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Abstract: The broad expanse of the urban metropolitan area of São Paulo (MASP) has made buses,
the predominant public transport mode for commuters in the city. In 2016, the bus fleet in the MASP
reached 56,354 buses and it was responsible for more than 12 million daily trips. Here, we evaluate
for the first time, the emission profile of gaseous and particulate pollutants from buses running on
7% biodiesel + 93% petroleum diesel and their spatial distribution in the MASP. This novel study,
based on four bus terminal experiments, provides an extensive analysis of atmospheric pollutants of
interest to public health and climate changes, such as CO2, CO, NOx, VOCs, PM10, PM2.5 and their
constituents (black carbon (BC) and elements). Our results suggest that the renovation of the bus fleet
from Euro II to Euro V and the incorporation of electric buses had a noticeable impact (by a factor
of up to three) on the CO2 emissions and caused a decrease in NO emissions, by a factor of four to
five. In addition, a comparison with previous Brazilian studies, shows that the newer bus fleet in the
MASP emits fewer particles. Emissions from the public transport sector have implications for public
health and air quality, not only by introducing reactive pollutants into the atmosphere but also by
exposing the commuters to harmful concentrations. Our findings make a relevant contribution to the
understanding of emissions from diesel-powered buses and about the impact of these new vehicular
technologies on the air quality in the MASP.
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1. Introduction

In 2015, pollution was responsible for 16% of all premature deaths worldwide. Atmospheric pollutants,
in particular, have been responsible for the deaths of more than four million people [1]. In the metropolitan
area of Sao Paulo (MASP) several studies had analyzed the impacts of air pollution on human health.
The findings reported that about ten thousand deaths per year are associated with air pollution in the
MASP [2,3]. Although the road transport sector has been responsible for air quality degradation in urban
areas, the public transit sector can be an essential agent in the control of emissions, mainly by using
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alternative fuels and more current bus engines [4]. Commuters are exposed to air pollution in different
ways, depending on the mode of transport, the position of the commuter in relation to the pollutant
concentration gradients, and the microenvironmental conditions for pollutant dispersion [5].

In addition to gaseous pollutants, the concentrations of particulate matter (PM) in the atmosphere,
mainly fine PM (PM2.5), have important implications for human health [6,7]. Several studies have
demonstrated detrimental health effects linked to PM exposure, including cardiovascular, pulmonary,
and cognitive effects [6,7]. In general, the fine fraction of PM is primarily composed of elemental carbon
or black carbon (BC), organic carbon, sulfate, nitrate, ammonium, and other inorganic constituents [8,9].
The principal sources of BC are related to combustion processes, such as diesel-emissions and
biomass-burning. Some studies suggested that BC is a better indicator of harmful substances than
those observed in PM2.5 or PM10 [10]. The impact of BC on the climate system is not well-known [11].
Some researchers have suggested that BC is one of the most important contributor to anthropogenic
radiative forcing, after CO2 [12]. However, in terms of climate effects it is important to consider not only
the emission of BC but also the role of co-emitted aerosols and gases [11]. The atmospheric processing after
their emissions, due to transportation and physico-chemical transformation after emission, increases the
complexity of evaluating BC climate effects. It is noteworthy that more than 60% of the total BC emissions
in Latin America and the Caribbean (approximately 508 Gg/year, responsible for up to 10 per cent of total
global anthropogenic emissions of BC) originate in Brazil and Mexico, the transport sector and residential
combustion of solid fuels being the two main sources [13].

In megacities (those with over 10 million inhabitants), commuting is a highly complex process
and requires multi-modal transport systems [14]. The MASP in Brazil is one of the greatest urban
agglomerations in the world, with a population of more than 21 million inhabitants in 8000 km2 [15].
In the MASP, the vehicle fleet comprises more than 7 million vehicles [16], which has resulted in traffic
congestion, impairing the quality of life, mainly during commute hours. A study conducted in 2007
showed the following distribution of commute modes in the MASP [17]: 28% by bus, 28% by passenger
car; 10% by subway and train; 2% by motorcycle; and only 0.3% by taxi. It is noteworthy, however,
that 31% of commutes were made by walking and 0.6% were made by bicycle, and that such commutes
counter the risks of exposure to air pollution by contributing to the improvement of health [5].

The vehicle fleet in the MASP burns gasohol (25% anhydrous ethanol + 75% gasoline),
hydrous ethanol (5% water + 95% ethanol), or a diesel blend (7% biodiesel + 93% petroleum diesel).
All buses and trucks are powered by diesel, compared to only 3% of light-duty vehicles (LDVs). In the
MASP, the bus fleet increased from 44,062 buses in 2006 to 56,354 buses in 2016, when more than
12 million trips were made, daily [17]. It is noteworthy that although the population increased in this
period, a commensurate increase in the size of the bus fleet assured that the ratio of inhabitants
to buses remained almost constant, approximately 370 inhabitants per bus in the last six years
(Figure 1). According to the official emission inventory of the transport sector, buses contributed only
approximately 10% of the total vehicular fleet [16]. However, bus emissions are concentrated in the
densely populated areas, such as bus terminals and corridors, affecting a large number of citizens
during commute hours.
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Figure 1. Annual evolution of the total population, bus fleet, and ratio of inhabitants to buses in the
metropolitan area of Sao Paulo (MASP), from 2006 to 2016 [16].
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The primary source of air pollutants in the MASP is its over seven million vehicles, which are
responsible for over 90% of all emissions of CO, nitrogen oxides (NOx), and hydrocarbons (HC).
In 2016, LDVs accounted for 73% of CO emissions and 63% of HC emissions, whereas heavy-duty
vehicles (HDVs) accounted for 48.8% of NOx emissions [16]. Although fuel consumption increased
between 2006 and 2016, the emissions inventory for CO, NOx, aldehydes, and PM showed decreasing
trends, due to the control of emission factors [18,19]. The reduction in pollutant emissions is due
to regulatory programs instituted by the Brazilian government, primarily the Programa de Controle
da Poluição do Ar por Veículos Automotores (PROCONVE, Program for the Control of Motor Vehicle
Emissions). The PROCONVE has been updated continuously to include new quality standards and
technological innovations, in order to reduce emissions and renovate the fleet, as well to expand
the use and production of biofuels. In the PROCONVE phase 7, which corresponds to EURO V,
new diesel motors (produced in 2013 and thereafter) are required to run on ultra-low-sulfur diesel
fuel (sulfur—10 mg kg−1), although older trucks and buses can still run on low-sulfur diesel fuel
(sulfur—500 mg kg−1) [20]. After 2017, all diesel fuel has been blended with 8% soy biodiesel.

