

Fig. 1 Likelihood ratio tests for genetic effects (Genetic), genotype by cutting effects (G × C), residual genetic effects (Res G), residual genotype by
cutting interaction effects (Res G × C), block effects (Block) and permanent environment effects (PE) considering ssGBLUP model. All bars above
the dashed red line are significant by chi-square test at 5% probability ðX2

5% ¼ 3:84Þ

Fig. 2 Accuracy of breeding value for the simple repeatability plus genotype by cutting interaction model and ssGBLUP model
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Manhattan plot (Fig. 4, right) shows the − log(P − value)
for all SSRs that affected biomass digestibility, while the
quantile-quantile (QQ) plot (Fig. 4, left) displays signifi-
cant deviations of the observed − log(P − value) from
those expected.
To identify the linkage of all markers, we performed

linkage disequilibrium analysis (Fig. 5). In this ana-
lysis, we were interested in identifying markers that

may have been linked to M28_161, which was signifi-
cantly linked to high values of biomass digestibility.
One allele of the SSR marker M35 (M35_202) showed
moderate linkage disequilibrium (r2 = 0.20) to M28_
161, and, in general, its presence was detected in
elephant grass genotypes with low values of biomass
digestibility. All other r2-values were lower than 0.11,
and varied from 0.00 to 0.11.

Fig. 3 Overall means (bars plot) with the standard errors and accuracy of breeding values (radar plot) for five cuttings recorded in 90 genotypes
of elephant grass

Fig. 4 QQ-plot (on the left) and Manhattan plot (on the right) for genome association of biomass digestibility phenotype with SSR markers on
the first cut of elephant grass. Dashed red lines on Manhattan plot (false discovery rate) indicate the minimum threshold to select significant
markers. The arrow highlights a major trait-marker association
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Annotation of M28_161 and M35_202 markers, in silico
pathway analysis, and allelic contribution
A BLAST search revealed that the two SSR markers
(M28_161 and M35_202) are close to candidate genes
that have annotated functions in other grasses (Table 1).
In some cases (i.e., Setaria viridis chromosome 3 and
Panicum halli chromosomes 5 and 7), M28_161 is close
to candidate genes linked to pathways influenced by
plant hormones (salicylic acid or abscisic acid). However,
in most cases, M28_161 and M35_202 are associated
with candidate genes involved in the synthesis of cell
wall components. In P. halli, M28_161 is close to candi-
date genes involved in lignin biosynthetic processes and
cell wall organization (chromosome 7), and in Panicum
virgatum, it is close to a candidate gene involved in lig-
nin catabolic processes and oxidation-reduction pro-
cesses (located on chromosome 8). In S. viridis, both

M28_161 and M35_202 were found to have orthologous
regions. M28_161 is close to a candidate gene on
chromosome 3 that plays a role in xyloglucan biosyn-
thesis, while M35_202 is close to a candidate gene on
chromosome 7 that functions in lignin biosynthesis. For
Setaria italica, a successful BLAST search was con-
ducted for the M28_161 sequence, but no candidate
genes related to digestibility were found. However, for C.
americanus, no BLAST results were obtained when
using the M28 and M35 sequences.

Discussion
Genetic variation and genotype by cutting interaction
We observed a significant effect of the genotype by cut-
ting interaction for all eight traits analyzed, so the gen-
omic association study was conducted by considering a
single cutting at a time. The lack of genetic variability

Fig. 5 Linkage disequilibrium (r2-values) between all markers used in this study with the marker M28_161, which was found as significantly
associated with biomass digestibility in elephant grass

Table 1 Candidate genes, in the genome of other C4 species, that are near to homologous sequences to the SSR markers M28_161
and M35_202

Marker Candidate
gene

Reference
genome

Chra Biological pathway Ortholog locus on A.
thaliana

Locus
positionb

Marker
position

M28_
161

Sevir.
3G340800

Setaria viridis 3 Xyloglucan biosynthetic process; salicylic acid
mediated

AT2G20370 40,675,315 40,676,270

M28_
161

Pahal. G00901 Panicum halli 7 Lignin biosynthetic process; cell wall
organization

