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A sugarcane gene encoding a dirigent-jacalin, ShDJ, was induced under drought stress.
To elucidate its biological function, we integrated a ShDJ-overexpression construction
into the rice Nipponbare genome via Agrobacterium-mediated transformation. Two
transgenic lines with a single copy gene in T0 were selected and evaluated in both the T1

and T4 generations. Transgenic lines had drastically improved survival rate under water
deficit conditions, at rates close to 100%, while WT did not survive. Besides, transgenic
lines had improved biomass production and higher tillering under water deficit conditions
compared with WT plants. Reduced pectin and hemicellulose contents were observed
in transgenic lines compared with wild-type plants under both well-watered and water
deficit conditions, whereas cellulose content was unchanged in line #17 and reduced
in line #29 under conditions of low water availability. Changes in lignin content under
water deficit were only observed in line #17. However, improvements in saccharification
were found in both transgenic lines along with changes in the expression of OsNTS1/2
and OsMYB58/63 secondary cell wall biosynthesis genes. ShDJ-overexpression up-
regulated the expression of the OsbZIP23, OsGRAS23, OsP5CS, and OsLea3 genes in
rice stems under well-watered conditions. Taken together, our data suggest that ShDJ
has the potential for improving drought tolerance, plant biomass accumulation, and
saccharification efficiency.
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INTRODUCTION

Sugarcane is a commercially important crop in tropical and sub-
tropical regions (Inman-Bamber and Smith, 2005), and is the fifth
most important crop in the world (FAOSTAT, 2013). Worldwide,
sugarcane is considered the main raw material for table sugar
production, and is being explored for the generation of clean
and renewable energy, such as bioethanol and bioelectricity from
first-generation ethanol (E1G) (Dias et al., 2011). In Brazil, the
world leader in sugarcane production, the crop is cultivated over
more than 9 million hectares, and the estimated production for
the 2018/2019 season is around 365 million tons (CONAB, 2018).

In recent years, sugarcane production has been affected
by unfavorable climatic conditions, which are increasing in
frequency and intensity. Drought is an important abiotic stress
that negatively impacts sugarcane productivity (Zhao and Li,
2015). This can be, due to water shortage even in rainy seasons
or to the expansion of sugarcane cultivation to non-traditional
planting regions, such as the Brazilian Cerrado (drought-
prone conditions). Therefore, a challenge for sugarcane breeding
programs is to develop cultivars with high productivity under
water scarcity.

Despite advances in the conventional breeding of sugarcane,
molecular biology and genetic engineering tools now have
the potential to accelerate cultivar development and crop
productivity by introducing new genes or manipulating
gene expression. However, a lack of genetic and molecular
information on drought tolerance mechanisms and their
inheritance in sugarcane has limited the development of
improved cultivars. Thus, functional genomics play a relevant
role in the identification of target genes for the generation of
transgenic sugarcane cultivars.

To withstand conditions imposed by water deprivation,
plants have developed several strategies and responses on
morphological, physiological, hormonal, molecular, and
biochemical levels (Fang and Xiong, 2015). Among stress-
responsive pathways, hormone signaling can regulate plant
growth and enhance drought tolerance (Tiwari et al., 2017).
Although abscisic acid is the principal mediator of drought
responses, jasmonate (JA) plays an important role under
abiotic and biotic stress (Wasternack, 2007), triggering
response mechanisms that may improve stress tolerance
(Muñoz-Espinoza et al., 2015).

The function of JA hormone signaling in the response to biotic
stress is well-understood (Wasternack, 2007; Wasternack and
Hause, 2013), and its involvement in the response to drought
has been suggested (Muñoz-Espinoza et al., 2015; de Ollas and
Dodd, 2016). JA promotes the activation of transcription factors
resulting in the expression of various JA-responsive genes (Howe,
2010). The activation of JA-responsive genes can alter the levels
of various proteins involved in numerous biological processes
(Pauwels et al., 2009), such as lectin synthesis (Van Damme
et al., 1998; Wang and Ma, 2005; Ma et al., 2010). Lectins are
carbohydrate-binding proteins found in all organisms (Vijayan
and Chandra, 1999; De Schutter and Van Damme, 2015), which
recognize and reversibly bind to specific sugar structures and
mediate several biological reactions (Peumans and Damme, 1995;

Vijayan and Chandra, 1999). This heterogeneous group contains
jacalin-related lectins (JRLs), which contain one or more JRL
domains (De Schutter and Van Damme, 2015). JRLs have also
been associated with an unrelated domain, and are named
chimeric proteins (Jiang et al., 2010; Song et al., 2014). Several
of these chimeric proteins (chimerolectins) contain domains
related to stress response and defense. Of these, a C-terminal
jacalin domain fused to a N-terminal dirigent (Song et al., 2014;
Schutter and Van Damme, 2015) has been shown to affect a broad
range of physiological functions in monocot plants (Ma, 2014;
Song et al., 2014). Nobile et al. (2017) made a comprehensive
characterization of proteins containing dirigent (DIR) domain
in sugarcane and found 6.7% as chimeric jacalins containing
DIR domains.

Monocot chimeric jacalins have been identified in maize
(Esen and Blanchard, 2000), sorghum (Kittur et al., 2010),
rice (Jiang et al., 2006, 2007; Hensel et al., 2016), wheat
(Subramanyam et al., 2008; Ma et al., 2013), and sugarcane
(Nobile et al., 2017). These proteins play important roles in
both biotic and abiotic stress responses (Ma, 2014), and in the
regulation of plant growth and development (Lannoo and Van
Damme, 2010). In sugarcane, the exact functions of the JRL
domain associated with a dirigent domain (Dirigent-Jacalin or
DJ) have not yet been characterized. Despite the importance
of plant JRLs, current knowledge on genome function and
the regulation of JRLs in polyploid species, as in sugarcane
(Saccharum spp.), remains elusive. Although several studies have
addressed drought tolerance in genetically modified sugarcane
(Zhang et al., 2006; Molinari et al., 2007; Kumar et al., 2014; Reis
et al., 2014), the lack of well-characterized genes that guarantee
satisfactory yield under water deficit conditions represents a
bottleneck for the commercial generation of transgenic cultivars.
Thus, elucidating the molecular mechanism that underlies
drought tolerance in sugarcane is mandatory for developing
new cultivars with improved drought tolerance. Therefore, our
group has dedicated efforts to understand the molecular basis
of drought tolerance in sugarcane aiming to identify candidate
target genes to improve sugarcane yield under conditions of
low water availability. In a previous experiment (Oliveira,
2012), transcriptome analyses (microarray and RNA-seq) of
two sugarcane genotypes contrasting in drought tolerance were
performed to identify stress responsive genes.