Buses have been shown to constitute the main public transport mode used by commuters, in
the urban and metropolitan regions of the MASP [17]. Although several campaigns to assess air
quality and emissions have been carried out in the MASP, in recent years, the contribution of HDV
emissions from buses is still unknown. In this study, we assessed for the first time the emission source
profiles and spatial distribution of gaseous and particulate pollutants from buses burning on-road
diesel (7% biodiesel + 93% petroleum diesel) in the MASP, based on experiments carried out in four
different bus terminals.

2. Experiments

2.1. Sampling Sites

During 2016, intensive sampling campaigns were carried out at four bus terminals in Brazil,
three in the MASP—Santo André (SA), Guarulhos (GRU), and Diadema (DIA)—and one in the city of
Campinas (CAM), located 90 km west from the MASP. In 2016, the four terminals served a collective
total of more than 300,000 passengers per day (Table 1). These terminals are part of the two corridors
linking fourteen inter-city terminals and covering more than 80 km. Most buses circulating were
powered by engines meeting the EURO III standards, while electric buses circulated only at the SA
and DIA terminals (Table 1). The locations of the bus terminals are shown in Figure 2.

At each terminal a small container was used to hold the monitors and instruments during the
sampling period. As can be seen from Figure S1, the container was located in the middle of the
boarding platform, next to the bus stop and the commuters. The inlet for gases and particles were
placed at height of 2 m from the ground. The same container was used in each terminal, as well as in
the inlets and monitor instruments.

Table 1. Characteristics of the four bus terminals under study in 2016.

Terminal Sampling Period Passengers Per Day Number of Buses on
Weekdays/Weekends

SA May 12–30 89,000

Electric: 330/95
EURO II: 605/400

EURO III: 2315/1105
EURO V: 332/114

GRU June 3–16 39,000
EURO III: 1380/727
EURO V: 779/412

CAM September 26–October 6 70,000
EURO II: 22/12

EURO III: 1798/982
EURO V: 547/288

DIA December 5–19 113,000

Electric: 389/152
EURO II: 104/49

EURO III: 1789/802
EURO V: 459/204
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2.2. CO2 and Conventional Gaseous Air Pollutants

At all four bus terminals, CO2 and CO were measured with photoacoustic infrared
spectroscopy (INNOVA 1412i; LumaSense, Santa Clara, CA), whereas NOx was measured with
chemiluminescence (42i analyzer; Thermo Fisher Scientific Inc., Franklin, MA, USA). The analyzers
were inspected and tested in the laboratory, before and after the field campaigns, in order to provide
high-quality measurements.

2.3. VOC Sampling and Analytical Methods

The HCs (C6–C11) were actively sampled by using adsorbent tubes, filled with Tenax-TA
(Perkin-Elmer, Waltham, MA, USA). The samples were subsequently thermal desorbed and
preconcentrated in a cryogenic trap, followed by chromatographic analysis in a thermal desorption-gas
chromatography-flame ionization detector system. Before sampling, stainless-steel absorbent tubes
(90 × 5 mm) were conditioned for one hour, at 250 ◦C with an N2 (6.0) flow of 100 mL/min. Sampling
inside the SA bus terminal was performed in duplicates, throughout, approximately for 1 h, at a flow
of approximately 70 mL/min and at room temperature (20–25 ◦C), on 23 May 2016. After sampling,
the Tenax-TA-tubes were taken to the laboratory where automatic thermal desorption was performed
(Turbo Matrix 650 ATD; Perkin-Elmer, Waltham, MA, USA). For this, the tubes were heated up to 250 ◦C,
for 10 min, using He (50 mL/min) as a carrier gas. The desorbed compounds were collected in the
trap at −30 ◦C, filled with solid carbon-adsorbents. Thereafter, the trap was heated at 325 ◦C, and the
compounds were directed toward the analytical system. The HC identification was performed in a gas
chromatograph, coupled with a flame ionization detector (GC-FID Clarus 500; Perkin-Elmer) [21].

Carbonyl sampling followed the Compendium Method TO-11 of the US EPA guidelines [22].
At the SA terminal, each sample was collected in a 2,4-dinitrophenylhydrazine-coated silica gel
cartridge, for 2 h, at an airflow rate of 0.9 L min−1, from 10 am to 8 pm, also on 23 May 2016.
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Analyses were performed by high-performance liquid chromatography, with UV-visible detection
at 365 nm [23].

