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increase of Al leaf content as a function of Al concentration 
in the nutrient solution. Plants grown in 1 mM Al showed a 
remarkable increase of K leaf content, net photosynthesis, 
stomatal conductance, and transpiration, while in 4 mM Al 
there were reductions of N, P, and K contents, gas exchange 
characteristics, and height. H. impetiginosus did not have 
mechanisms of avoidance, compartmentalization, or resist-
ance to high Al concentrations. Indeed, this species showed 
a hormetic response, with low Al concentrations stimulating 
and high Al concentrations inhibiting plant responses.

Keywords Hormesis · Low Al concentration · Al 
toxicity · Cerrado species · Carbon assimilation

Introduction

Handroanthus impetiginosus (Mart. Ex Dc.) Mattos., popu-
larly known as ipê roxo, is a secondary tree species dis-
tributed in Cerradão and Cerrado strictu sensu landscapes 
(Scolforo 2008; Salomão and Camilo 2016). It stands out for 
the aesthetic appeal of its flowers and it is one of the symbols 
of the Brazilian Cerrado (Lorenzi 2008). This vegetation 
domain is well known to grow over acid, dystrophic, and 
nutrient-poor soils (Haridasan 2008; Miatto et al. 2016).

Cerrado soils are acidic and nutrient-poor, with high con-
tent of solubilized  Al3+. Under low pH conditions, aluminum 
(Al) is solubilized to  Al3+ and its high content may turn toxic 
for plants (Fageria 2001; Siqueira Neto et al. 2009; Brunner 
and Sperisen 2013; Bojórquez-Quintal et al. 2017). Thus, 
it is expected that plants growing in the acidic conditions 
of the Cerrado soils will have developed physiological and 
morphological adaptations to this harsh environment. Alu-
minum can have either beneficial or toxic effects, depend-
ing on a diverse range of factors, including plant species, 
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Al concentration, and time of exposure (Bojórquez-Quintal 
et al. 2017). The effects of low and high levels of an element 
are explained by the hormetic dose response, and they have 
opposite effects, stimulating and inhibiting plants responses 
(Calabrese and Blain 2009; Agathokleous et al. 2019b). In 
fact, plant growth and macronutrient status of some species 
are enhanced by low Al concentrations that have beneficial 
effects (Wang et al. 2015; Moreno-Alvarado et al. 2017). 
On the other hand, aluminum toxicity can inhibit absorption 
of water and nutrients, thereby serving as one of the most 
limiting factors for plants (Fujii et al. 2012; Guo et al. 2018). 
Limitations caused by aluminum can be directly related to 
reduced gas exchange and lower stomatal conductance and 
net photosynthesis, resulting in lower carbon assimilation 
and, in consequence, reduction in growth (Horst et al. 2010; 
Maire et al. 2015; Yang et al. 2015; Guo et al. 2018).

However, some species are well adapted to high Al 
availability in soils and are classified as Al-resistant spe-
cies (Kochian et al. 2015). Some resistant species avoid Al 
through the release of organic compounds from the apex of 
the root to the soil (Kochian et al. 2015; Yang et al. 2015; 
Sade et al. 2016). Others tolerate high concentrations of alu-
minum by accumulating it in roots or aerial parts where con-
centrations have been recorded higher than 1000 mg kg−1 of 
aluminum complexed with organic acids (Haridasan 2008; 
Kochian et al. 2015; de Souza et al. 2017). In such cases, 
there are no modifications in nutrient uptake or in plant 
growth (Malta et al. 2016; de Souza et al. 2017).

The impacts of aluminum on farm crops and the strategies 
used by them are well studied (Kochian et al. 2004; Banhos 
et al. 2016a; Long et al. 2017). However, it is necessary to 
understand more about the effects of Al on native species 
(Haridasan 2008; Brunner and Sperisen 2013). Consider-
ing the Al content of Brazilian Cerrado soils, our research 
question was how do species cope with this metal during 
their period of initial establishment. Does H. impetigino-
sus display a typical hormetic response, being stimulated 
or inhibited by low and toxic Al doses? Does H. impetigi-
nosus display any mechanism of resistance in its avoidance 
or tolerance of different Al concentrations? We analyzed 
growth, leaf nutrients, and photosynthetic characteristics of 
H. impetiginosus plants grown in four different aluminum 
concentrations, aiming to detect which strategy is used by 
this species.