Among several candidate genes, ShDJ was upregulated in
response to drought. Therefore, we chose the ShDJ gene
characterized its role in drought tolerance. The ShDJ full-length
coding DNA sequence (CDS) was cloned and overexpressed in
rice, a monocot model used in functional genomics (Tyagi and
Mohanty, 2000). We investigated the performance of transgenic
rice lines constitutively expressing the ShDJ gene under varying
levels of water availability. Our results indicated that constitutive
expression of the ShDJ gene improved drought tolerance in
transgenic rice lines and exerted a positive impact on biomass
accumulation, an important trait for agriculture. Then, we
further investigated possible changes in cell wall components
(cellulose, hemicellulose, and pectin) and lignin composition, as
these elements affect the production of lignocellulosic bioethanol
(Bottcher et al., 2013), also known as second-generation ethanol
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(E2G). Biochemical analyses revealed that ShDJ-overexpression
modulated pectin and hemicellulose components, and improved
saccharification efficiency. Together, our findings may represent a
disruptive technology for the development of a sugarcane cultivar
overexpressing ShDJ, which would be drought tolerant and show
higher biomass production with enhanced saccharification for
the sugar, E1G and E2G industries.

MATERIALS AND METHODS

Sugarcane Dirigent-Jacalin Gene
Identification and Expression Analyses
In order to understand the mechanisms involved in the drought
response of sugarcane plants, ‘IACSP94-2094’ (drought-tolerant)
and ‘IACSP97-7065’ (drought-sensitive) sugarcane (Saccharum
spp.) genotypes developed by “Programa Cana” (Instituto
Agronômico, Ribeirão Preto, Brazil) were previously evaluated
under irrigated and non-irrigated conditions both on field and
greenhouse conditions (Oliveira, 2012). The field trial was carried
out in Goianésia, Brazil (15◦13′ S; 48◦56′ W) during the dry
season. Briefly, leaf samples (leaf +1) of first-cut plants were
collected between 9:00 and 9:30 a.m. in irrigated (the irrigation
was applied by linear sprinkler system) and non-irrigated areas at
42, 89, and 117 days after the last rainfall, when plants were 6, 7,
and 9 months old respectively. The greenhouse trial was carried
out in Campinas, Brazil (22◦52′ S; 47◦44′W), and both genotypes
were grown in the same tanks (0.6 m3) containing soil previously
fertilized according to Van Raij et al. (1996). Leaf samples (leaf
+1) from 6 months old plants were collected between 9:00 and
9:30 a.m. in irrigated and non-irrigated treatments at: 15 and
21 days after water withholding deficit and also after 9 days
of soil rehydration for evaluating plant recovery. For more
details about field and greenhouse trials, refer to Andrade et al.
(2016). Leaf samples from both field and greenhouse experiments
were subjected to microarray and RNA-seq assays, respectively
(Oliveira, 2012). From these expression global analyses, ShDJ was
chosen to be validated by real time quantitative polymerase chain
reaction (RT-qPCR) in the present study.

Total RNA was extracted from leaves, according to Chang
et al. (1993). Genomic DNA was removed using DNase I,
following the manufacturer’s instructions (Promega, Fitchburg,
WI, United States). RNA concentration was determined
using a spectrophotometer NanoDrop 2000 (Thermo
Fisher Scientific, Wilmington, DE, United States), and RNA
integrity was checked in 1.0% agarose gel electrophoresis
stained with ethidium bromide (1 µg mL−1). Reverse
transcription reaction was synthesized from 1 µg of total
RNA using the QuantiTect R©Reverse Transcription Kit
following the manufacturer’s instructions (Qiagen, Foster
City, CA, United States).

Real time quantitative polymerase chain reaction reactions
were performed on the Applied Biosystems StepOnePlus System
(Foster City, CA, United States). Briefly, a 10 µL reaction mixture
consisted of 5 µL SYBR Green Super Mix (Applied Biosystems,
Foster City, CA, United States), 3 µL of diluted cDNA
(1:30) with 0.2 µM primers concentration, besides a negative

control (without cDNA) included for each primer combinations.
Expression was evaluated by the 2−1Ct method [n = 3± standard
error (SE)], which represents the relative quantification of ShDJ
expression in relation to the UBQ1 reference gene (Andrade et al.,
2017), as shown in Supplementary Table 1.

Alignments and Phylogenetic Analyses
The ShDJ gene sequence (SUCEST Accession No.
SCJLLR1103A10) was used as a bait for identifying its
homologous using Basic Local Alignments Search Tools
(Altschul et al., 1997) in different databases, such as the SUCEST
database1, GenBank (NCBI2), and Phytozome3 (Supplementary
Table 2). Sugarcane assembled sequences (SAS) were retrieved
using the tblastn tool with a cut-off of E-value 2e−56, and a
minimum SAS coverage rate in relation to the original protein
sequence used as bait of at least 50%. Homologous ShDJ protein
sequences obtained from sugarcane hybrid (Sh), Sorghum
bicolor (Sb), maize (Zm), rice (Os), Hordeum vulgare (Hv),
Brachypodium distachyon (Bd), Triticum aestivum (Ta), and
Arabidopsis thaliana (At) (Supplementary Table 2) were aligned
the domain DJ proteins using ClustalW program (Thompson
et al., 1994) based on Jaccard’s index of similarity. Phylogenetic
analyses was generated and visualized using Mega 6 (Tamura
et al., 2013), with the maximum likelihood cluster analyses based
on the JTT amino acid substitution matrix (Jones et al., 1992).
Rates among sites were obtained using Gamma Distributed (with
five discrete gamma categories). Trees were generated using
BIONJ (Gascuel, 1997), a modified neighbor-joining algorithm,
and each node was tested with 1,000 bootstrap replicates.