AT5G48930 29,711,375 29,776,838

M28_
161

Pahal. G00889 Panicum halli 7 Salicylic acid mediated AT5G05190 29,776,838 29,776,838

M28_
161

Pahal. E03247 Panicum halli 5 Response to abscisic acid AT3G05880 49,635,160 49,627,286

M28_
161

Pavir.
8KG357500

Panicum
virgatum

8 Lignin catabolic process, oxidation-reduction
process

AT3G09220 72,822,520 72,841,944

M35_
202

Sevir.
7G164200

Setaria viridis 7 Lignin biosynthetic process; cell wall
organization

AT5G48930 23,027,630 23,030,255

aChromosome; bLocus that is closest to the SSR marker
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(i.e., for biomass digestibility) revealed by the ssGBLUP
analysis does not mean that there was no genetic vari-
ability, because the interaction effect may have reduced
it. Residual terms were added to the ssGBLUP model to
capture nonadditive effects. For crops that exhibit clonal
propagation and are not lines (such as elephant grass),
nonadditive effects represent epistatic and dominance ef-
fects [22], and additive effects were not explained by the
genomic relationship matrix, so these effects would not
have inflated the residual estimates or overlaid the other
effects. The nonsignificant residual genetic effect for the
biomass quality traits indicates that part of the additive
fraction that plays a role in the genetic architecture of
these traits could be explained by only a few markers (87
alleles). For the morpho-agronomic traits the residual
genetic effect was significant, so the genomic relation-
ship matrix constructed from 87 markers did not explain
the additive genetic fraction for height, green biomass,
and dry biomass.

Predictive accuracy
Cell component fractions that could affect forage digest-
ibility include cellulose, lignin, hemicellulose, and cell
wall proteins [23]. Therefore, biomass digestibility is
dependent upon several components which makes it a
complex trait that may be explained by the fact of the
accuracy has been moderate magnitude considering the
genomic information. Recent transcriptomic and gen-
omic studies [7, 11–13] and the development of SNPs
for elephant grass [12] have increased accuracy, and
studies using molecular markers have been important
for the development of SNP markers. New genotyping,
sequencing, and bioinformatics tools have increased ac-
curacy and decreased the price per sequenced base or
molecular genotype [14], and selection time [24].

Trait-marker association analysis
None of the agronomic traits (height, green biomass,
and dry biomass) and four of the quality traits (acid and
neutral detergent fiber, dry matter concentration, and
lignin content) were associated with SSR markers. This
was probably related to the low number of SSR markers
used (18 SSR markers that originated in 87 alleles) when
compared to the genome size of elephant grass, which
has recently been estimated as 2.1 Gb [13]. However,
one quality trait (biomass digestibility) was associated
with the SSR marker M28_161 when the dataset from
the first cutting was analyzed. This marker was in link-
age disequilibrium with M35_202, so is associated with
biomass digestibility. However, these markers are linked
to different values of biomass digestibility, because M28_
161 was significantly associated with high values of bio-
mass digestibility while M35_202 was more frequently
detected in genotypes with low values of biomass

digestibility. This is an interesting result considering that
digestibility is an important trait for many plant species,
and understanding its impact on plant quality and the
genomic regions associated with it has been the focus of
many research groups [25–27].
The SSR markers used here were previously developed

for pearl millet [28, 29], and were identified by our
group to cross-amplify the elephant grass genome [15].
It is unknown to what extent these markers are distrib-
uted in the elephant grass genome, but our analysis
shows that some markers have moderate linkage dis-
equilibrium. The average similarity coefficient among
107 accessions of the Active Elephant Grass Germplasm
Bank maintained by Embrapa Gado de Leite (where the
genotypes were obtained) was 0.651, which indicates
genetic variability [15]. In addition, Azevedo et al. [15]
detected only one group of similarity for the genotypes
used in the present study. In this context, neither the
small number of markers used here nor the absence of
population structure correction were obstacles to detect
marker M28_161 as being significantly associated with
biomass digestibility. Although trait-marker association
analysis can be performed using non-specific markers
(such as diversity arrays technology) or by SNP genotyp-
ing, SSR markers are important when genome sequen-
cing and bioinformatics are not trivial tasks.