Materials and methods

Experimental design and plant material

Seeds of H. impetiginosus were obtained from trees located 
at the Federal University of Lavras, Lavras-MG, Brazil 
(21º13ʹ40″S and 44º57ʹ50″W GRW). Seeds were sown in 

 Citropotes® containing river-washed sand. Four months after 
emergence plants were transferred to buckets containing 
6 L of Hoagland and Arnon (1950) nutrient solution. Plants 
were acclimated in ¼ nutrient solution strength for 7 days, ½ 
strength for 7 days, and full strength for 30 days. The nutri-
ent solution was maintained by use of constant aeration and 
pH was adjusted to 5.5–6.5.

At the end of the acclimation period, four different alu-
minum concentrations were imposed. The nutrient solution 
of Hoagland and Arnon (1950) was modified and the con-
centrations of aluminum sulfate  (Al2(SO4)3·14H2O) were 0, 
1, 2, and 4 mM Al, based on previous study that estimated 
4 mM to be the highest concentration of aluminum found 
in Cerrado soil (Monteiro 2014). The soil pH was daily 
adjusted to 4.0 ± 0.5 in order to minimize the precipitation 
of aluminum and the solution was changed every 15 days.

Throughout the 40-day experiment, greenhouse tempera-
ture (°C) and atmospheric relative humidity (RH—%) were 
monitored by a thermohygrometer (Extech Instruments, 
model RHT10) located one meter above ground level. Vapor 
pressure deficit (VPD—kPa) was calculated using tempera-
ture and relative humidity data (Jones 1992). The average 
temperature during our experimental period was 30 °C. 
Average RH was 74% and VPD was 2 kPa.

All measurements were recorded at the end of the experi-
mental period. The experiment was arranged in a completely 
randomized design, with four Al concentrations (0, 1, 2, 
and 4 mM Al) and five replications in each treatment. Each 
replication consisted of two plants, totalling 10 plants for 
each treatment.

Growth analyses

Shoot height (cm), basal stem diameter (mm), and number 
of leaves were measured, and then the plants were harvested 
and divided into the component categories leaves, stems, 
and roots, which were oven dried at 70 °C for 48 h. The dry 
weight was used to determine the root to shoot ratio (R:S 
ratio).

Leaf chlorophyll content and gas exchange

Young, fully-expanded, and sun-lit leaves were used to 
measure leaf chlorophyll content and gas exchange char-
acteristics. Total chlorophyll content was measured using 
a portable chlorophyll meter (atLEAF+). A mean was cal-
culated from the measurements of eight of the ten leaves 
in each repetition. Gas exchange was evaluated between 9 
and 11 a.m., using an infrared gas analyzer (IRGA-model 
LI-6400XT, Li-cor). The chamber was set with a photo-
synthetic photon flux density of 1000 µmol m−2 s−1. Leaf 
temperature was 30 °C, relative humidity in the chamber 
was kept around 60%, and leaf-to-air vapour pressure deficit 
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(VPD) around 1.5 kPa. We determined net photosynthesis 
(µmol m−2 s−1), stomatal conductance (mol m−2 s−1), tran-
spiration (mmol m−2 s−1), and intercellular  CO2 concentra-
tion (µmol mol−1).

Quantification of leaf mineral nutrients

Young, fully-expanded, and sun-lit leaves were harvested, 
dried and ground to a powder in a Willey mill. Nitrogen 
(N) content was estimated using the Kjeldahl method from 
samples subjected to sulfuric digestion. Contents of other 
nutrients (Phosphorus—P; Potassium—K; Calcium—Ca; 
Magnesium—Mg; Sulfur—S; Copper—Cu; Manganese—
Mn; Zinc—Zn; Iron—Fe; and Al) were estimated using the 
curcumin colorimetric method after the samples were sub-
jected to nitric perchloric digestion (except for Boron (B), 
which was digested by dry ashing). Nutrient contents were 
quantified by the colorimetric method of metavanadate (P), 
flame photometry (Digimed NK-2002) (K), turbidimetric 
method of barium sulfate (S), atomic absorption spectro-
photometry in an air-acetylene flame (Perkin Elmer, model 
AAnalyst 800) (Ca, Mg, Cu, Mn, Zn, and Fe) (reviewed 
by Malavolta et al. 1997). Al content was quantified using 
the aluminon method (Wang and Wood 1973). Results were 
expressed as percent of dry weight for N, P, K, Ca, Mg, and 
S; as µg g−1for B, Cu, Mn, Zn, and Fe; and as mM g−1 for Al.