Construction of the ShDJ Expression
Cassette and Rice Transformation
To construct the overexpression vector, the complete open
reading frame (ORF) of ShDJ cDNA sequence was obtained
using the SMARTer RACE cDNA Amplification Kit (Clontech,
Mountain View, CA, United States), and the CDS was cloned
into a pGEM-Teasy (Promega, Fitchburg, WI, United States).
The binary vector pHb7m24GW, from the Functional Genomics
unit of the Department of Plant Systems Biology (VIB-Ghent
University), carrying the maize ubiquitin promoter (pEN-
L4UBIL-R1) driving ShDJ expression, and the hygromycin
phosphotransferase gene as a selectable marker (Karimi et al.,
2007), was obtained by multi-recombination using the Gateway
Recombination SystemTM (Invitrogen Life Technologies,
United States), and transferred to Agrobacterium tumefaciens
strain EHA105.

Embryogenic calli were obtained from mature seeds of
Japonica rice (Oryza sativa L. ‘Nipponbare’), and transgenic
lines were produced as described by Toki et al. (2006), with
modifications. Plants were regenerated on medium containing
30 mg L−1 hygromycin for selection and 20 mg L−1 Meropenem
to prevent overgrow of A. tumefaciens. The progenies were
obtained by self-pollination following the selection of seeds

1http://sucest-fun.org/
2http://www.ncbi.nlm.nih.gov/
3https://phytozome.jgi.doe.gov/
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through a germination test on hygromycin-containing media.
Seeds of ShDJ lines were screened on 1/2 MS medium
supplemented with 50 mg L−1 hygromycin (incubation at 27◦C
for 7 days under a 16 h photoperiod) to obtain T1 and successive
progenies for further analyses.

Gene Expression Analyses of ShDJ
Transgenic Lines
Total RNA was isolated from rice tissues as described by Chang
et al. (1993). To nullify any genomic DNA contamination,
isolated RNA was treated with RQ1 RNase-Free DNase following
the manufacturer’s instructions (Promega, Fitchburg, WI,
United States). RNA concentration was determined using a
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE, United States), and RNA integrity was
checked in 1.0% agarose gel electrophoresis stained with
ethidium bromide (1 µg mL−1). First-strand cDNA was
synthesized from 1 µg of total RNA with the GoScriptTM

Reverse Transcription System (Promega, Fitchburg, WI,
United States), according to the manufacturer’s instruction.
RT-qPCR was carried out in the StepOnePlus System
(Applied Biosystems, Foster City, CA, United States)
using GoTaq R©qPCR Master Mix (Promega, Fitchburg,
WI, United States).

Gene-specific primers of the cell wall and drought-stress
responsive genes used in RT-qPCR analyses are listed in
Supplementary Table 1. Analyses of transgene expression
level (n = 3 ± standard error) were conducted using rice
eukaryotic elongation factor-1α gene (Accession No. AK061464)
as endogenous control to normalize the cDNA variance between
samples (Martins et al., 2018).

Transgene Copy Number Estimation in
ShDJ Lines
To confirm the copy number of T-DNA inserted in the
transgenic lines, genomic DNA from leaves was isolated
using the cetyltrimethylammonium bromide (CTAB)
method (Aljanabi et al., 1999). ShDJ copy number was
evaluated in primary transformants (T0) by PCR using
Taqman R©Assay technology (Applied Biosystems, Foster
City, CA, United States). The hptII and sucrose phosphate
synthase (SPS) primers and TaqMan probes were synthesized
by Applied Biosystems (Foster City, CA, United States)
and used in all analyses (Supplementary Table 1) (Ding
et al., 2004). RT-qPCR and thermal profile reactions were
performed as described by Martins et al. (2018) and the
transgene copy number was determined as described by
Mason et al. (2002) method.

Transgenic Rice Plants Under Water
Deficit Conditions
Transgenic rice seedlings were transferred to pots (5 L for
T1; and 3 L for T4 plants) containing a mixture (1:1, v/v) of
soil and substrate (Carolina Soil, Santa Cruz do Sul, Brazil)
and grown under greenhouse conditions in Ribeirão Preto,
Brazil (21◦11′ S, 47◦48′ W). Each pot contained one WT

rice and one transgenic rice seedling, to ensure they were
exposed to the same levels of water availability (Verslues
et al., 2006). During the experimental period, the maximum
photosynthetically active radiation (PPFD) and average air
temperature were 1,567 µmol m−2 s−1 and 26.8 ± 8.8◦C for
T1 plants, and 1,691 µmol m−2 s−1 and 27.2 ± 3.1◦C for T4
plants. Those environmental conditions were monitored with a
Watch Dog 1450 Micro Station (Spectrum Technologies, Aurora,
IL, United States).

To evaluate drought tolerance at the whole-plant level, two
treatments were imposed 45 days after sowing (DAS): the control
condition (n = 4 ± standard error), in which plants were
maintained well-watered through daily irrigation; and the water
deficit condition, which was induced by water withholding.
According to Hsiao et al. (1984), severe stress for rice plants
is considered when there is visible leaf wilting. In fact, this
occurred in two previous pilot experiments and we adopted
leaf wilting as an index of stress level. The recovery capacity of
plants previously exposed to severe stress was evaluated 24 h
after rehydration. Then, four plants from each ShDJ line and
WT plants were used to evaluate total dry mass and tillering.
Pot weight was evaluated daily to monitor the water availability
(Supplementary Figure 1).

To evaluate plant survival under greenhouse conditions,
1-month old T4 progeny seedlings were maintained in
substrate (Carolina Soil, Santa Cruz do Sul, Brazil) under
well-watered. The water was withheld from for 5 days,
which was sufficient to cause leaf wilting in transgenic
rice overexpressing ShDJ. Then, plants were re-watered for
two days, recovery was evaluated, and survival rates were
estimated based on the percentage of survival in relation to all
plants tested.

