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Abstract

The maintenance of riparian forests is considered one of the main vegetative practices for mi-
tigating the degradation of water resources and is mandatory by law. However, in Brazil there is still 
a progressive and constant decharacterization of these areas. Facing this reality, it is necessary to 
broaden researches that identify the occurring changes and provide efficient solutions at a fast pace 
and low cost. Remote sensing techniques show great application potential in characterizing natural 
resources. The objective of this work was to map, to characterize the land use and occupation and to 
verify the best method of high spatial resolution image classification of the Permanent Preservation 
Areas of the Funil Hydroelectric Power Plant reservoir, located between the municipalities of Lavras, 
Perdões, Bom Sucesso, Ibituruna, Ijací and Itumirim, in the state of Minas Gerais. The methods used 
to classify the high spatial resolution image from the Quickbird satellite were visual, object-oriented 
and pixel-by-pixel. Results showed the best method for mapping land use and occupation of the study 
area was object-oriented classification using the K-nearest neighbor algorithm, with kappa coefficient 
of 0.88 and global accuracy of 91.40%.
Keywords: Remote sensing. Riparian forests. Kappa coefficient. Overall accuracy.

Introduction

Permanent Preservation Areas (PPA) are vitally important for the environmental and ecological 
balance of the planet, since they must be covered with their original vegetation and are not suitable 
for land-use alterations (DIETZOLD; WENDEL, 2004). The concept of PPA comes from the society 
acknowledgement about the importance of conserving vegetation in localities near watersheds and 
their components (BRASIL, CONAMA no. 303, 2002). Due to its importance, it is currently necessary 
to monitor these areas efficiently (MASCARENHAS et al., 2009), since even though suppression is 
prohibited, riparian forests are directly affected by the construction of hydroelectric dams, road ope-
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nings in places with a rugged relief, implementations of agricultural crops and pasture (FERREIRA; 
DIAS, 2004). Riparian forests are transition areas between the terrestrial and aquatic ecosystems 
and have the function of regulating energy and nutrient transfers from one ecosystem to the other 
(CAVALCANTI; LOCKABY, 2006; COLLINS et al., 2010; CORRELL, 2001; KAGEYAMA et al., 2002; 
LIMA, 1998). When located in agricultural areas, they prevent or minimize the sediment movement 
generated by erosive processes (ADDISCOTT, 1997). 

Amongst many initiatives from social and governmental organizations, certain actions are con-
sidered promising, such as the laws governing the use of natural resources. In Brazil, the Brazilian 
Forest Code, regulated by the Law No. 12,651, of May 25, 2012, establishes the fixed vegetation 
areas to be protected around artificial lakes, with the role of permanent preservation (BRASIL, 2012).

The definition of the area around the reservoir of the Funil Hydroelectric Power Plant (Funil 
HPP) is stipulated in the Environmental Plan for Conservation and Use of the Artificial Reservoir Envi-
ronment (PACUERA, 2011), which defines it as a direct contribution area, i.e. reservoir slopes, which 
physically interfere directly in the conservation of water quality. This area, although not flooded, has 
a close relationship with the reservoir and may be affected by it, it is delimited by an imaginary line 
that connects the marginal ridges, parallel to the flood quota (PACUERA, 2011).

Despite the laws that regulate the maintenance and restoration of reservoir areas, there is still 
a progressive and constant uncharacterization of these areas. Among the main causes, it can be cited 
the absence of an official demarcation, the state’s failure to promote efficient environmental monito-
ring and the unavailability of knowledge and operational methods that enable these inspections.

Geographic Information Systems (GIS) can serve as an auxiliary tool in the control and enforce-
ment of PPAs by joining remote sensor data with digital image processing techniques (VALLE JUNIOR 
et al., 2010; SOARES et al., 2011; ROVANI; CASSOL, 2012; COSTA et al. 2013).

GIS allows spatial analysis through the use of various environmental elements in an integrated 
manner, generating efficient results quickly and at low cost (PORTES et al., 2009).

Studies made by Santos and collaborators (2014) have shown the importance of remote sen-
sing on biomass estimation and structural analyses of tropical forests, where techniques were used to 
analyze regional phenological patterns and to quantify the impacts of natural and man-made environ-
mental changes on these ecosystems and the importance of the combined use of these techniques in 
an attempt to understand these changes quickly and efficiently.