Statistical analyses

Data were analyzed by regression between the explana-
tory variable (aluminum concentration in the solution) and 
response variables. Among the response variables, Al leaf 
content (mM Al  g−1 DW) was used as an explanatory vari-
able in the regression analysis with the other response vari-
ables. All models obtained were analyzed using ANOVA 
(p < 0.05) and tested for normality of residuals (Shap-
iro–Wilk normality test), homoscedasticity (Breusch–Pagan 
test), and independence (Durbin–Watson test). For varia-
bles that did not meet one of the assumptions of normality, 
homoscedasticity or independence (growth and gas exchange 
characteristics; leaf chlorophyll content; K, Ca, Mg, S, B, 
Cu, Mn, Zn, and Fe content), a non-parametric analysis 
was performed using the Kruskal–Wallis test (p < 0.05) and 
means were compared using the post-hoc Nemenyi test. All 
analyses were performed in the R version 3.5.1© (Team and 
R Development Core Team 2016).

Results and discussion

H. impetiginosus plants were able to transport Al to aerial 
parts, which caused impacts on nutritional status, photo-
synthetic activity, and plant growth. A linear increase was 

recorded for Al leaf content with increasing Al concentration 
in the nutrient solution. Highest leaf Al content of 0.88 mM 
Al  g−1 DW was recorded for plants grown in 4 mM Al 
(Fig. 1). This indicated that this species does not have mech-
anisms to exclude or compartmentalize Al and the amount 
of Al may have caused competition among macronutrients.

In this context, gas exchange characteristics and K leaf 
content showed a typical hormetic dose response, in which 
stimulatory and inhibitory effects are provided by low 
and toxic doses, respectively (Agathokleous et al. 2019a; 
Calabrese et al. 2019). The low concentration of 1 mM 
Al showed a stimulatory effect on net photosynthesis, sto-
matal conductance, and transpiration, with an increase of 
more than 50% in relation to the concentration of 0 mM Al 
(Fig. 2a–c). Aluminum supplementation may enhance pho-
tosynthetic activity, providing a higher supply of skeletons 
of carbon for the plant (Hajiboland et al. 2013). A higher 
value of 2.18% for K leaf content was also observed for the 
treatment 1 mM Al (Fig. 2d), possibly indicating that this 
nutrient plays a role in photosynthesis of plants under high 
Al conditions (Wang et al. 2015), by maintaining stomatal 
opening (Ridolfi and Garrec 2000).

Chlorophyll content was constant across the four treat-
ments (Table 1) and there was a reduction in net photo-
synthesis as leaf Al content increased. The lowest value of 
1.88 µmol m−2 s−1 was observed for plants grown in 4 mM 
Al (Fig. 2a). The increase of Al content in leaves is closely 
related to nutritional deficiencies and lower photosynthetic 
activity (Ridolfi and Garrec 2000). Considering there is a 
strong relationship between photosynthetic rate and nutri-
ent availability (Maire et al. 2015), one of the reasons for 
the observed negative effect on carbon assimilation is that 
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Al might have affected nutrient uptake, as reported earlier 
(Lidon et al. 1999; Ribeiro et al. 2013; Muhammad et al. 
2018). High aluminum concentration in soil leads to func-
tional changes in roots, reducing the uptake of some cations 
due to competition with  Al3+ (Sade et al. 2016) and induc-
ing an  H+ efflux (Matsumoto 2000). Thus, the unbalanced 
 H+ transport alters membrane properties, rendering insuf-
ficient the transport of nutrients from roots to aerial parts 
(Mihailovic et al. 2008).