Cell Wall Composition and
Saccharification Analyses
Cell wall analyses were carried out in plants maintained
under well-watered and water deficit conditions. Analyses
were performed in shoots (stem and leaves) of T4 transgenic
lines and WT plants, with four biological replicates each.
Cell wall polysaccharides were evaluated as described by
Chen et al. (2002) and the soluble and insoluble lignin
contents (Klason’s Methods) were determined following the
Tappi protocol UM-250 (TAPPI, 1985). The saccharification
ratio was measured as described by methodology of
Brown and Torget (1996), with modifications as described
by Martins et al. (2018).

Statistical Analyses
The experimental design was randomized in a 2 × 2 factorial
scheme, with variation in terms of ShDJ (transgenic lines
and WT plants) and water regimes (well-watered and water
deficit). Data were subjected to analyses of variance (ANOVA)
and when statistical significance was detected, the mean
values were compared using a t-test (P < 0.05) with SAS
statistical software (version 9.2; SAS Institute, Inc., Cary,
NC, United States).
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FIGURE 1 | Quantitative polymerase chain reaction (PCR) analyses of the
ShDJ gene in leaves of IACSP94-2094 and IACSP97-7065 sugarcane
genotypes subjected to water deficit. (A) Screening for the ShDJ gene in
global gene expression analyses using microarray and RNA-seq. (B) Field
experiment, with evaluations 42, 89, and 117 days after last rainfall.
(C) Greenhouse experiment, with evaluations after 15 and 21 days of water
deficit and after 9 days of soil rehydration (recovery). The expression profile
was evaluated by determined the difference in Ct between ShDJ and UBQ1,
according to 2−1Ct (Livak and Schmittgen, 2001). In (B,C), data represent the
mean values [n = 3 ± standard error (SE)].

RESULTS

ShDJ Gene Expression in Sugarcane
Genotypes With Contrasting Drought
Tolerance
The global expression analyses of ‘IACSP94-2094’ (drought-
tolerant) and ‘IACSP97-7065’ (drought-sensitive) sugarcane
(Saccharum spp.) genotypes were performed using microarray
and RNA-seq assays in leaves provided from field and
greenhouse experiments, respectively (Oliveira, 2012). Further
details about the experiments and methodologies are described
in Andrade et al. (2016).

Among several differentially expressed candidate genes, the
expression of dirigent-jacalin gene (SUCEST accession no.

SCJLLR1103A10), here named ShDJ (Saccharum hybrid Dirigent-
Jacalin) increased when the tolerant genotype was subjected to
water deficit under field conditions (Figure 1A). In order to
evaluate ShDJ expression, RT-qPCR assays were performed for
each genotype, using the same leaf tissues (leaf +1, i.e., the first
fully expanded leaf with visible ligule) used for the microarray
and RNA-seq assays and sampled in both field (42, 89, and
117 days after the last rainfall) and greenhouse (15 and 21 days
of water deficit and after 9 days of recovery) experiments.

Under field conditions, ShDJ transcripts were not detected
42 and 89 days after the last rainfall in ‘IACSP97-7065’
(Figure 1B). Conversely, ShDJ transcripts were detected at all
time points in ‘IACSP94-2094,’ with drought-stressed plants
presenting higher transcript levels than irrigated plants after 89
and 117 days of water deficit conditions (Figure 1B). Under
greenhouse conditions, ShDJ expression responded to drought in
the ‘IACSP94-2094’ genotype, with lower transcript abundance
under drought conditions compared with irrigated conditions.
In ‘IACSP97-7065,’ the ShDJ transcript was not detected after
21 days of water deficit and after rehydration (Figure 1C). Based
on these results, the role of the ShDJ gene on drought tolerance
was further investigated by sequence and phylogenetic analyses,
followed by cloning and rice heterologous overexpression.

Phylogenetic Analyses of ShDJ
A total of 46 annotated amino acid sequences homologous to
ShDJ were obtained from various plant species (Supplementary
Table 2) and used to construct a phylogenetic tree (Figure 2),
aiming to investigate the evolutionary history of DJ proteins.
Two SAS from the SUCEST database were identified as a
chimeric DJ protein, and the sequences were named DIR4/JRL
(SCJLLR1103A10, corresponding to ShDJ) and DIR8/JRL
(SCCCRT3002G10) according to Nobile et al. (2017). The
phylogenetic tree presented three major groups composed of DJ
and Jacalin sequences (Figure 2). The DJ proteins comprised the
major group I exclusive for monocot plants, while group II and
group III were formed by proteins with a jacalin domain from
rice and Arabidopsis, respectively (Figure 2). Two JRL sugarcane
sequences (SCJLRT1020A04-JRL and SCBGST31051112-JRL)
were positioned between group II and group III (Figure 2).

The sequence similarity search revealed several proteins
with high identity to ShDJ. The phylogenetic tree showed that
the ShDJ protein was close to rice (Os12g12720-DIR/JRL,
OsEAY82651-DIR/JRL, Os12g14440-DIR/JRL, Os12g09720-
Dir/JRL, Os12g09700-DIR/JRL), Hordeum vulgare (HvDIR/JRL)
and sorghum (Sb005G183600-DIR/JRL) (Monocot JRL,
Figure 2). ShDJ was closest to sorghum (Sb005G183600),
showing high confidence level (100% bootstrap). According to
blast2, ShDJ, and Sb005G183600 shared 85% identity.