Marker annotation and in silico pathway
We ran BLAST searches using sequences of the markers
M28_161 and M35_202, and the genome of the related
C4 grasses S. italica, S. viridis, P. virgatum, P. halli, and
C. americanus. These species are closely related to ele-
phant grass [30, 31]. No results were found for the C.
americanus genome sequence, which was unexpected
because the SSR markers used here were developed from
pearl millet [15] and the A′A′ genome of elephant grass
is homologous to the A genome of pearl millet [9, 10].
For the other species, six candidate genes that are asso-
ciated with the biosynthesis of cell wall molecules were
identified.
One candidate gene annotated on chromosome 3 of S.

viridis (Sevir. 3G340800) is orthologous to locus
AT2G20370 of Arabidopsis thaliana, and codes for a
xyloglucan galactosyltransferase responsible for different
functions, including the synthesis of cell wall materials.
Xyloglucan, which is a component of the plant cell wall,
is a type of hemicellulose that has the ability to bind to
cellulose to form a cellulose-xyloglucan network linked
through hydrogen bonds (see review by Pauly and Keeg-
stra [23]). It is unclear whether xyloglucan decreases
biomass digestibility, but it is associated with lignin,
which is a cell wall component that commonly nega-
tively affects digestibility. Xyloglucan binds to cellulose
to form an aggregate that, in some types of cell, can be
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embedded in a matrix that contains lignin [23]. How-
ever, it is important to note that although xyloglucan is
the most abundant hemicellulose in the primary cell
walls of dicotyledons, in grasses such as elephant grass,
its abundance is lower [23]. The effects of xyloglucan
galactosyltransferase on biomass digestibility in elephant
grass should be carefully evaluated.
No markers were associated with lignin content. Lig-

nin is the second-most abundant biopolymer on Earth
[32], and is a highly condensed phenylpropanoid matrix
that is relatively difficult to digest by ruminal microor-
ganisms and intestinal enzymes [33]. In many plant
species, there is a negative correlation between lignin
content and digestibility [34, 35] that can affect animal
performance, because a small increase in dry matter di-
gestibility (1%) can increase beef cattle daily weight gains
by 3.2% [36]. In general, the quality of forage grasses de-
creases as they mature as a consequence of secondary
cell wall deposition and the lignification of sclerenchyma
cells. This does not mean that decreasing the lignin con-
tent is the only way to improve plant digestibility, but it
is commonly accepted that lignin is a potential target for
that purpose. In this context, the candidate genes Pahal.
G00901, Pavir. 8KG357500, and Sevir. 7G164200, anno-
tated in the P. halli, P. virgatum, and S. viridis genomes,
respectively, are useful assets. These candidate genes
are orthologous to the loci AT5G48930, AT3G09220,
and AT5G48930 in Arabidopsis. AT5G48930 is a
hydroxycinnamoyl-Coenzyme A shikimate/quinate
hydroxycinnamoyltransferase that is involved in the
phenylpropanoid pathway, and plays a role in the produc-
tion of hydroxycinnamyl alcohols (or monolignols) that
serve as the building blocks of lignin [37]. The lignin con-
tent can also affect bioenergy production [38], and can be
decreased or increased depending on how the biomass is
treated for energy generation. For example, for the con-
version of lignocellulosic biomass to ethanol, polysaccha-
rides from the cell wall need to be hydrolyzed to simple
sugars and then fermented to ethanol [39]. In this case, re-
ducing the lignin content can increase ethanol production
through conventional biomass fermentation [38]. How-
ever, when considering biomass combustion, more lignin
is needed for high energy conversion [40]. The molecular
basis of lignin content in elephant grass is unknown, but
the candidate genes identified here can be used as targets
for gene manipulation. Either by transgenesis or gene edit-
ing, the manipulation of genes associated with lignin pro-
duction can result in germplasm that is ideal for animal
feeding or bioenergy [35, 38, 41, 42].
Some candidate genes are associated with plant hor-