A difficulty commonly encountered in remote sensing studies is the availability of fast and pre-
cise methods for obtaining land use and land cover maps. The visual classification of high-resolution 
satellite images is a very precise technique. However, it becomes unfeasible when applied in large 
areas due to the great time demand to perform it. A recently used alternative was digital classification, 
at which algorithms allowed an automatic pixel-by-pixel classification. However, maps resulting from 
this classification did not present good quality and required constant post-classification edits.

For overcoming limitations, such as the great demand for time in classifications and large 
study areas, the techniques of segmented and supervised image classification are emerging. These 
techniques consider spatial and texture information in high spatial resolution, in addition to spectral 
information in its evaluation. Therefore, this study aimed to compare different high spatial resolution 
image classifiers in order to evaluate and quantify the differences as to the accuracy of each classifier 
in the Funil Hydroelectric Power Plant (Funil HPP) artificial reservoir’s PPA.
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Material and methods

Study area

The study area is located in the area surrounding the Funil HPP as shown in Figure 1, it be-
longs to the upper Grande river basin and it is located in the south of Minas Gerais state. UHE Funil 
encompasses 33 municipalities, it covers an area of approximately 9,000 km², it has a drainage area 
of 240 km and it reaches a population of about 365,000 inhabitants (UPGRH-GD1, 2015).

Figure 1 – Funnel Hydroelectric Power Plant Reservoir and Surrounding.

Source: Soares (2019). 

Located in an area with undulating relief, its dominant vegetation is the transition between 
Atlantic Forest and Cerrado (FERREIRA, 2005). According to the Köppen classification, the climate of 
the region is Cwb type (subtropical highland). UHE Funil is inserted in the upper Grande river basin, 
upstream of the Furnas reservoir, its most important tributaries are the Mortes river and the Capivari 
river, which, when meeting Grande river, form the Funil HPP reservoir.
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Quickbird imaging

For this study, two images provided by the Funil HPP company were used, shown in Figure 2. 
The product supplied is a mosaic of Quickbird satellite images, orthorectified, dated of July 30, 2009 
and August 7, 2009, containing three multispectral bands (RGB-321) in true color rendering.

Figure 2 – Merged Image into True Color Composition (RGB 321).

Source: Soares (2019). 

The spectral bands in which the characteristics are shown in Table 1 were fused using the 
Gram-Schmidt method, simulating a panchromatic band from the low spatial resolution multispectral 
bands (RSI, 2009), generating an image with spatial resolution of 61 centimeters and radiometric 
resolution of 11bits. The mosaic of images totals an area of 470 km².
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Table 1 – QUICKBIRD satellite data.

Sensor Spectral Bands
Spectral 

Resolution
Spatial 

Resolution
Temporal 
Resolution

Imaged 
Area

Radiometric 
Resolution

Panchromatic 
Pa n c h r o m a t i c 
(PAN)

445 - 900 µm 61 a 72 cm

1 a 3,5 
days

16,5 x 16,5 
km

11 bits
Multispectral

Blue (B) 450 - 520 µm

2,4 a 2,8 m
Green (G) 520 - 600 µm

Red (R) 630 - 690 µm

Near Infrared 
(NIR)

760 - 900 µm

Source: Digital Globe (2017).

The project execution steps are: data collection; information gathering; image segmentation; 
image classifications and statistical analysis of the results according to the flow chart presented in 
Figure 3.

Figure 3 - Flowchart of the methodology used.

Source: Soares (2019).
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Planialtimetric survey

For the definition of PPA, a planialtimetric survey from the reservoir was converted into the sha-
pefile format. This survey measured the difference between the geoid and the ellipsoid to define the 
normal operating quota (808.00 m quota) and the maximum maximorum quota (810.61 m) already 
established by the venture project. This survey was processed using the AutoCAD 2010® program. 
The planialtimetric survey was performed using GPS/GNSS Trimble R6 (L1/L2) receivers. The survey 
was based on the specific dimension reference ellipsoid. The ripple model used in the survey was the 
IBGE’s MAPGEO2010.