Isolation and Characterization of ShDJ
The ShDJ gene sequence in the SUCEST database is incomplete;
then the full-length sequence was revealed by using SMARTerTM

RACE cDNA Amplification Kit (Clontech, Mountain View, CA,
United States). The CDS of the ShDJ gene was successfully
amplified from the 5′ and 3′ RACE libraries of ‘IACSP94-
2094’ leaves. The cloned ShDJ full-length sequences revealed two
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FIGURE 2 | Phylogenetic relationship and multiple sequence alignment of the ShDJ protein with other Dirigent-jacalin (DJs). Phylogenetic analyses of the ShDJ
protein and DJs protein sequences from sorghum (Sb), rice (Os), maize (Zm), Arabidopsis thaliana (At), Setaria italica (Si), Panicum virgatum (Pavir), and Hordeum
vulgare (Hv) were generated using the neighbor-joining (NJ) method in MEGA6. Bootstrap values greater than 50% (1,000 replicates) are shown for nodes in the tree.
Black symbols indicate the sugarcane DJs.

probable allelic variants A and B (Supplementary Figure 2).
Variant B (MK000561) presented four additional nucleotides
compared with to variant A (MK000560), thereby changing the
ORF, to encode a truncated protein (Supplementary Figure 2).
Therefore, variant A was used for vector construction and for
functional genomic analyses. The isolated sequence exhibited a
924 bp ORF encoding a polypeptide of 308 amino acids with a
predicted molecular mass of 76.09 kD and isoelectric point (pI)

of 5.07 calculated with the ExPASy compute pI/Mw tool4. The
308 amino acids encode a dirigent (amino acids 29–148) and
a jacalin (amino acids 175–306) domain according to a BLAST
protein–protein search of Pfam5.

4https://web.expasy.org/compute_pi/
5https://pfam.xfam.org/
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FIGURE 3 | Molecular characterization of ShDJ lines. (A) Schematic
representation of the T-DNA region of the binary vector pUBIL::ShDJ. RB,
right border; LB, left border; pUBIL, maize ubiquitin promoter; Tnos, nopaline
synthase terminator; p35S, 35S promoter; hptII, hygromycin
phosphotransferase gene (selectable marker); T35S, 35S terminator.
(B) Analyses of ShDJ expression in rice plants of T0 and T4 generations.
Abundance of the ShDJ transcripts in lines #17 and #29 was evaluated by
real time quantitative polymerase chain reaction (RT-qPCR) analyses
(n = 3 ± standard error) using gene-specific primers for ShDJ. Analyses used
the 2−1Ct method (Livak and Schmittgen, 2001), in which 1Ct represents the
relative quantification of a target gene and a reference gene (elF-1α).

Overexpression of the ShDJ Gene
Increases the Drought Tolerance of Rice
Plants
To investigate the role of ShDJ in drought tolerance, a ShDJ-
overexpression vector was constructed under control of the
maize ubiquitin promoter and used for rice transformation
(Oryza sativa L.) (Figure 3A). Thirty independent lines were
produced, hereafter called rice ShDJ lines, and confirmed as
positive transformants by conventional PCR in T0 plants (data
not shown). The ShDJ lines grew to maturity for setting seeds,
and no morphological alterations were observed under normal
growth conditions. Variation in the transgene expression of ShDJ
lines was evaluated by RT-qPCR, ranging from 0.003 to 0.617
(Supplementary Figure 3). Among ShDJ lines, line #24 showed
the highest ShDJ expression and line #5 showed the lowest
expression, whereas no ShDJ expression was detected in WT
plants (Supplementary Figure 3), as expected.

Analyses of transgene expression were followed by evaluation
of copy number as described by Mason et al. (2002) using
TaqMan methodology. Twelve ShDJ lines showing differential
expression of the ShDJ transgene (high, medium, and lower)
were chosen, and the transgene copy number integrated into
the genome ranged from 1 to 4 (Supplementary Figure 3).
According to those results, T1 progeny from five independent
transgenic lines (#1, #8, #17, #24, and #29) exhibiting different

expression levels, but carrying one transgene copy were selected
to evaluate the role of ShDJ under water deficit conditions. In
a preliminary experiment, five ShDJ lines of T1 progeny were
evaluated for drought tolerance under greenhouse conditions.
Following this initial screening, transgenic lines #17 and #29
were further investigated considering T4 progeny (Figure 3B).
Lines #17 and #29 were chosen due to their drought tolerance
and biomass accumulation, and represent the greatest contrast
to WT plants.

Leaf wilting was observed after 12 and 8 days of water deficit in
T1 and T4 progenies, respectively. When evaluating T1 progeny,
line #17 exhibited higher biomass and tillering compared with
the WT plants under water deficit conditions, while line #29
exhibited higher vigor than WT plants under both water regimes
(Figures 4A,B). In T4 progeny, line #29 showed higher biomass
and line #17 presented higher tillering compared with WT
plants under water deficit conditions (Figures 4C,D). In general,
tillering was improved in ShDJ transgenic line #17 under water
deficit conditions, regardless of progeny. Among the T1 progeny,
line #29 showed a large increase in biomass under both well-
watered and water deficit conditions (Figure 4B). No differences
were found in the seed size of transgenic lines under varying levels
of water availability (Supplementary Figure 4).

To investigate the role of ShDJ in plant survival under drought,
water was withheld from rice seedlings for 5 days. The survival
rate (%) was determined 2 days after re-watering. The survival
rate of the transgenic lines was higher than that of the WT
plants (Figure 5). Notably, none of the WT plants survived
under water deficit conditions (0%), while only one transgenic
plant (out of 68), line #17 failed (98,5%), and all plants of line
#29 survived (100%) following rehydration. These results clearly
revealed the role of the ShDJ gene on the drought tolerance of
transgenic plants.

In addition, ShDJ-overexpression was evaluated for salinity
tolerance. Although a recent report showed that drought
and salinity tolerance share the same complex regulatory
processes involved in cellular homeostasis (for review, see
Golldack et al., 2014), no differences were observed in ShDJ
transgenic lines when compared with WT plants under salt
stress (Supplementary Figure 5). All the experiments have
been adhered the standard biosecurity and institutional safety
procedures, following requirements and biosafety procedures
of National Technical Commission on Biosafety (CTNBio) to
GMOs manipulation biosafety level 1.