2.4. PM Sampling and Analytical Methods

At each bus terminal, PM samples were collected over an 18 h period (from 4 a.m. to 10 p.m.) with
a system built in our laboratory. It consists of ten stacked filter unity (SFU), one pump, flowmeter, hour
meter [24], and an automatic control system to change the SFU, according to the predefined sampling
schedule. Each SFU consists of a polycarbonate filter holder, for two sequential filters constructed by the
Norwegian Institute for Air Research (NILU, http://products.nilu.no/ProductsDivision/FilterHolders.
aspx), and using an inlet that provided a 50% cut-off diameter of 10 µm. Each SFU sampler was loaded
with a 47 mm diameter polycarbonate filter, with pore sizes of 8 and 0.4 µm, for collecting the fine
(PM2.5) and coarse (PM2.5–10) fractions, respectively.

The measurements of the PM mass concentrations were performed by an electronic microbalance
(MX5; Mettler-Toledo, Columbus, OH, USA). Filters were kept at ~22 ◦C and ~45% relative humidity,
for 24 h, prior to weighing. The measurements of the BC concentrations were performed by a digital
smoke stain reflectometer (model 43D; Diffusions Systems Ltd., London, UK).

Elemental composition analysis was performed by energy dispersive X-ray fluorescence
(EDX 700HS; Shimadzu Corporation, Analytical Instruments Division, Tokyo, Japan), as described
previously [3,25]. Here, we identified and quantified Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Zn, Ga,
Br, Zr, and Pb.

2.5. Enrichment Factors

Airborne particles are major carriers of metals, some of which possess toxic properties, in part
due to their biochemical activity, especially transition metals, such as Fe, V, Ni, Cr, Cu, and Zn.
This relationship is standardized through the use of information on the concentrations of certain
reference metals in the upper continental crust (UCC). The enrichment factor (EF) evaluates the
contribution of anthropogenic emission of elements in atmospheric PM samples. The calculus considers
the content of a potentially enriched element by its reference proxy, normalizing geochemical data to
assess grain size, mineralogy, and the contributions of anomalous elements. Therefore, the EF can be
estimated as follows:

EFX = (X/REF)air/(X/REF)UCC (1)

where (X/REF) is the concentration ratio of element X, in relation to a reference element.
The contribution of anthropogenic sources to the concentrations of PM elements can be evaluated by
the enrichment of resuspended soil dust, aluminum being chosen as a reference element due to its low
anthropogenic emission and the chemical composition of the UCC [26]. EF values, ranging from the
tens to the thousands, indicate anthropogenic contribution, and EF values close to single-digits indicate
that crustal erosion is the primary source of the metal or element in question. EF values higher than
100 indicate a significant alteration in the geochemical cycles of the element, caused by anthropogenic
activities [26].

3. Results and Discussion

3.1. Regulated Gaseous Pollutants and CO2

The official air quality monitoring network in MASP has thirty automatic stations where PM10,
PM2.5, CO, NO, and NO2 are measured, hourly, in addition to O3 and SO2 [16]. In 2016, the annual
mean concentrations were observed to be 29, 15, and 40 µg m−3 for PM10, PM2.5, and NO2, respectively,
and 0.8 ppm annual mean concentrations (8 h averages) for CO [16]. Table 2 summarizes the
atmospheric conditions in the MASP, during all campaigns. The atmospheric conditions, during the
campaigns at the four bus terminals did not present significant differences among average temperatures.
On the other hand, there were differences concerning rainfall, which was intense in May and June,

http://products.nilu.no/ProductsDivision/FilterHolders.aspx
http://products.nilu.no/ProductsDivision/FilterHolders.aspx
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during the days of the experiments. It must be highlighted that June (winter) is typically dry but it
rained 131 mm for five days, from 3 to 7 June 2016. Due to this intense rain, MASP suffered serious
problems with floods and traffic jams. Concerning the pollutants, MASP presented similar average
concentrations during the campaigns, except for NO, which varied from 9.6 in September–October
to 54.9 in June, the period which showed the highest pollutants concentrations. The concentrations
of pollutants observed inside the terminals were always higher than that outside, except for NO2 for
the experiments at the CAM and DIA terminals, corresponding to the periods with lower rainfall and
cloud cover, favoring atmospheric photochemical processes.

Table 2. Concentrations values for pollutants, temperature, and rainfall outside the terminals during
the campaigns [16,27].

Parameter unity 12–30 May 3–16 June 26 Sep–6 Oct 5–19 Dec

PM10 µg m−3 23.8 32.6 22.9 23.9
PM2.5 µg m−3 14.1 22.3 13.7 13.7
NO ppb 21.4 54.9 9.6 22.1
NO2 ppb 16.6 24.6 12.9 21.6
CO ppm 0.6 1.0 0.6 0.5

Temperature ◦C 17.3 12.7 16.7 22.0
Rainfall mm 150 131 18 57

Pollutant concentrations recorded at air quality monitoring stations located in the MASP and close to each
bus terminal. The data was obtained from Santo André-Capuava, Santo André-Paço Municipal, São Bernardo
do Campo-Centro, Diadema, São Caetano do Sul, São Paulo-Congonhas, São Paulo-Ponte dos Remédios,
Guarulhos-Pimentas, Campinas-Centro, Campinas-Vila União, and Campinas-Taquaral stations.