The equipment features a Real Time Kinematic (RTK) radio correction system. The RTK positio-
ning concept is based on instantaneous transmission of satellite signal correction data from receivers 
installed at the reference vertex to the receptor that runs through the vertices of interest. This provides 
instant and real-time knowledge of precise coordinates for the survey vertices.

Field reference

To create the field reference map, we used the visual classification performed in the ENVI EX 
4.8® software, with field corrections in areas of the survey considered doubtful during the classifica-
tion. For visual classification, the quality requirements imposed by Brazilian legislation in the Decree 
No. 89,817 of June 20, 1984 were followed, mapping on a fixed classification scale of 1:1,000.

Visual classification was performed throughout the surrounding area based on the images 
acquired from the reservoir. For the surrounding area, eight types of land use were discriminated, 
classified in: “water bodies”; “anthropic use”, “pasture”; “natural vegetation”; “exposed soil”, “mining”, 
“rocky outcrop” and “crops”.

Pixel-by-pixel Maximum Likelihood image classification (MAXVER)

For pixel-by-pixel classification, the MAXVER algorithm from ENVI EX 4.8® software was used, 
samples of 200 pixels were collected for each land use class, representing 7.6x10-8 % of the total 
image area. After the classification, the raster was cut based on the PPA delimitation shapefile, gene-
rated by the planialtimetric survey, and as a result only the classes: “water bodies”; “anthropic use”, 
“pasture”; “natural vegetation”; “exposed soil” and “crops” were identified in the intended area. In this 
classification, only the spectral information of each pixel is used to classify the images.

Object oriented image classification

In this stage, segmentation and object-oriented classification were performed using the three 
visible bands (RGB-321) fused with the panchromatic band (PAN) of the Quickbird satellite.

Segmentation

Image segmentation algorithms are used to extract image information, especially in high re-
solution images. These algorithms aim to divide an image into spatially continuous, separate and 
homogeneous regions.

The segmentation was performed in the ENVI EX 4.8® software, this process partitions the image, 
subdividing it. The level of detail is associated with the detection of objects and regions of interest, 
which in this study were the identified classes. The process of segmentation by feature extraction 
is based on the algorithm that simulates a watershed by immersion, the so-called “watersheds by 
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immersion” (SARMIENTO et al., 2014; CAMPOS et al., 2013; VINCENT; SOILLE, 1991). The initial 
step is the extraction of image features, using an object-based approach to segment images, defined 
from a region of interest with spatial, spectral (brightness and color) and textural characteristics 
that define the region (AGUIRRE-GUTIÉRREZ; SEIJMONSBERGEN; DUIVENVOORDEN, 2012; 
BLASCHKE, 2010; YAN et al., 2006).

The algorithm requires only one input parameter, scale level, at which the pixel similarity is de-
fined. Choosing a higher level of scale, fewer segments were defined, while on a low level scale, more 
segments emerged to be defined, that is, on a scale from 0 to 100, 0 refers to supersegmentation 
and 100 to no segmentation. Then segment fusion was performed, small segments were aggregated 
within large areas, this parameter defines the fusion level ranging from 0 to 100, at which there is 
the merging of adjunct segments based on a combination of spatial information and spectral. These 
values, assigned to the scale and fusion level, were set based on the preview provided by the software.

The values used were reached through attempts and repetitions in the search to find the best 
results. For this study, the merge value used was 90%, the scale level in the segmentation was 40% 
and the refinement of the segmentation was made using contrast to compare other areas of the image.

Classification using K-nearest neighbor (KNN) and Support vector machine (SVM)

For the classification, samples of “water bodies”; “anthropic use”; “pasture”; “natural vege-
tation”; “exposed soil”; “mining”; “rocky outcrop” and “crops” were collected. Afterwards, all para-
meters provided by the ENVI software for spatial, texture, spectral and custom attributes, described 
below, were considered:

• Spatial: area, length, compactness, convexity, solidity, roundness, form factor, elongation, 
rectangle measurement, major direction, major axis length, minor axis length, number of polygon 
holes, and total polygon area of the external contour;

• Texture: texture distance, texture average, texture variance, texture entropy;
• Spectral: minimum, maximum, average values and standard deviation of the pixels that make 

up bands 1, 2 and 3 (RGB).
In order to extract information and recognize homogeneous patterns and objects, the KNN and 

SVM methods available by the software were adopted.
The KNN classification algorithm is a pattern recognition technique in which the software requi-

res the selection of parameter k values, which is the number (k) of neighbors considered during the 
classification (XU et al., 2013). The values 1, 3, 5 and 7 (only odd values are used) were tested for 
the parameter K, which represents the number of neighbors tested in the classification, and the value 
1 was selected for presenting better results.