ShDJ-Overexpression in Rice Causes
Changes in the Cell Wall Composition
Besides increasing drought tolerance, the overexpression of
ShDJ was investigated considering possible modifications in
cell wall composition, such as lignin and polysaccharides. Cell
wall composition was evaluated in T4 progeny and WT plants,
considering the entire plant shoots. ShDJ and WT plants
showed different ranges of pectin, hemicelluloses, cellulose,
and total lignin contents. Under well-watered conditions, lines
#17 and #29 presented a significant decrease in pectin and
hemicellulose compared with WT plants, with reductions ranging
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FIGURE 4 | Tillering (A,C) and biomass (B,D) of ShDJ transgenic lines #17 and #29 in T1 (A,B) and T4 (C,D) progenies. Mean values (n = 4) ± SE. Different letters
indicate significant differences between plants and water conditions (t-test, P < 0.05).

FIGURE 5 | Overexpression of ShDJ increased the survival of T4 transgenic rice seedlings under drought stress. (A) Seedlings of WT and lines #17 and #29 2 days
after re-watering. (B) Survival rate of WT and transgenic rice seedlings after drought. Survival rates were calculated as the ratio of surviving plants to the total number
of plants after re-watering.

from ∼18–30 to ∼13–25%, respectively (Figures 6A–D). Under
water deficit conditions, no significant difference in pectin was
observed in line #17, whereas a decrease in hemicellulose content
was observed in both transgenic lines compared with WT

(Figures 6A–D). ShDJ overexpression did not affect cellulose
content in line #17 under both water regimes, whereas the
cellulose content of line #29 was lower (−14%) than that in WT
plants under water deficit conditions (Figures 6E,F). Regarding
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FIGURE 6 | Effects of ShDJ overexpression on the cell wall composition and saccharification efficiency of transgenic rice lines #17 (A,C,E,G,I) and #29 (B,D,F,H,J)
under varying levels of water availability. (A,B) Pectin; (C,D) hemicellulose; (E,F) cellulose; (G,H) total lignin; (I,J) saccharification. Evaluations considered the entire
plant shoot of T4 progeny. Each histogram is the mean value (n = 4) ± SE. Different letters indicate significant differences between plants and water conditions
(t-test, P < 0.05).

lignin, there was a significant increase in line #17 compared
with WT plants (Figure 6G). Conversely, ShDJ overexpression
in line #29 did not affect total lignin under both water
regimes (Figure 6H). We also found significant increases in
saccharification efficiency in lines #17 and #29, ranging from 28%
(line #17) to 132% (line #29) compared with WT plants under
well-watered conditions (Figures 6I,J).

Expression Analyses of Secondary Cell
Wall and Drought-Stress Responsive
Genes in ShDJ Transgenic Lines
To investigate the contribution of constitutive ShDJ expression
in transgenic rice lines, the expression pattern of genes involved
in the regulation of the secondary cell wall (OsMYB58/63
and OsNST1/2) and water deficit response (OsP5CS, OsLea3,
OsGRAS23, and OsbZIP23) was assessed. Gene expression pattern
of leaves and stems of T4 plants were compared under well-
watered conditions.

The expression of OsMYB58/63 (Ambavaram et al., 2011;
Noda et al., 2015) and OsNST1/2 (Ambavaram et al., 2011) were
significantly increased in the leaves of line #17 (11- and 1.3-fold
increases, respectively) compared with WT plants (Figure 7A). In
line #29, OsMYB58/63 expression was down-regulated in leaves
(2.3-fold) and stems (24-fold), while OsNST1/2 expression was
reduced only in stems (1.5-fold) (Figure 7B).

There was a significant decrease in OsP5CS (Zhang and Chen,
2017) expression in leaves of line #17 compared with WT plants

(1.5-fold), while expression was up-regulated (2.2-fold) in stems
of line #29 (Figure 7). OsLea3 (Zhang and Chen, 2017) expression
was up-regulated in stems, with lines #17 and #29 showing
3.4- and 31-fold higher expression compared with WT plants
(Figure 7). Decreased expression of OsLea3 was observed in
leaves of line #17 (Figure 7A). Transcription factors related to
drought stress via ABA-independent (OsGRAS23; Xu et al., 2015)
and ABA-dependent (OsbZIP23; Xiang et al., 2008) pathways
were also evaluated and found to present a similar expression
profile. While the transcript abundance of OsGRAS23 was clearly
decreased in leaves of lines #17 (3.9-fold repression) and #29 (2.5-
fold repression) compared with WT, it was increased (3-fold)
in stems of line #29 (Figure 7). OsbZIP23 expression was up-
regulated in stems of lines #17 (1.7-fold) and #29 (6.4-fold) and
down-regulated (5.61-fold) in leaves of line #17 (Figure 7).

DISCUSSION

In the present study, expression of the ShDJ gene was
systematically investigated in sugarcane genotypes with
contrasting levels of drought tolerance and characterized in
drought stress through the heterologous overexpression of
ShDJ in rice. Rice (Oryza sativa) is widely used as a model
plant for functional analyses of monocots. Therefore, we
used rice for functional analyses of sugarcane genes as it is
a monocot plant evolutionarily close to sugarcane and has
well-established transformation protocols. Furthermore, rice is
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FIGURE 7 | ShDJ modified the expression of cell wall and drought-related
genes in leaves and stems of transgenic rice lines (A) #17 and (B) #29.
Expression profiles of OsMYB58/63, OsNST1/2, OsP5CS, OsLea3,
OsbZIP23, and OsGRAS23 genes observed by RT-qPCR analyses in T4

plants were maintained under irrigated conditions. Expression in transgenic
lines is relative to that in WT plants using the 2−11Ct method (Livak and
Schmittgen, 2001). Data are mean values (n = 3) ± SE, and asterisks on the
top of each bar indicate significant differential expression between lines and
WT as determined using REST© software (5% significance).

a diploid species with a small genome (about 7–8 fold smaller
than sugarcane genome), and with a short life cycle (up to three
generations per year). Our recent results of sugarcane genes
overexpressed/silenced in rice have shown linearity with those
obtained from the overexpression/silencing in sugarcane (proof
of concept – data not published). Indeed, rice is a good model for
functional analyses of sugarcane genes evolved in drought stress,
although we need to validate ShDJ in sugarcane.