Most leaf nutrient contents were unaffected by Al treat-
ment (Table 1). However, leaf concentrations of K, N, and 
P showed remarkable reductions with increasing concentra-
tions of Al, showing its toxic effects. Reduced K leaf con-
tent and decreased stomatal conductance and transpiration 
were recorded at lower values of 0.71%, 0.02 mol m−2 s−1, 

and 0.21 mmol m−2 s−1 for the treatment with 4 mM Al. 
This was associated with decreased net photosynthesis 
(Fig. 2a–d). Modification in stomatal conductance and tran-
spiration rates are commonly related to aluminium toxicity 
and the reduction of leaf K content might be responsible 
for stomatal closure in such conditions (Ridolfi and Garrec 
2000; Mihailovic et al. 2008; Muhammad et al. 2018). A 
reduction in K in shoots was reported for a cacao-sensitive 
genotype grown in high aluminum concentrations (Ribeiro 
et al. 2013). Thus, it is possible that H. impetiginosus plants 
had a stomatal limitation, and consequently a reduction in 
carbon availability for photosynthesis. Other non-stomatal 
limitations affect photosynthesis of plants grown under Al 
stress (Yang et al. 2015).
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Although plants with leaf Al content of 0.46 mM Al 
 g−1 DW (treatment with 1 mM Al in the nutrient solution) 
showed a slight increase in leaf N content, there was a linear 
decrease of N and P leaf content as Al leaf content increased 
(Fig. 3). The lower values of 2.72 and 0.12% for N and P, 
respectively, were recorded for the treatment with 4 mM Al, 
which might explain the reduction in net photosynthesis by 
a biochemical limitation. These two nutrients are related to 
carboxylation enzymes assembly and operation (Rossatto 
et al. 2015). The amount of N used by the enzyme Ribu-
lose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is 
high and can reach 27% of total leaf N (Evans 1989), while 
P is responsible for Rubisco activation and the regenera-
tion of the Ribulose-1,5-bisphosphate (Pandey et al. 2015). 
Thus, the reduction of N and P leaf content might have led 
to lower content of Rubisco and turnover problems, causing 
the reduction in photosynthetic rates in H. impetiginosus 
plants grown in high Al concentration.

While our highest Al concentration resulted in toxic 
effects, our 0 mM Al trial reduced the gas exchange char-
acteristics in comparison to the concentration of 1 mM Al 
(Fig. 2a–c). This suggests that H. impetiginosus plants needs 
low Al concentrations to stimulate photosynthetic activity. 
There was no difference for stem diameter, number of leaves, 
and R:S ratio, among the four Al treatments (Table 1). For 
height, the lower carbon assimilation in the treatment with 
4 mM Al may have reduced the availability of skeletons 
of carbon for growth. We recorded about 50% lower total 
heights for plants grown in 4 mM Al in comparison to the 
concentrations of 0 and 1 mM Al (Fig. 4). Acid soils do not 
affect the growth of native species, unless there is a nutri-
ent limitation (Haridasan 2008). Thus, the reduction in N, 
P, and K content could represent a restriction of metabolite 
resources that was responsible for reduced shoot growth. 
Shoot growth reduction was reported for Styrax camporum, 
indicating that Al may negatively affect the shoot apical mer-
istem (Banhos et al. 2016b).

The increase in Al content led to nutritional imbalance 
which was responsible for the reduction in gas exchange and 
shoot growth. Regardless of its wide distribution in Cer-
rado landscapes, our results suggest that H. impetiginosus 
suffered constraints caused by Al concentrations similar 
to those observed in field conditions, showing that it is a 
non-resistant species. We hypothesize that the occurrence 
of this species is restricted to sites where Al concentrations 
are lower than at other sites. This is supported by the stimu-
latory effects of the treatment with 1 mM Al in photosyn-
thetic activity, K, and N leaf content. Further studies are 
needed to identify physiological mechanisms displayed by 
H. impetiginosus plants grown under low Al concentrations 
and to understand responses of this species in conditions 
of increasing Al content in the soil due to climate change.
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Conclusions

During the initial establishment, H. impetiginosus plants 
showed a hormetic response. Low Al concentration stim-
ulated photosynthetic responses and maintained K and N 
leaf content, showing the beneficial effects of this metal. 

However, higher Al concentrations, e.g., 4 mM Al, led to 
Al accumulation in leaves, a condition in which there were 
nutritional disorders and reductions of gas exchange and 
growth. Thus, when grown in soils with high Al content, H. 
impetiginosus plants suffered with toxic effects and did not 
show any mechanism of Al-resistance.
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