At all bus terminals, the concentrations of gaseous pollutants showed two peaks per day, in the
morning (6–8 a.m.) and in the afternoon (5–7 pm), as shown in Figure 3. The concentrations of these
gases were often lower on the weekends, when fewer buses were running. It is noteworthy that the
direct emission of NO by bus exhaust was the main source of the NOx (NO2 + NO), inside all terminals.
The hourly profiles of CO2, CO, and NO concentrations showed good agreement with the number
of buses circulating per hour. Buses with engines meeting the EURO III emissions standards were
more abundant than those with engines meeting the EURO II or EURO V standards (Figures S2–S5).
In addition, the mean CO and NO2 concentrations did not exceed the state air quality standards
(9 ppmv/8 h for CO and 128 ppbv/h for NO2), at any of the terminals under study.

All gases presented high concentrations on weekdays, being highest at the GRU terminal and
lowest at the CAM terminal (Figure 3). The median concentrations of CO2 at the GRU, DIA, SA,
and CAM terminals were 546, 526, 525, and 516 ppmv, respectively (Figure 3a). The median CO
concentrations at the GRU and SA terminals were comparable (1.4, and 1.6 ppmv, respectively),
with the highest concentrations being recorded at the DIA terminal (1.6 ppmv) and the lowest
concentration (0.9 ppmv) at the CAM terminal (Figure 3b). At the GRU terminal, the median NO
and NO2 concentrations were 126 and 34 ppbv, respectively (Figures 3c and 4d), compared with 103
and 31, at the DIA terminal; 86 and 22, at the SA terminal; and 48 and 26 ppbv, at the CAM terminal.
These concentration differences might be explained by differences in the characteristics of the bus
fleets and drive cycles.
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3.2. Emission Reductions and Future Outlook

As was previously mentioned, the discrepancies in gaseous concentration inside the four terminals
might be explained by differences in the characteristics of the bus fleets. For instance, all buses
circulating through the GRU terminal were running on the biodiesel-petroleum diesel blend, whereas,
some of the buses circulating through the SA and DIA terminals were electric (Table 1). Despite this,
a comparison based on atmospheric concentrations inside the terminals did not provide adequate
information to assess the contrasting bus fleet profiles. Thus, in order to explore whether ambient
concentration inside terminals were impacted by the differences in bus fleet type, emission ratios
(ER) were established by applying the linear regression fit method [28,29]. This method was used to
calculate the slope of the scatterplot between two compounds, CO2 or NO versus CO. Then, the slope
obtained in this model was expressed as ER. The ER allowed a comparison of the real bus emissions at
each terminal, removing the interferences of external parameters.

Figure 4 shows the CO2-to-CO and NO-to-CO ratios for the four bus terminals. Interestingly,
SA and DIA terminals presented the lower ER, whereas CAM terminal presented the highest.
The renovation of the bus fleet from Euro II to Euro V and the incorporation of electric buses seemed to
have a noticeable impact on the emissions of CO2 and NO. The ER displayed a decrease by a factor of
two to three in the CO2 emissions, when comparing the emission from older bus fleets (GRU and CAM,
respectively). Even more achievable results were observed for the NO/CO ratios, which showed a
decrease by a factor of four to five (compared to GRU and CAM, respectively). NO emissions are
commonly associated with diesel combustion engines, and their rate has been decreasing with the
improvements of Euro technology [30]. While in Euro II, NOx emission factors were 0.9 g/km, in Euro
V it decreased to 0.18 g/km. These changes could also explain the differences in the NO/CO emission
ratios, between DIA and SA. While both terminals showed a similar number of electric buses, the DIA
terminal also included a newer fleet with a lower number of Euro II vehicles and a higher proportion
of Euro V buses (pie-charts in Figure 4).
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Currently, a renovation plan of the MASP bus fleet is being developed, which aims to replace
diesel by hybrid, electric, bus trails, or biofuel powered buses. This plan was stated in 2009 to meet the
municipal agreement on climate change [31], by replacing 100% of the MASP fleet, by 2018. However,
only 2% of the fleet have been replaced by electric buses [14], until now. Our results suggest that the
incorporation of buses with new technologies, such as electric buses, can have a considerable impact
in the reduction of NO and CO2 emissions, by up to 40%. Hence, these findings strengthened the fleet
renovation policies, as well as the introduction of lower emission vehicles (i.e., electric buses) and,
therefore, the improvement of air quality in the MASP.
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3.3. VOC Measurements

The VOC emissions from gasoline and diesel exhausts have been widely evaluated in studies
aimed to quantify their potential impact in the atmosphere, such as their O3-forming (OFPs) and
secondary organic aerosol-forming potentials (SOAFP) [32–35]. However, most of those studies were
conducted in northern mid-latitude urban areas with vehicle fleet compositions and diesel fuel usages
different from those observed in Brazil. In addition, although there have been numerous in-bus studies
aimed at assessing commuter exposure to VOC, few of these studies have integrated bus terminal
measurements [36,37].

In order to evaluate the contributions of VOC from bus emissions under real-world conditions, a
short campaign was performed at the SA terminal, located in an urban area of the MASP. As can be
seen in Figure 5a, formaldehyde and acetaldehyde presented the highest daily mean concentrations
(12.4 and 6.8 ppbv, respectively), followed by acrolein+acetone (2.9 ppbv). Other noteworthy VOC
levels were those of C11 aliphatic HCs (2.11 ppbv), C9 aromatics (1.94 ppbv), C8 aromatics (1.49 ppbv),
toluene (1.14 ppbv), C10 aromatics (0.51 ppbv), and benzene (0.39 ppbv). The hourly variability was
significant for toluene, which presented higher concentrations in the morning (Figure 5a).
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Figure 5. (a) Mean concentrations and the standard deviation of aldehydes and selected non-methane
hydrocarbons (HCs) at the SA bus terminal; (b) VOC relative mass contribution, relative O3-forming
(OFP) calculated from the maximum incremental reactivity scale, and relative secondary organic
aerosol-forming potentials (SOAFP); (c) toluene/benzene (T/B), formaldehyde/acetaldehyde (F/A),
and m+p-xylene to ethylbenzene (X/E) ratios, with urban background (BKGD) values; and (d) mean
concentrations (gray bars, left axis) and OFPs (blue line, right axis) of VOC.