Although genes encoding DJ proteins are widely present
in monocot plants (Schutter and Van Damme, 2015), their
biological functions are still poorly understood. The sugarcane
genome contains at least four DJ groups comprising seven non-
redundant sequences (Nobile et al., 2017), and ShDJ responded
strongly to drought stress in ‘IACSP94-2094,’ a drought-
tolerant genotype (Figure 1). Herein, RT-qPCR results validated
transcriptome data for the ShDJ gene during drought stress under
both field and greenhouse conditions.

Previous studies with proteins containing the dirigent-jacalin
domain have demonstrated the involvement of this domain in
pathogen resistance (Williams et al., 2002; Subramanyam et al.,
2006; Ma et al., 2010; Song et al., 2014). Based on a search of

EST and microarray databases, only two studies in wheat have
reported the responsiveness of DJ genes to drought stress (Song
et al., 2014; Kumar et al., 2018). Song et al. (2014) showed that
the expression of DJ genes was induced in response to PEG
treatment, including TaJRL6 (identified in the phylogenetic tree
as TaDIR1/JRL) present in group I (Figure 2). Based on their
results, those authors suggested that JRL proteins seem to play
an important role in plant adaptation under stressful conditions.
In addition, Kumar et al. (2018) identified DJ genes, including
Ta.188.1.S1_at (TaDIR1/JRL), using a microarray database, which
were strongly induced under drought in drought-tolerant wheat
genotype. Although JRL wheat proteins in these studies fall
within group I of the DJ proteins, the probably orthologous
groups are not evident among JRL genes. According to Walley
and Dehesh (2010) and Xiao et al. (2013), biotic and abiotic stress
pathways in plants are regulated by cross-talk between signaling
networks. Therefore, DJ genes are inducible by both biotic and
abiotic stresses, suggesting multiple roles of DJ genes in plants.

ShDJ-Overexpression in Rice Promotes
Drought Tolerance, Biomass
Accumulation, and Improves
Saccharification
In this study, the role of the ShDJ gene in the water deficit
response was characterized for the first time. Transgenic rice lines
overexpressing the ShDJ gene were generated and phenotyped
in response to water deficit stress under greenhouse conditions.
Large differences in total biomass production (tiller number
and total dry mass) were found between ShDJ lines and
WT plants in both generations evaluated (Figure 4). Under
drought, ShDJ lines maintained growth and development,
resulting in higher biomass in lines #17 and #29, while a
significant reduction in total dry mass occurred in WT plants
(Figure 4). In contrast, the survival ratio test, revealed that
the ShDJ lines showed strong tolerance to water deficit stress
(Figure 5). These results strongly suggest that ShDJ plays
a role in drought tolerance as well as in the growth and
development of transgenic plants. The role in the growth and
development of rice plants were suggested by Jiang et al.
(2007). The authors evaluated the OsJAC1 gene promoter
fused to the GUS reporter gene (pOsJAC1::GUS) and presents
a constitutive gene expression in rice. However, when the
OsJAC1 gene was driven by the maize constitutive promoter
(Ubi::OsJAC1), the plants showed a reduction in coleoptile and
stem elongation (Jiang et al., 2007). Similarly to our study,
Ambavaram et al. (2014) observed that overexpression of the
transcription factor HYR in rice resulted in an increase in grain
yield and biomass accumulation, regardless of water availability.
Likewise, Karaba et al. (2007) showed that constitutive expression
of the HARDY Arabidopsis gene in rice, improved drought
tolerance and increased biomass production. Recently, Bi et al.
(2018) demonstrated that the overexpression of Arabidopsis
SHN1 in wheat increased biomass production under drought
stress conditions compared with WT plants. Therefore, a series
of complex traits relevant to biomass or yield, such as survival
rate, tillering, and dry mass have been used to evaluate the
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drought tolerance (Fang and Xiong, 2015). In fact, these traits
are important criteria for phenotyping drought stress tolerance
in crop breeding (Mitra, 2001).

To investigate how ShDJ would affect cell wall composition
and saccharification efficiency, rice shoots of T4 progeny
were examined. Biochemical analyses were also performed
to elucidate the contribution of ShDJ-overexpression to
biomass saccharification, since the recalcitrance of cell walls
to hydrolysis represents the major bottleneck for the E2G
industry (Himmel et al., 2007). Under well-watered conditions,
there was a significant reduction in pectin and hemicellulose
in both transgenic lines compared with WT plants, whereas
the cellulose content was unchanged under well-watered
conditions (Figure 6). Under drought, there was a decrease
in hemicellulose content in line #17 and we observed a
significant reduction in pectin, hemicellulose, and cellulose
content in line #29 (Figure 6). The same response to drought
has been reported in wheat coleoptile (Wakabayashi et al.,
1997), squash hypocotyls (Sakurai et al., 1987a,b), maize
leaves (Acevedo et al., 1971), grape leaves (Sweet et al., 1990),
corn stover, mixed grasses, and Miscanthus (Emerson et al.,
2014). In those studies, drought had a negative impact on
growth, and therefore on total biomass yield. Similarly,
Lionetti et al. (2010) showed reduced polysaccharide content
due to genetic modification of the cell wall inhibited plant
growth. However, in our study, modulation of cell wall did
not adversely affect the growth of transgenic lines, as they
displayed normal plant phenotypes and even increases in
biomass production (Figure 6).