The SVM algorithm determines decision boundaries for class separation as well as error mini-
mization (MOUNTRAKIS; JUNGHOIM, 2010). The kernel radial basis function was selected, recom-
mended by Pereira et al. (2011) and Roza and Ribeiro (2013). The gamma and parameter values 
used were 0.03 and 100, which are defaults suggested by the program.

After the classification, a raster clipping was performed based on the APP delimitation shapefile, 
generated by the planialtimetric survey, and as a result only the classes: “water bodies”; “anthropic 
use”; “pasture”; “natural vegetation”; “exposed soil” and “crops” were identified in the intended area.
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Post classification

Subsequently to the classifications using the KNN, the SVM and the MAXVER algorithms, a 
post-classification was performed. In other words, a comparison of the thematic maps resulting from 
the classifications with the field reference map to analyze the accuracy of the classifications was made.

In the post-classification process, the accuracy of thematic maps was accessed based on the 
confusion matrices, resulting in the following analyzes: kappa coefficient, overall accuracy, user accu-
racy (from the user’s point of view) and producer accuracy (from the producer point of view).

Global Accuracy is obtained by dividing the sum of correctly classified pixels contained in the 
main diagonal by the total number of pixels with the result as a percentage of hits, and the minimum 
accepted for using in maps is 85% (JENSEN, 1996). The overall accuracy and ratio between the sum 
of all elements correctly classified by the total number of elements were calculated in Equation 1:

   (1)

At which:

G.A. = Global Accuracy;

xii = Elements of the main diagonal;

r = Number of classes;

n = Total number of samples.

User accuracy is calculated by dividing the total number of correctly classified pixels in a 
class by the total number of pixels classified in that class and it refers to commission errors from the 
probability that a classified pixel in the image will represent the class in the field. User accuracy is 
expressed by dividing the number of correctly classified elements in a class by the total number of 
elements classified in it, and producer accuracy is calculated by dividing the total number of correctly 
classified pixels in a class by the total number of pixels of this class, indicated in the field reference.

The kappa coefficient proposed by Landis and Koch (1977) accounts for the entire confusion 
matrix in its calculation, including the elements outside the main diagonal, which represent the disa-
greements in the classification and was calculated using Equation 2.

(2)

At which:
k = Concordance Kappa coefficient;
N = number of observations (field truths);
xii = observations on row i and column i (main diagonal);
xi + = marginal total of line i;
x + i = marginal total of column i.  



53

Revista Agrogeoambiental - v. 11, n. 3, set. 2019

Results and discussion

Reference map

The field reference map was classified encompassing the entire reservoir surrounding area, to-
taling 21,195.91 hectares. In this map, eight land use classes were identified, of which 13,107.67 
ha belonged to “pasture” class; 3,792.98 ha “natural vegetation” class; 2,817.97 ha “crops” class; 
573.53 ha “water bodies” class; 349.85 ha “anthropic use” class; 345.01 ha “exposed soil” class; 
170.67 ha “mining” class and 38.23 ha “rocky outcrop” class, according to Table 2.

Table 2 - Quantification of surrounding area - visual classification. 

Classes Classified Area (ha) Percent Classified (%)
Pasture 13.107,670 61,84

Natural vegetation 3.792,980 17,89

Crops 2.817,970 13,29

Water bodies 573,530 2,71

Anthropic use 349,850 1,65

Exopsed soil 345,010 1,63

Mining 170,670 0,81

Rocky outcrop 38,230 0,18

Total 21.195,910 100

Source: Soares (2019). 

Funil HPP’s PPA visual classification

The area of interest considered in the study (PPA) are the areas comprised between the ope-
ration quotas of the Funil HPP (areas between the 808 and 810.61 quotas), at which in an area of 
1043 ha, five land use classes were found, being 631.930 ha from “pasture” class; 294,763 ha 
“natural vegetation” class; 47,786 ha “crops” class; 45,408 ha “exposed soil” class and 23,597 ha 
“anthropic use” class.