The mean aldehyde concentrations measured at the SA bus terminal were higher than those
reported in a study performed in the city of Londrina, Brazil [38,39]. In our study, the mean
formaldehyde and acetaldehyde concentrations were 12.4 ± 0.3 and 6.8 ± 0.2 ppbv, respectively,
1.6 and 5.4 times higher than those observed in Londrina in 2002, when all buses ran on petroleum
diesel (without the addition of biodiesel) [38]. However, comparing our data with another Londrina
study, formaldehyde and acetaldehyde concentrations were, respectively, 4.9 and 1.1 times higher than
those measured at the Londrina bus terminal in 2008. At this time, all buses ran on fuel composed
of 3% biodiesel and 97% petroleum diesel [39]. The disparity in acetaldehyde levels could be related
to the changes in bus engine technologies and to the reformulation of diesel fuel in the last ten
years, fuel incorporating 7% biodiesel has been in use since 2014. Studies carried out in the city
of Salvador, Brazil, also demonstrated that acetaldehyde emissions changed when buses started to
run on the biodiesel-petroleum diesel blend [40]. At the Salvador bus terminal, formaldehyde and
acetaldehyde concentrations were 1.5 and 6.9 times higher in 2010, when all buses ran on fuel composed
of biodiesel and petroleum diesel [40], than in 1997 when they ran on petroleum diesel alone [41].
Despite that reduction, formaldehyde and acetaldehyde concentrations were 6.4 and 12 times higher,
respectively, than those observed in our study. The dissimilarities among aldehyde concentrations
in bus terminals could be related to the ages of the fleets, which were renovated more frequently
in the MASP, than in other Brazilian cities [20]. It is worth mentioning that differences in engine
temperatures and driving speed could affect the vehicular emissions and contribute with the disparity
in our comparison. However, the patterns observed for other pollutants are in an opposite trend to
those reported for aldehydes.

VOC concentration ratios were computed to analyze the contribution of emissions from buses
running on the biodiesel-petroleum diesel blend and then compared with those reported in previous
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studies, as depicted in Figure 5b [21,23,42–44]. The mean xylene/ethylbenzene (X/E), toluene/benzene
(T/B), and formaldehyde/acetaldehyde (F/A) ratios observed during our campaigns were 2.8 ± 0.5,
2.7 ± 0.7, and 1.8 ± 0.2, respectively, slightly higher than those observed in an HDV tunnel
campaign [43], except for the F/A ratio, which was lower [44]. The differences among the T/B
ratios could be related to the changes in the formulation of the benzene-diesel content, which induced a
decrease in benzene emissions in the last years. The T/B ratios observed in the present study were 2.1,
which was similar to that reported in a study on bus emissions in the city of Hangzhou, China [37],
as well as those reported in a study performed in London, England, where the ratio ranged from
2.2–2.6 [32]. The T/B ratio can indicate the age of the plume-related to the reactivity and lifetime of both
compounds, ratios of 2.0–2.4 being associated with fresh emissions [45]. Therefore, as expected, the
ratio observed at the SA bus terminal suggested that the VOC were from fresh emissions. The X/E ratio
could be useful to estimate the intensity of atmospheric photochemical reactivity [46]. Xylenes and
ethylbenzene were commonly emitted together. However, due to the difference in their atmospheric
lifetimes (5.9 h for xylenes and 1.7 days for ethylbenzene) [47], the ratio decreased rapidly as the
distance from the source increased [48]. The mean X/E ratio obtained in the present study (2.8 ± 0.5)
was on the same order as those obtained in campaigns carried out in road tunnels in the MASP; that is,
in the absence of photochemical processes (Figure 5b). In contrast, our X/E ratios were higher than the
urban background levels, suggesting that both compounds were directly emitted by buses.

The F/A ratio observed at the SA bus terminal was higher than those observed at other
bus terminals. In Londrina, the F/A ratio decreased from 6.3 in 2002, when buses were running
on diesel [38], to 0.4 in 2008, when buses were running on fuel composed of 3% biodiesel and
97% petroleum diesel [39]. In Salvador, the F/A ratio decreased from 4.4 in 1997 [41] to 0.97 in 2010,
when buses were running on fuel composed of 5% biodiesel and 95% petroleum diesel, respectively [40].
In Brazil, the increase of acetaldehyde concentrations has been considered a drawback of ethanol
use related to LDV combustion processes, as evidenced by the fact that lower F/A ratios have been
reported in proximity to LDV emissions [19,23,44,49]. However, lower F/A ratios associated with
biodiesel use have also been reported in the Brazilian urban areas [39,40,50–52].