Pectin and hemicellulose link cellulose and lignin, and
this interaction has a major role in cell wall recalcitrance
(Himmel and Bayer, 2009). Changes in cell wall polysaccharides
may cause cell wall loosening (Thompson, 2005), and
this loosening phenomenon, as proposed by Moore et al.
(2008), is related to increases in cell wall elasticity (Gall
et al., 2015), promoting polysaccharides accessibility and
increasing biomass solubilization (Phitsuwan et al., 2013).
Based on our results, the reduction of pectin and hemicellulose
content in ShDJ lines compared with WT plants suggests less
interaction between cell wall polysaccharides and a significant
improvement in saccharification efficiency (Figure 6). Herein,
we provide strong evidence that modifications in cell wall
composition affect biomass recalcitrance, thus increasing
saccharification. This may due to efficient enzymatic action,
reducing interactions among pectin, hemicellulose, and
lignocellulose components (Himmel et al., 2007; Scheller
and Ulvskov, 2010). Removal of hemicellulose (Qing et al.,
2010; Shin et al., 2010) and pectin (Lionetti et al., 2010; Chen
and Peng, 2013; Biswal et al., 2014) from cell wall enhances
saccharification. Downregulation of the GAUT12.1 gene
(hemicellulose biosynthesis) in Populus deltoides by RNAi led
to a reduction in recalcitrance due to decreases in hemicellulose
and pectin contents, while lignin content was unchanged with
a significant increase in plant growth (Biswal et al., 2015). Our
results suggest that ShDJ acts by altering pectin and hemicellulose
metabolism and support our hypothesis that overexpression
of ShDJ increases drought tolerance and causes cell wall

modifications, with benefits for plant growth saccharification in
transgenic lines.

Expression Profiles of Genes Related to
Cell Wall Composition and Water Deficit
Response
Several studies have shown that changes in gene expression
and regulatory genes (transcription factors) are involved in the
activation of drought response and tolerance (Bartels and Sunkar,
2005). As ShDJ-overexpression could have affected many genes,
we examined the molecular mechanisms modified in transgenic
lines under well-watered conditions, considering genes involved
in cell wall biosynthesis and water deficit tolerance.

Transcription factors OsMYB58/63 (Ambavaram et al., 2011;
Noda et al., 2015) and OsNST1/2 (Ambavaram et al., 2011)
regulate transcription of secondary cell wall genes. The present
study evaluated OsMYB58/63 and OsNST1/2 genes to confirm
that ShDJ-overexpression affected the expression of cell wall
genes in transgenic lines. In addition, Zhou et al. (2009)
described MYB58 and MYB63 as transcriptional activators of
the lignin biosynthetic pathway during secondary cell wall
formation in Arabidopsis. However, we observed a contrasting
expression profile of both genes in the transgenic lines evaluated.
Expression of cell wall genes was induced in leaves of line
#17, which was consistent with the higher lignin content in
this line compared with WT plants (Figure 7). Conversely, the
reduced expression of genes did not alter lignin content in
line #29 (Figure 7). A reduction in expression was observed
by Ambavaram et al. (2011), and AtSHN-overexpression in rice
directly repressed OsMYB58/63 and OsNST1/2 in leaves and
stems, resulting in a large reduction in lignin content. Recently,
Martins et al. (2018) demonstrated that the overexpression of
sugarcane ShSHN1 in rice repressed OsMYB58/63 and OsNST1/2
in leaves and tillers followed by a decrease in lignin content
in the transgenic lines and improvement of saccharification
efficiency. Interestingly, ShSHN1 rice transgenic lines showed
an increase in biomass production when compared with WT
plants. Altogether, those results support the conclusion that ShDJ
modulates the expression of OsMYB58/63 and OsNST1/2 genes
related to cell wall formation. However, the relation between
expression and cell wall components needs to be further studied
and understood to uncover the underlying processes leading to
biomass accumulation and how ShDJ affects them.

To date, various signaling pathways have been reported to be
involved in drought tolerance in rice, including responsive genes
and transcription factors. Earlier reports showed that activation
of these genes improved drought tolerance (Xiao et al., 2007;
Xiang et al., 2008; Xu et al., 2015; Lou et al., 2017; Zhang
and Chen, 2017). LEA and P5CS proteins have crucial roles
in osmotic adjustment in many plants, protecting them from
damage caused by environmental stresses, such as drought (for
review, see Fang and Xiong, 2015). Conversely, transcription
factors play important roles in the transcriptional regulation of
stress-related genes (Shinozaki et al., 2003).

In the present report, we found that ShDJ-overexpression
upregulated the expression of drought-related genes and
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transcription factors in rice stems. OsP5CS and OsLea3 showed
a similar expression profile, with increased expression levels
observed in stems and decreased expressed in leaves in both
transgenic lines compared with WT plants (Figure 7). According
to Zhang and Chen (2017), the overexpression of OsNRRB
activated the expression of OsLea3 and OsP5CS, while the
expression of OsbZIP23 was repressed in leaves of well-
watered plants, as reported herein (Figure 7). Xu et al. (2015)
observed that expression of the transcription factor OsGRAS23
was induced by drought stress, and showed that OsGRAS23-
overexpression is involved in abiotic stress responses, plant
growth, development, and phytohormone signal transduction
(e.g., JA) in rice. In addition, transgenic rice overexpressing
OsLEA3 (Xiao et al., 2007) and OsbZIP23 (Xiang et al., 2008)
presented a significant improvement in drought tolerance. In
contrast, OsSAPK2-silenced plants, there were no differences in
the expression levels of OsLea3, OsP5CS, and OsbZIP23 in leaves
as compared with WT plants under well-watered conditions (Lou
et al., 2017). Additionally, the overexpression of ShDJ increased
the expression of OsbZIP23 and OsGRAS23 transcription factors
in stems, revealing changes in ABA-dependent and ABA-
independent signaling pathways, respectively. This suggests
that drought tolerance can be genetically regulated by both
hormonal pathways. Therefore, our results indicated that
overexpression of the ShDJ gene in rice may impact the steady-
state of transcription of stress–response genes, which may
improve drought tolerance and promote changes in secondary
cell walls.

CONCLUSION

In this study, we revealed that overexpression of ShDJ gene
contributed to drought tolerance, maintaining plant growth
and development of transgenic lines under conditions of
low water availability. The ShDJ gene proved to be a good
candidate for genetic transformation of plants to improve
drought tolerance, using only one gene as a target. While
further experimentation is needed under field conditions,
our results highlight an interesting pathway for enhancing
productivity within a sustainable context, where water is
a limiting factor. Given that ShDJ-overexpression promotes
improvement in saccharification efficiency in rice, our findings
are of special interest for bioenergy production using sugarcane.
The development of new sugarcane cultivars focused on first
(E1G) and second-generation (E2G) ethanol, and on the

co-generation of energy, should promote environmental and
economic benefits, increasing crop yield per area planted.
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