mones (salicylic acid or abscisic acid), the cross-talk of
which plays an important role in the molecular re-
sponses of plants to stress [43], and two of them are in-
volved in responses to biotic and abiotic stressors. The

candidate gene Pahal. G00889 (annotated on chromo-
some 7 of P. halli) is orthologous to locus AT5G05190
in Arabidopsis, in which a hypothetical protein is in-
volved in different functions, including responses to
fungi [44]. The candidate gene Pahal. E03247 (also from
P. halli) has an orthologous locus in Arabidopsis
(AT3G05880) that codes for a small and highly hydro-
phobic protein that is involved in the hyperosmotic sal-
inity response and response to cold. Validating these
candidate genes in elephant grass would increase our
knowledge of how this species responds to stressors such
as spittlebug (Cercopidae) attack and drought or flood-
ing, which are important factors for breeding programs
in Brazil [14].

Conclusions
This study showed that, even by using a few SSR
markers, it is possible to identify candidate genes associ-
ated with biomass digestibility. It also showed that it was
possible to increase predictive accuracy in elephant grass
by incorporating genomic relationship information. Be-
cause there is little genomic information for elephant
grass available, our findings may improve elephant grass
breeding. For example, marker-assisted selection can be
applied, and markers associated with biomass digestibil-
ity have the potential to drive elephant grass selection
for different uses (e.g., bioenergy production and animal
feed). Further validation of the candidate genes revealed
here may lead to a better understanding of biomass di-
gestibility variation and its genomic basis.

Methods
Plant materials and experimental information
One hundred elephant grass genotypes (Additional file 1:
Table S1) from the Active Elephant Grass Germplasm
Bank (Embrapa Gado de Leite, Brazil) were planted in
0.20-m-deep furrows with 80 kg ha− 1 P2O5 fertilizer
applied at planting on December 23rd, 2011. The red-
yellow latosol soil at the Embrapa Gado de Leite experi-
mental station in Coronel Pacheco, MG, Brazil (latitude
21°33′18′′ S, longitude 43°15′51′′ W, 417m.a.s.l.) had
the following chemical properties: pH (5.4), H + Al (2.31
cmolc dm− 3), P (1.1 cmolc dm− 3), K (23 mg dm− 3), and
exchangeable cations Al3+ (0.2 cmolc dm− 3), Ca2+ (1.4
cmolc dm− 3), and Mg2+ (0.7 cmolc dm− 3). The plots
consisted of 4-m rows that were planted side by side,
1.5 m apart. Plots were allocated in a 10 × 10 simple lat-
tice design, with two replications. At 30 days after plant-
ing, the plots were cut to 0.30-m stubble height
(uniformly cut). The number of days to reach each of
the six growing seasons (cuttings) started at this time.
Maintenance fertilization was made with 300 kg ha− 1 of
a N-P2O5-K2O formulation (20:05:20 blended granular
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fertilizer) after all cuttings. Fertilization was conducted
according to the results of a soil analysis.
Six cuttings were conducted: the first cutting (September

28th, 2012) was performed at 250 regrowth days, the
second (June 5th, 2013) at 250 regrowth days, the third
(April 16th, 2014) at 315 regrowth days, the fourth (January
16th, 2015) at 275 regrowth days, the fifth (November 27th,
2015) at 315 regrowth days, and the sixth (June 24th, 2016)
at 210 regrowth days. The fourth cutting collected propaga-
tion material, i.e., no phenotypic data were obtained at this
cutting. We declare that all plant materials in this study
represent voucher specimens that have been deposited in a
publicly available herbarium (Active Elephant Grass
Germplasm Bank) and that comply with institutional, na-
tional, and international guidelines for the collection and
cultivation of any plant materials.

