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Abstract. Plant chemical defenses can affect herbivores directly or indirectly through the emission of herbivore-induced plant volatiles (HIPVs) that 
recruit natural enemies. Corn seedlings have high concentrations of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) that deter aphids, 
but as concentration decreases over the course of plant phenology, plants become less resistant. We investigated whether corn phenological 
stage influences the attractiveness of Rhopalosiphum maidis (Fitch, 1856) - infested corn seedling volatiles to the predatory lacewing Chrysoperla 
externa (Hagen, 1861). In olfactometer, lacewings preferentially oriented to volatiles from aphid-infested over those by uninfested corn seedlings 
at V6 or V7 stages, but did not discriminate between volatiles from uninfested and aphid-infested V5-stage seedlings. Greater numbers of aphids 
died in V5 corn seedlings relative to those in V6 and V7 seedlings. Our results indicate that the lack of discrimination of the predatory lacewing to 
HIPVs emitted by V5 corn seedlings is due to insufficient induction given that they were more resistant to R. maidis.
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Understanding the role of chemical plant defenses to insect 
herbivory has advanced over the last decades. Plants have evolved 
different chemical defensive strategies to deter herbivore attack 
that are constitutive (i.e., always present in plant tissues) or induced 
(i.e., synthesized upon herbivore attack) (Fürstenberg-Hägg et al. 
2013). Induced plant defenses comprise increased concentrations of 
constitutive defensive metabolites or novel compounds that directly 
act against herbivores by altering their physiology and behavior, or 
indirectly by attracting herbivore natural enemies (Dicke 1999, Turlings 
& Wäckers 2004).

The hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-
one (DIMBOA) is an example of secondary metabolite of Poaceae plants, 
such as corn (Zea mays L.), that act as a direct defense to herbivores 
(Niemeyer 1988). The inactive form of DIMBOA is stored in vacuoles 
and, after exogenous or endogenous damage, it is activated by enzymes 
(Czjzek et al. 2000, Von Rad et al. 2001, Park et al. 2004). DIMBOA in 
the corn seedling reaches the highest concentration around 24-36h 
after the germination (Ebisui et al. 2000) and then gradually reduces 
as the plant ages. This compound is well-known for its role in deterring 
herbivory by aphids, especially the corn aphid Rhopalosiphum maidis 
(Fitch, 1856) (Hemiptera: Aphididae), an important pest of corn crops, 
that is sensitive to DIMBOA and avoids feeding on corn genotypes with 
high levels of DIMBOA (Niemeyer et al. 1989, Givovich & Niemeyer 
1995). As corn seedlings grow, the concentration of DIMBOA in the 
tissues decreases and plants become more susceptible to corn aphid 
infestations (Argandoña et al. 1981).

Herbivore-induced plant volatiles (HIPVs) are the main indirect plant 
defense against herbivores because they recruit several parasitoids 
and predators (Dicke et al. 1990, Turlings et al. 1990). Nevertheless, 
blend composition and abundance of HIPVs depend on the herbivore 
damage magnitude in a way that can affect plant attractiveness to 
natural enemies (Gouinguene et al. 2003). Therefore, direct defenses, 
such as DIMBOA, can alter the emission of HIPVs because of reduced 

damage, potentially affecting recruitment of natural enemies. 
Here, we investigated whether phenological stage of corn seedlings 

affects the attraction of the predatory lacewing Chrysoperla externa 
(Hagen, 1861), which is a generalist natural predator of aphids, to the 
volatile emission of corn plants infested with R. maidis. We tested the 
olfactory response of lacewing larvae to volatiles emitted by V5 to 
V7 corn seedlings and registered the mortality of R. maidis on those 
plants.

Corn seeds (non-Bt hybrid P2530) (Pioneer Sementes, São Paulo, 
Brazil) were cultivated in plastic pots (2-L capacity) filled with soil 
(Haplortox) and no fertilization. Two seeds were sowed in each pot and 
5 days after emergence, only one seedling was left/pot.  Plants were 
watered daily and maintained in a greenhouse under natural light and 
no temperature control. When seedlings had 5, 6 or 7 expanded leaves, 
corresponding to V5, V6 and V7 stage, they were used in assays. 

The lacewing and the corn aphid used in experiments were obtained 
from stock rearing maintained at the Department of Entomology 
(UFLA, Lavras, Brazil), according the methods described in Carvalho & 
Souza (2000) and Cabette (1992). 

To obtain aphid-infested plants, V5, V6 or V7 corn seedlings were 
infested with 100 R. maidis nymph and adult aphids and covered with 
bags made of fine-mesh fabric to avoid insect scaping. Uninfested 
plants were also covered with the bags, although were not infested 
with insects. Both treatments were maintained at the same abiotic 
conditions for 72h, when they were used in assays.