The identification of the classes was made through contiguous visual classification and the field 
checks served as a guide for the creation of the field reference map that was used for the analysis of 
the classifier’s veracity. In many studies, the use of visual classification is taken as a field reference 
and also as the most reliable means of identifying classes in an area. All values and classes obtained 
by the different classification methods were described in Table 3.
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Table 3 – APP quantification according to proposed methods.

 Classes
VISUAL KNN SVM MAXVER

(ha) % (ha) % (ha) % (ha) %

Pasture 631,930 60,55 562,933 51,95 600,226 57,52 501,633 48,07

Natural vegetation 294,763 28,24 304,160 31,76 256,202 24,55 376,460 36,07

Crops 47,786 4,57 107,776 9,94 116,253 11,14 35,018 3,35

Exopsed soil 45,408 4,35 44,019 4,06 57,204 5,48 82,102 7,86

Anthropic use 23,597 2,26 24,597 2,27 13,600 1,30 48,271 4,62

Total 1043,4840 100 1083,484 100 1043,484 100 1043,4840 100

Source: Soares (2019).

Classification using MAXVER algorithm

The results obtained from the MAXVER classifier algorithm found five classes that discriminate 
the land use. These classes quantified area values of 501.633 ha of “pasture” class; 376.460 ha 
“natural vegetation” class; 35.018 ha “crops” class; 82.102 ha “exposed soil” class and 48.271 ha 
“anthropic use” class.

Analyzing the data from the MAXVER algorithm in the land use and soil occupation classifi-
cation in the Funil HPP reservoir’s APPs, the obtained kappa coefficient showed the classification 
efficiency, reaching a “Very Good” kappa coefficient (0.68) according to Landis and Kock (1977) and 
an overall accuracy coefficient of 79.89%. Bolfe et al. (2004), when performing supervised classifi-
cations using the MAXVER method in an attempt to quantify different populations of three different 
vegetation classes, reached a kappa coefficient of 0.84 and an overall accuracy of 85.23%. The 
authors concluded that the kappa coefficient demonstrated consistency in assessing the accuracy of 
the mappings produced by the Maximum Likelihood method.

Object oriented classification using the Support Vector Machine (SVM) algorithm

The results obtained from the SVM classifier algorithm found five classes that discriminate land use. The 
area values   for these classes were: 600.2254 ha class “pasture”, 256.2016 ha class “natural vegetation”, 
116.2529 ha class “crops”, 57.2037 ha class “exposed soil” and 13.5994 ha class “anthropic use”.

Analyzing the data from the SVM algorithm on land use classification in the Funil HPP reservoir 
APPs, the obtained kappa coefficient showed the classification efficiency, reaching a “Very Good” kappa 
coefficient (0.80) according to Landis and Kock (1977) and an overall coefficient of accuracy of 86.29%.

Image classification using the K-nearest neighbor (KNN) algorithm

The classifier algorithm KNN obtained five classes that discriminate the land use. These classes 
quantified area values   of 501.6337 ha for the “pasture” class, 304.1596 ha for the “natural vegeta-
tion” class, 107.7757 ha for the “crops” class, 44.0180 for the “exposed soil” class, and 24.5970 
for the “anthropic use” class.

In the present work, the kappa coefficient aiming to analyze the discrimination of land use and 
occupation classes using the classified KNN algorithm showed the classification efficiency, reaching 
an “Excellent” kappa coefficient (0.88) according to Landis and Kock (1977), and an overall coeffi-
cient of accuracy of 91.40%.
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Image

Figure 4 shows the results obtained by both classifications in a given area. It is possible to 
compare the difference of the classes found in each of the classification algorithms used with the 
visual classification.

Figure 4 – Comparison of classifiers MAXVER, SVM, KNN with visual rating.

Source: Soares (2019).

Coeficiente Kappa e Coeficiente de Exatidão Global

Statistical values obtained from the classifiers are described in Table 2.

Table 2 - Kappa coefficient values and overall accuracy for each classification method analyzed.