Phenotypic traits
The plants were phenotyped at first, second, third, fifth,
and sixth cuttings for each of the following traits: (i)
height (m) was obtained from the arithmetic mean of
the height of three randomly selected plants in each plot,
measured from ground level to the curve of the last
completely expanded leaf; (ii) green biomass (Mg ha− 1)
was obtained from a cutting taken at 7.5 cm stubble
height in a 3-m section in the middle of the rows using
a gasoline-powered strimmer and that was collected by
hand. The 3-m section was immediately weighed in the
field to provide estimates of green biomass; (iii) dry bio-
mass (Mg ha− 1) was quantified by multiplying the green
biomass by the dry matter concentration (%); (iv) acid
detergent fiber (g Kg− 1), (v) neutral detergent fiber (g
Kg− 1), and (vi) lignin content (g Kg− 1) were determined
following the methodology proposed by Goering [45];
(vii) biomass digestibility (g Kg− 1) was determined by
the method described by Tilley and Terry [46]; and (viii)
dry matter concentration (%) was obtained by sampling
three complete plants from each plot, which were dried
in a kiln after weighing (fresh weight) until weight
stabilization. The samples were weighed (dry weight)
again, and the dry matter concentration was determined
by the ratio between dry weight and fresh weight. This
trait was used as a common denominator for the estima-
tion of biomass digestibility. For acid detergent fiber,
neutral detergent fiber, lignin content, and biomass di-
gestibility, random samples of three complete plants
from each plot were collected before cutting the experi-
mental plots. These samples were dried in a forced-air
circulation oven at 56 °C for 72 h. After drying, the sam-
ples were ground to small particles (1 mm) in a Wiley
type grinder and analyzed as described above. For the
third, fifth, and sixth cuttings, acid and neutral detergent
fiber, lignin content, biomass digestibility, and dry mat-
ter concentration were measured using near-infrared

spectroscopy (NIRS). Data generated from the first and
second cuttings, and from other experiments (i.e., by
traditional methodologies of biomass quality analysis),
were used for NIRS calibration. The phenotypic data are
shown in Additional file 2: Table S2.

Genotyping, quality control, and imputation
Eighteen SSR markers were used for genotyping, as de-
scribed by Azevedo et al. [15]. The alleles for each
marker are shown in Additional file 3: Table S3. Due to
the multiallelic nature of SSR markers associated with
the polyploidy of elephant grass, each allele was consid-
ered a marker (totaling 111 markers). For each marker,
individuals were coded as 0 (absence of allele) or 1
(presence of allele) according to Viana et al. [47]. SSRs
with more than 15% missing values (i.e., a call rate of at
least 85%) and/or a frequency of minor alleles of above
1% were removed. The following imputation algorithm
was used for the missing value data point in a marker

matrix (Mi): Mi ¼ if : pi≤0:5→Mi ¼ 0
if : 0:5 < pi≤1→Mi ¼ 1

�
, where pi

is the allele frequency associated with the presence of a
marker at locus i. The algorithm was directly imple-
mented as an R function. After quality control, 87
markers were used. According to previous studies [28,
29, 48, 49], the SSR markers used here are on chromo-
somes 1, 3, 4, 5, 6, and 7 of pearl millet.