Olfactory preference of C. externa third-instar larvae to corn 
seedling volatiles were assessed in olfactometry assays using a 
Y-tube olfactometer (18 cm long, 3 cm θ and angle of 120° between 
side arms). Aerial plant parts were covered in polyethylene bags (41 
cm x 33 cm) (Wyda, Sorocaba, Brazil) with two openings, through 
which two hoses were connected for air inlet and outlet. Air flow was 
generated by an air compressor that pulled air from the room into the 
olfactometer system. Air was charcoal filtered and humidified before 
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entering the polyethylene bags and then the Y-tube side arms. Airflow 
was adjusted to 0.8 L/min. A single lacewing larva was introduced in 
the central olfactometer arm and observed for up to 10 min. A choice 
was considered when the insect crossed a line traced at the mid third 
of the side arm and spent at least 30 sec there. If the insect did not 
choose a treatment within 10 min, it was considered non-responsive. 
Each larva was tested only once. Every 10 replicates, the plant pair was 
replaced and the Y-tube olfactometer cleaned with soap, rinsed with 
tap water and acetone, and dried in the oven at 180°C. Assays were 
conducted in a room under controlled conditions (25 ±2 °C, RH 60 ± 10 
%, 10h of photophase) between 13:00 and 17:00h. 

Olfactory response of lacewing larvae was tested when exposed to: 
(i) uninfested plant vs. aphid-infested plant at V5 stage; (ii) uninfested 
plant vs. aphid-infested plant at V6 stage; and (iii) uninfested plant 
vs. aphid-infested plant at V7 stage. Each assay consisted of 40 insect 
choices using 4 pairs of plants.The numbers of aphids on aphid-infested 
plants at V5, V6 and V7 stages (i.e., after about 72h of the initial 
infestation with 100 individuals) were counted just after tests. Choice 
proportions for treatments were analyzed by the binomial test at 5%, 
1% and 0.1%. Aphid countings on V5 to V7 seedlings were analyzed by 
one-way ANOVA (P < 0.05) followed by Tukey’s test.

C. externa larvae did not discriminate between volatiles emitted 
by uninfested and aphid-infested corn seedlings at V5 stage (Fig. 1, 
binomial test, P= 0.080). However, when C. externa were exposed to 
volatiles of aphid-infested and uninfested plants at V6 and V7, the 
predator was oriented preferentially to aphid-infested plants (Fig. 1, 
V6 stage: P<0.01; V7 stage: P< 0.001). Corn seedlings at V5 stage had 
about 60% less aphids after 72h from the initial infestation and two-
fold less aphids than those at V7 and V6 stages (Fig. 2, one-way ANOVA 
P < 0.05, Tukey’s test, P < 0.01).

Figure 1. Olfactory preference of Chrysoperla externa third-instar larvae to 
aphid-infested corn seedlings and uninfested at V5, V6 and V7 phenological 
stages. Tests were conducted in a Y-tube olfactometer system. Corn seedlings 
were infested with 100 Rhopalosiphum maidis for 72h. * significant difference 
at 5% according to binomial test, ** significant difference at 1% *** significant 
difference at 0.1%; n.s= not significant.

The attraction of natural enemies to volatiles emitted by plants 
infested with their prey has been extensively shown in the literature 
(Dicke et al 1990, Mumm & Dicke 2010), including the lacewing C. 
externa (Zhu et al. 2005). However, herbivore density on the plant is an 
important biotic factor influencing the induced plant response as well 
as on tritrophic interactions mediated by HIPVs (Shiojiri et al. 2010, Cai 
et al. 2011). Here, we studied whether the phenological stage of corn 
seedlings influence the attraction of the predatory lacewing to volatiles 
emitted by seedlings infested with the corn aphid. As corn seedlings 
gradually become less resistant to the corn aphid due to reducing 
levels of DIMBOA, we hypothesized that later phenological stages of 
corn seedlings would emit more attractive volatiles to the predator 
since the aphid infestation is greater. 

Our results confirmed our initial hypothesis that plant phenological 
stage interferes on the prey density, likely leading to consequences in 
the blend of HIPVs and the natural enemy behavior. The predatory 

lacewing C. externa was attracted to HIPVs emitted by corn seedlings 
older than V5 stage, which coincided with greater aphid colony 
settlement on the plant.

Figure 2. Rhopalosiphum maidis colony size (mean ± SE) on corn seedlings at V5, 
V6 and V7 phenological stages. Seedlings were initially infested with 100 aphids 
(varying ages) and left for 72h before counting. 

Several works have demonstrated that concentration of DIMBOA is 
reduced along the course of corn plant development and, because of its 
feeding deterrent effect, aphid survival and reproduction are negatively 
affected (Argandoña et al. 1980, Corcuera et al. 1982, Bohidar et al. 
1986, Hansen 2006, Ahmad et al. 2011). Although we did not measure 
DIMBOA concentration, our results suggest that the concentration in 
corn seedlings drastically reduces from V5 stage to V6 stage. Aphid 
initial population on corn seedlings at V5 stage decreased about 60% 
after 72h, while this reduction was of 10% in corn seedlings at V6 stage. 
The remnant aphids on corn seedlings at V5 stage might also feed less 
on the plant because of the antifeedant effect of DIMBOA.

Therefore, the lack of attraction of aphid-infested corn seedlings 
at V5 stage to the lacewing was likely due to the herbivore induction 
level, considering the low aphid population and the antifeedant effect 
of DIMBOA. As a result, aphid-infested corn seedlings at V5 stage may 
not have released HIPVs, or the blend composition of HIPVs emitted 
was not recognized by the predatory lacewing. In contrast, the two-fold 
larger aphid population on corn seedlings at V6 and V7 was sufficient 
for inducing the emission of an attractive blend of HIPVs to C. externa 
larvae. Future studies should measure DIMBOA levels and compare 
volatile chemical profiles of corn seedlings at V5 to V7 stages upon 
different levels of aphid infestations.  
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