The ability of VOC to produce SOA is related to the reactivity and volatility of the species emitted,
as well as to the fraction of organic carbon available for this process [53,54]. Each VOC has a specific,
distinct reaction mechanism. However, in general, the reactions and yields of SOA and O3 become
more complex with an increase in the number of carbons of each VOC species [32,55]. The SOAFP index
expresses the modelled mass of aerosol formed per mass, for a particular VOC reaction; for example,
the SOAFP index for toluene is 100. The SOAFP values are limited to many HCs and have been
used to estimate values for all other species, based on chemical similarities [56,57]. We evaluated the
SOAFP indices for individual VOC species and for their aggregation into VOC families, finding that
C8 and C9 aromatics constituted the most significant fraction for SOA formation from diesel emissions,
followed by toluene and C11 aliphatic HCs (Figure 5c). This relative SOAFP profile was similar to
those observed in London, where heavy aliphatic HC (C11- to C13-) and C3-substituted mono-aromatic
compounds controlled the SOA yield [32]. A previous study showed that the SOAFP was 6.7 times
higher for diesel than for gasoline, SOAs being formed mainly from aromatics in gasoline and from
aliphatic HCs (47%) in diesel emissions [33]. The differences in our study could be related to the
limitation in the species analyzed, since we did not quantify HCs higher than C12. Further studies
should be accomplished in order to quantify the semi-VOC/IVOC fraction from biodiesel emissions
for a better estimation of the SOA formation processes in the MASP.

Despite the preponderance of aldehydes in the relative mass contribution of the total VOC mass
measured at the SA bus terminal, they did not have important contributions in the SOAFP (Figure 5c).
However, due to their reactivity, aldehydes played a significant role in oxidation reactions and in the O3

formation, in urban atmospheres [47,56,58]. To assess the effects that the observed VOC concentrations
had on the local O3 production, we calculated the OFP by using the maximum incremental reactivity
scale, estimated by photochemical simulations [58]. The OFP values calculated for the VOC observed
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at the SA bus terminal showed that oxygenated compounds made a clearly predominant (60%)
contribution (Figure 5c), with an estimated OFP of 300 µg O3/m3 in the MASP atmosphere (Figure 5d).
At the Londrina bus terminal, the OFP for buses running on 3% biodiesel + 97% petroleum diesel
was 101.6 µg O3/m3 [39], compared to only 81.3 µg O3/m3, for buses running on petroleum diesel
alone [38]. Therefore, the higher OFP values observed at the SA bus terminal could be attributable to
the higher biodiesel content in the fuel, burned by the MASP bus fleet.

3.4. PM10 and PM2.5 Concentrations

The concentrations of PM2.5 and PM10 on weekdays showed a wide range, at all terminals
(Figures 6a and 7b). The weekday mean PM10 concentrations were as follows: 53.9 ± 19.4 µg m−3 at
GRU; 46.7 ± 14.8 µg m−3 at CAM; 39.2 ± 11.8 µg m−3 at DIA; 34.6 ± 8.9 µg m−3 at SA. The weekday
average PM2.5 concentrations were as follows: 19.9 ± 8.3 µg m−3 at GRU; 23.5 ± 5.6 µg m−3 at CAM;
16.5 ± 7.8 µg m−3 at DIA; and 15.0 ± 5.7 µg m−3 at SA. The statistical analyses is summarized in
Table S1. On average, PM2.5 accounted for 40% of the PM10 mass, reaching more than 50% at the
CAM terminal (Figure 6c). It is known that HDVs constitute the main source of BC emissions in the
MASP [14]. BC accounted for a significant fraction of PM2.5, mainly at the SA and DIA terminals (50%
and 40%, respectively) where, interestingly, the lowest PM2.5 concentrations were reported (Figure 5d).
The higher BC fraction of PM2.5 also suggests a lower organic contribution at these terminals, where
electric buses has been introduced to the fleet. Replacing older buses with newer ones that incorporate
improved technologies, according to the later phases of the PROCONVE for Diesel-Powered Vehicle,
would reduce the emission of particulate matter and BC.

For PM10, the World Health Organization (WHO) recommends a daily average limit of
50 µg m−3 [59], although the legislation in Brazil, which is less restrictive, sets 150 µg m−3 as the
national standard and 120 µg m−3 as the standard for the state of São Paulo [16,60]. The concentrations
obtained here were compared with the air quality standards to evaluate the health impact. PM10 and
PM2.5 concentrations surpassed the WHO-recommended limit, at least once, during the study period,
at all bus terminals evaluated (Figure S7). However, no exceedances were observed in relation to the
national or local standards.

Figure 2 shows the geolocations of the bus terminal under study, together with the mean
concentration of PM2.5, at each location. Higher PM2.5 concentrations were observed at the GRU
and CAM terminals, where the maximum daily values exceeded the WHO-recommended daily limit
of 25 µg m−3 [59]. The exceedances of the WHO-recommended limits notwithstanding, the PM levels
found for the bus terminals here were lower than those obtained in other Brazilian bus terminals.
For instance, at a bus terminal in the city of Salvador, the mean values for PM10 and PM2.5 were
309 ± 56 µg m−3 and 201 ± 56 µg m−3, respectively [61]. In another study carried out in the city of
Londrina, the PM10 and PM2.5 mass concentrations observed at a bus terminal, were 49.8 ± 10 µg
m−3 and 38.0 ± 8.6 µg m−3

, respectively [62]. In addition, the PM2.5 concentrations observed in our
study were two and nine times lower, respectively, than those reported for two road tunnels in the
MASP—one traveled primarily by LDVs and one traveled by LDVs and HDVs [25]. The mean PM10

concentrations observed here were slightly higher than the average 44 µg m−3 (range, 12–113 µg m−3)
reported in a recent study carried out in the MASP [63]. Nevertheless, the mean PM2.5 concentration
reported in that study—average 30 µg m−3 (range, 8–78 µg m−3)—was higher than that measured at
any other evaluated bus terminal.
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Figure 6. Box-whisker plots showing the (a) PM10 concentrations, (b) PM2.5 concentrations, (c) PM2.5/PM10

fraction, and (d) the BC/PM2.5 fraction at the four bus terminals under study. The rectangles represent the
25th and 75th percentiles; the lines and squares within the rectangles represent the medians and arithmetic
means, respectively. The whiskers indicate the 10th and 90th percentiles.