ssGBLUP
A mixed model methodology was adopted for statistical
analyses using ssGBLUP [50, 51]. The statistical model
was denoted by the following expression: y = Xm + Za +
Zg +Wb + Ti + Tr +Qp + ε, where y is the vector of re-
sponses across the five cuttings (only using phenotypic
data); m is the vector of the effects of the measurement-
replication combination (assumed as fixed) added to the
overall mean; a is the vector of genetic effects (assumed
as random); g is the vector of residual genetic effects
(assumed as random); b is the vector of block effects
(assumed as random); i is the vector of the genotype by
cutting interaction; r is the vector of the residual geno-
type by cutting interaction; p is the vector of permanent
environment effects (random); ε is the vector of residues
(random); and X, Z, W, T, and Q represent the incidence
matrices for these effects.
The following distributions of random effects were

considered: a � NðG⨂σ2aÞ; g � NðI⨂σ2rgÞ; b � NðI⨂σ2bÞ;
i � NðGi⨂σ2

i Þ; r � NðI⨂σ2
riÞ; p � NðI⨂σ2pÞ; and ε � NðI

⨂σ2
eÞ, where G is a matrix of genomic additive relation-

ships, I is an identity matrix of appropriate dimensions,
Gi is a matrix of genomic interactions (genotype by cut-
ting interaction), σ2a , σ

2
rg , σ

2
b , σ

2
i , σ

2
ri , σ

2
p; and σ2e are the

additive, residual genetic, block, genotype by cutting
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interaction, residual genotype by cutting interaction, per-
manent environment, and residual variance components,
respectively. The model above includes residual genetic
effects and residual genotype by cutting interactions, ac-
cording to Oakey et al. [22].
An additive relationship matrix structure (G) was used

according to Resende et al. [24], and is denoted by the

expression G ¼ Z�Z�0Pn

i
pið1−piÞ

, where Z∗ = Z − P, in which Z

is a matrix containing marker genotypes and P is a
matrix with pi elements in column i.
Due to the presence of 10 genotypes that were not ge-

notyped, the inverse of the genomic relationship matrix
(H−1) was adopted, according to Legarra et al. [50]. The

expression states that H−1 ¼ A−1 þ 0 0
0 G�−1−A−1

22

� �
,

where A−1 is the inverse of the pedigree relationship for
all elephant grass genotypes and A−1

22 is the inverse of
the pedigree relationship for only genotyped elephant
grass genotypes. A and A22 was an identity matrix for
this study because there was no information about
the pedigree. To compute the exact inverse of G to
compose the H−1 matrix, we used the algorithm G∗ =
0.95G + 0.05A22 [52].
From the matrix H−1, the ssGBLUP procedure was run

according to the specified model. For the random effects
of the model, significance of the likelihood ratio test was
evaluated using a chi-square test with one degree of free-
dom. ssGBLUP was performed using ASReml 4.1 soft-
ware [53].
The accuracy ( râa ) of the additive effect considering

the ssGLUP model was estimated as râa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− PEVa

σ̂2

a

r
,

where PEVa is the predictive error variance that is ob-
tained by diagonal elements inverse of the left-hand side
of the mixed model equation for the additive effect.

Simple repeatability plus genotype by cutting (G × C)
interaction model
The model was run without considering the relationship
(simple repeatability plus G x C interaction model)
between the genotypes, as follows: y = Xm + Zg +Wb +
Ti +Qp + ε, where y is the vector of response across the
five cuttings (using only phenotypic data); m is the vec-
tor of the effects of the measurement-replication com-
bination (assumed as fixed) added to the overall mean; g
is the vector of genetic effects (assumed as random); b is
the vector of block effects (assumed as random); i is the
vector of the genotype by cutting interaction; p is the
vector of the permanent environment effects (random); ε
is the vector of residues (random); and X, Z, W, T, and
Q represent the incidence matrices for these effects.

The following distributions of random effects were
considered: g � NðI⨂σ2gÞ; b � NðI⨂σ2bÞ; i � NðGi⨂σ2i Þ;
p � NðI⨂σ2pÞ ; and ε � NðI⨂σ2eÞ; where I is an identity

matrix of appropriate dimensions and σ2g , σ
2
b, σ

2
i , σ

2
p; and

σ2e are the genetic, block, genotype by cutting interaction,
permanent environment, and residual variance compo-
nents, respectively. The simple repeatability plus G × C
interaction model was performed in ASReml 4.1 [53].
The accuracy ( rĝg ) of the genotype effect (genetic

effects) considering the simple repeatability plus G x C

interaction model was estimated as rĝg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− PEVg

σ̂2

g

r
,

where PEVg is the predictive error variance that was ob-
tained by the diagonal elements inverse of the left-hand
side of the mixed model equation for the genetic effect.