Classificações Coeficiente Kappa Overall accuracy (%)

K-nearest neighbor (KNN) 0,88 91,4

Support vector machine (SVM) 0,80 86,29

Maximum likelihood (MAXVER) 0,68 79,89

Source: Soares (2019).
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It is possible to observe in Table 2 that the kappa coefficient and overall accuracy resulting from 
the K-nearest neighbor classification were higher than the others. The object-oriented classification 
at which the spectral, spatial and texture attributes are considered obtained a better result when 
compared to the pixel-by-pixel classification, at which the classifier algorithm considers only the 
spectral information attribute. Through this result, it was found that the classifier based on object-
oriented image analysis satisfactorily perform their functions in the PPA classification.

By analyzing Figure 5, which shows the results obtained through the three classification 
algorithms that contemplated this study, MAXVER, KNN and SVM, it was observed the classifier that 
resulted in values closer to the reference map was the KNN algorithm. This also achieved the best 
statistical results for kappa coefficient and overall accuracy. However, the other classifiers performed 
their functions satisfactorily, with their particularities, considering that for discrimination of certain 
classes, the other algorithms reached values higher than the KNN as is the case of the “Pasture” and 
“Exposed Soil” class.

Figure 5 – Quantification of study area classes using reference map and KNN, MAXVER and SVM classification 
algorithms.

Source: Soares (2019).

User and Producer Accuracy

For the KNN classification, the best values for user accuracy were observed for the “natural ve-
getation”, pasture”, “anthropic use” and “exposed soil” classes, obtaining lower values for the “crops” 
class. These values refer to commission errors from the probability that a classified pixel in the image 
will represent the class in the field, as shown in Table 3.
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Tabel 3 – Comparison of User and Producer accuracy to each class among SVM, KNN AND MAXVER. 

Classe informacional
SVM KNN MAXVER

Usu. Prod. Usu. Prod. Usu. Prod.
Natural vegetation 89,21 93,49 98,16 85,9 74,15 73,74

Pasture 82,43 96,08 83,78 99,36 97,99 64,3

Crops 87,28 59,95 78,73 89,31 13,54 29,09

Anthropic use 87,41 92,3 93,2 90,96 1,21 2,88

Exposed soil 96,71 61,79 99,8 92,31 69,1 72,46

Source: Soares (2019).

For producer accuracy, the KNN classifier obtained better results for the “pasture”, “exposed 
soil” and “anthropic use” classes, obtaining lower producer accuracy values for the “natural vegeta-
tion” and “crops” classes. These values refer to omission errors, which is the probability that a refe-
rence pixel will be correctly classified.

Conclusion

The K-nearest neighbor classifier was the algorithm that provided the best potential for discri-
minating Permanent Preservation Areas in high spatial resolution images. Thus, the use of the seg-
mentation method combined with object-oriented classification is recommended in order to evaluate 
different classes of land use and in the inspection and monitoring of protected areas.

Comparação de classificadores supervisionados na discriminação 
de áreas de preservação em reservatório hidrelétrico

Resumo 

A manutenção de matas ciliares, considerada uma das práticas vegetativas de mitigação da 
degradação dos recursos hídricos, é exigida por lei. Contudo, no Brasil, ainda há uma progressiva e 
constante descaracterização dessas áreas. Diante de tal realidade, torna-se necessário ampliar pes-
quisas que identifiquem as mudanças ocorridas e forneçam soluções eficientes com rapidez e baixo 
custo. Técnicas de sensoriamento remoto demonstram grande potencial de aplicação na caracteriza-
ção dos recursos naturais. O objetivo deste trabalho foi mapear, caracterizar o uso e a ocupação do 
solo e verificar o melhor método de classificação de imagem de alta resolução espacial das Áreas de 
Preservação Permanente do reservatório da Usina Hidrelétrica de Funil, localizada entre os municí-
pios de Lavras, Perdões, Bom Sucesso, Ibituruna, Ijaci e Itumirim no Estado de Minas Gerais. Os mé-
todos utilizados para classificação da imagem de alta resolução espacial do Satélite Quickbird foram: 
visual, orientada a objetos e pixel a pixel. Os resultados demonstraram que o melhor método para o 
mapeamento de uso e ocupação do solo da área de estudo foi a classificação orientada a objetos, uti-
lizando o algoritmo K-nearest neighbor, com coeficiente kappa de 0,88 e exatidão global de 91,40%.
Palavras-chave: Sensoriamento remoto. Matas ciliares. Coeficiente kappa. Exatidão global.
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