The PM measurements performed in our study provided an interesting dataset for the evaluation
of HDV emissions, under real-world conditions. Given that the bus fleet is responsible for most of
the emissions of PM2.5 at the terminals, the emission ratios between PM2.5 and PM10 were evaluated
by applying the linear regression fit method. In our study, the ratio obtained was 0.39 (Figure 7),
compared to 0.81, which was obtained in a previous HDV-tunnel campaign carried out in MASP [25,64].
The PM2.5/PM10 emission ratios observed in the present study were lower than those previously found
for two other bus terminals in Brazil, 0.80 at a terminal in Londrina [62]; and 0.61 at one in Salvador [61].
We also observed a shift when only weekday data were analyzed, the ratio increased from 0.39 to 0.53 µg
m−3/µg m−3. That difference could be attributable to the 30–60% decrease in the size of the circulating
fleet on weekends (Table 1). Likely the values in the MASP were lower, because the buses circulating
in the MASP were newer (6–12 years old) than those circulating elsewhere (18–25 years old) [20].
In addition, electric buses composed 14% of the bus fleet circulating through the MASP terminals,
which reduced combustion-related emissions. Furthermore, the campaigns conducted elsewhere in
Brazil were carried out before 2012, when PROCONVE phase 7, was implemented. Our results above
suggest that the newer bus fleet in the MASP emitted fewer particles than did the older fleets evaluated
in previous studies.
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Figure 7. Scatter plot of PM2.5 versus PM10 data obtained at all bus terminals (grey filled circles).
The red line represents the PM2.5/PM10 emission ratio calculated from the linear regression fit method
for this study (s = slope and r = Pearson’s correlation coefficient). Green, grey, and blue lines illustrate
slopes obtained in previous studies developed in Londrina [62], Salvador [61], and in an heavy-duty
vehicles (HDV)-traveled tunnel in the MASP [25,64], respectively. The scatter plot embedded in the
upper left corner (red filled circles) displays the result for weekday (WD) samples at the bus terminals
under study.

3.5. BC Concentrations

In the MASP, emissions of BC are mainly from HDVs [14,65]. In the present study, the mean
BC concentrations at the SA, GRU, CAM, and DIA bus terminals were 7.7 ± 2.5, 7.2 ± 2.0, 5.3 ± 1.0,
and 7.4 ± 3.2 µg m−3, respectively. Figure 2 shows the geolocations of the four terminals, together
with the mean concentration of BC at each. Table S1 summarizes the statistical analyses for the BC
concentrations at all terminals under study in 2016.

The BC/PM2.5 ratios observed in the present study are similar to those recorded in other places,
worldwide, where policies to regulate diesel emissions have been delayed [66]. The mean weekday
contribution of BC to PM2.5 was 0.45, 0.52, 0.39, and 0.23 at the DIA, SA, GRU, and CAM bus
terminals, respectively (Figure 6d). In 2004, before the addition of biodiesel to diesel became mandatory,
this contribution was approximately 0.79 [65]. In contrast in 2011 when the HDV fleet began to run on
the blend of 5% biodiesel, the contribution decreased to 0.61 [25]. Our results indicate that elemental
carbon, (BC concentration), has decreased its contribution to the total mass of PM2.5. These findings
are in agreement with those of other studies showing that elemental carbon emissions decreased in
response to an increase in the proportion of the biodiesel content [67,68]. However, the contribution
that organic carbon makes to the total PM2.5 mass might have increased. As shown in Figure S8 and
Table S2, the sum of BC and elemental concentrations accounted for less than 60% of the total mass
concentration of PM2.5. The remainder fraction likely accounted for organic carbon and ion species.
The concentrations of atmospheric ions, such as sulfate, nitrate, and ammonium had not increased
over time, in the MASP [63]. In fact, sulfate concentrations had decreased in the last ten years [60],
which could indicate a high contribution to the organic fraction.

3.6. Source Profile Based on the Mass Balance

The mass balance was calculated for each terminal, considering the elements of crustal or
exhaust emission and the BC contribution to the PM2.5 (Figure S8a) and PM2.5–10 fraction (Figure S8b).
Mass balances were calculated only for the SA, GRU, and CAM terminals, where the elemental analysis
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was performed. Table S3 shows the composition of the PM2.5–10 samples collected from each terminal
under study. At the SA, GRU, and CAM terminals, respectively, 40.0%, 33.5%, and 22.7% of the
PM2.5–10 mass was explained, of which BC represents 7.0%, 4.4%, and 2.0%, respectively. Si, as silicon
dioxide was the second most abundant species at all of the terminals, accounting for 6.6%, 8.3%, and
8.4% of the PM2.5–10 mass at the SA, GRU, and CAM, respectively.

Regarding the PM2.5, BC accounted for 44.5%, 37.0%, and 20.7% of the mass concentration at SA,
GRU, and CAM respectively. S was the second most important species, accounting for 7.9%, 4.8%,
and 5.8% of the PM2.5 mass concentration at the SA, GRU, and CAM, respectively, underscoring the
fact that organic carbon was not measured in the samples.