Genome association study
The 90 elephant grass genotypes that had been geno-
typed and phenotyped were used in the genome associ-
ation study. The R package “sommer” (GWAS2 function
[54]) revealed a significant association between the
markers and the phenotypic traits. The genotype by cut-
ting interaction was included in the association study for
each cutting using the model y = Xm +Mu + Za + Zg +
Wb + ε, where y is the vector of response for each cut-
ting; m is the vector of the effects of the replication (as-
sumed as fixed) added to the overall mean; u is the
vector of markers (assumed as fixed); a is the vector of
genetic effects (assumed as random); g is the vector of
residual genetic effects (assumed as random); b is the
vector of block effects (assumed as random); ε is the vec-
tor of residue (random); and X, M, Z, and W represent
the incidence matrices for these effects.
The following distributions of random effects were

considered: a � NðG⨂σ2aÞ, g � NðI⨂σ2rgÞ, b � NðI⨂σ2bÞ;
and ε � NðI⨂σ2eÞ. In these expressions, G is a matrix of
genomic additive relationships, I is an identity matrix of
appropriate dimensions, and σ2a , σ

2
rg , σ

2
b; and σ2ε are the

additive, residual genetic, block, and residual variances,
respectively.
Markers with − log(P − value) up to the false discovery

rate (FDR) threshold were considered candidate markers.
To compute the FDR, a 0.02 threshold level and p < 0.05
were set.
We used the LD.Measures function in the R pack-

age LDcorSV to compute linkage disequilibrium (r2),

as described by Hill and Robertson [55]: r2

¼ ½pðABÞ−pðAÞpðBÞ�2
pðAÞpðBÞ½1−pðAÞ�½1−pðBÞ�, where p(AB) is the frequency of

the haplotype AB and p(A) and p(B) are the frequencies of
alleles A and B, respectively. Therefore, r2 ranged from 0
(when the two markers were in perfect equilibrium) to 1
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(when the two markers provided identical information).
Manhattan plots and QQ plots were obtained using the
“sommer” package [54] in R [56].

Alignment, candidate genes, and gene annotation
A list of candidate genes was assembled by BLAST, with
default parameters set, using the plant comparative gen-
omics portal Phytozome [57] based on related species
(reference genomes; e.g., S. italica, S. viridis, P. virgatum,
and P. halli). A BLAST search of the C. americanus
genome was performed on the US National Center for
Biotechnology Information website (https://blast.ncbi.
nlm.nih.gov/Blast.cgi). For these searches, sequences of
the primers M28R (CGAATACGTATGGAGAACTGCG
CATC) and M35R (ATCCACCCGACGAAGGAAAC
GA) were used. For gene annotation, ortholog genes in
A. thaliana were searched using the Arabidopsis Infor-
mation Resource database [58].

Supplementary information
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1186/s12870-019-2180-5.

Additional file 1: Table S1. Genotypes of elephant grass and their
respective codes. The genotypes are part of the Active Elephant grass
Germplasm Bank (BAGCE) maintained by Embrapa Gado de Leite
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1615 after the uniformity cut). Abbreviations used: Cut (cutting day), Gen
(genotype - see codes in Table S1), Cut.Rep (concatenation of cut and
rep columns), Int (genotype by cutting interaction), Rep (replication),
Height (in meters), GB (green biomass, in Mg ha-1), DB (dry biomass, in
Mg ha-1), DM (dry matter concentration, in %), ADF (acid detergent fiber,
in g Kg-1), NDF (neutral detergent fiber, in g Kg-1), DIG (biomass digest-
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Additional file 3: Table S3. Molecular data for the 90 elephant grass
genotypes. “Code” indicates de code of the genotypes (see Additional
file 1: Table S1).
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