The comparison between our results and the in-tunnel measurements conducted in a previous
study in the MASP, in terms of the elemental mass fractions of the PM2.5–10 and PM2.5, is shown in
Figure S8. The elemental mass distributions at the terminals were quite similar to those found in the
tunnels, highlighting the contributions that the low-atomic-weight elements (Al, Si, Cl, and S) and the
Fe made to the PM2.5–10 fraction. However, the highest trace element contribution to the PM2.5 mass
concentration came from S.

The concentrations of elements to the PM2.5 fractions inside the bus terminals are shown in
Table S4. The concentrations of S, the most abundant element in the PM2.5 fraction, were 1110
± 790, 931 ± 547, and 1297 ± 330 ng m−3 at the SA, GRU, and CAM terminals, respectively.
These values were significantly lower than that observed inside a road tunnel in the MASP, in 2011
(3657 ± 781 ng m−3). In that same year, all diesel fuel sold in Brazil contained 5% biodiesel, with a
sulfur content of 50–1800 mg kg−1, whereas that sold in 2016 contained 7% biodiesel, with a sulfur
content of 10–500 mg kg−1. At the SA and GRU terminals, BC showed good correlations with S
(r = 0.93 and 0.86, respectively).

3.7. Enrichment Factors (EFs)

To calculate EFs for the SA, CAM, and GRU bus terminals, we used aluminum as a surrogate
for the UCC. In addition, as stated in Section 3.6, the DIA bus terminal was not included due to
shortcomings of the elemental analysis. Although several studies have employed the Taylor–McLennan
dataset [69] as the UCC for EF calculation, we used the Hetem–Andrade dataset [66] as a more
appropriate profile for resuspended road dust at bus terminals under study.

Figure 8 depicts the EFs, calculated as box plots, for all of elements, contributing to the fine and
coarse fractions (PM2.5 and PM2.5–10, respectively). It is noteworthy that S was the most enriched
element for the fine mode at all the bus terminals, corroborating the mass balance analysis (Figure S8).
For the SA, CAM, and GRU terminals, the EF values for S were higher than 100, which indicates a
pronounced alteration by local emissions [25,26]. For the SA and GRU terminals, the fine PM profiles
were similar, with S-, Cl-, and Cr-enriched samples, those elements, therefore, were apportioned
to vehicular sources. Although the coarse fraction presented a similar pattern at the SA and GRU
terminals, there were several outliers at the SA terminal, including V, Mn, Fe, Ni, Cu, Zn, and Pb. At the
CAM terminal, the EF values presented a different behavior, with less-enriched samples, a discrepancy
that could be attributable to the better ventilation at the CAM terminal, as previously mentioned.
For the SA and GRU terminals, the overall EF analysis apportioned Mg, Si, Ca, Ti, Mn, and Fe as
crustal sources (EF values near 1) for the fine fraction, whereas most of the same elements presented
mixed EF values (between 1 and 10) for the coarse fraction, indicating contributions from vehicular
and crustal sources. Similar patterns were observed in a road tunnel in the MASP, Cu and Zn also
being apportioned to vehicle emissions, due to tire and brake wear [25].
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4. Conclusions

Pollutants such as NOx, CO, VOC, PM10, and PM2.5, as well as their constituents, were identified
and quantified in four bus terminals, during intensive campaigns carried out in the MASP, and in the
city of Campinas. The resulting detailed dataset provided the first glimpse into the profile of pollutants
emitted by buses in the region.

Although measured at only one site (the SA bus terminal), aldehydes were found to be the
dominant fraction of VOC, accounting for 60% of the OFP. Regarding the SOAFP, the data showed
that C8 and C9 aromatics constituted the most significant fraction of emissions from diesel-powered
city buses. Nevertheless, the results shown here are limited to certain VOC species found in emissions
from vehicles running on biodiesel-petroleum diesel fuel blends. Further studies are needed in order
to quantify the semi-VOC/intermediate-VOC fraction for a better estimation of the impact on SOA
formation processes in the MASP and elsewhere in Brazil.

Our findings suggest that the current bus fleet in the MASP, which comprises newer vehicles,
emits fewer particles than those evaluated in previous studies.

Previous studies have listed the hazards associated with high concentrations of BC in the
atmosphere. The WHO reported that there is a clear association between concentrations of BC
and mortality, due to cardiovascular and cardiopulmonary diseases. In addition, several studies have
demonstrated that BC increases global warming. Here, BC accounted for 20–43% of the PM fraction,
which is lower than the proportions reported in previous studies conducted in the MASP. However,
our bus terminal measurements also revealed that the population is exposed to a number of harmful
pollutants. For instance, the trace elements identified in our samples showed that vehicle emissions
made significant contributions to the fine and coarse fractions of hazardous metals, such as Cr, Zn, V,
and Pb. Further analyses are needed to quantify the risk associated with public exposure to vehicle
emissions, during commute hours.

The results of our study suggest that the incorporation of buses with new technologies, such
as electric buses, can have a considerable impact—by up to 40%—on the process of NO and CO2
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emissions reduction. Additionally, the decrease of these emissions might also have benefits on air
quality and, therefore, in the bus emissions exposure to commuters.

Our results make a significant contribution to the study of urban bus emissions and their
associated hazards, in Brazil. As emissions produced by the transport sector contain greenhouse gases
(such as CO2) and harmful pollutants (NOx, VOC, BC, and PM), the aspects related to climate and
human health should be taken into consideration, in the development of public policies. Our results
suggest that a renewal of the fleet, by replacing EURO II engines by newer vehicles (EURO V or
later), and introducing less-polluting buses (i.e., electrics) to the fleet, will reduce the emissions from
diesel vehicles.
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