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The objective of this study was to determine the best method to estimate tree height by different 
hypsometric approaches. This study is a provenance trial with Eucalyptus spp. in a 35-year-old 
pioneering plantation in the municipality of Lavras, Brazil. The census was taken by measuring the 
diameter at 1.30 m above ground and total height. All x and y coordinates of the individual trees were 
obtained and these trees were classified according to their stem quality. The ordinary kriging, co-
kriging and ordinary kriging of the residuals generated from the regression models were fitted by an 
exponential model. The Curtis model was selected for calculating the regression. The best method to 
estimate the height-diameter relationship was based on the statistical and graphical criteria. The spatial 
prediction model did not adequately represent the height–diameter relationship. The regression 
technique was more precise and accurate by inserting variables that helped capture different 
development standards of the trees. The regression-kriging produced more accurate total height 
estimates. Inclusion of the stochastic effect in the general spatial behavior of the total height variable 
helped to capture specific details about the stand. Therefore, this method is recommended for 
experimental areas. 
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INTRODUCTION 
 
In Brazil, the forestry sector is important in generating 
products, taxes, foreign investment, jobs, and incomes, 
which represents approximately 5% of the national Gross 
Domestic Product (GDP). The importance of this sector in 
the Brazilian economy is mainly related to the  adaptation 

of Eucalyptus spp. to different environments in the 
country as well as the high level of technology used in the 
silviculture and management of tropical plantations. 
Between 2006 and 2012, Eucalyptus plantations 
increased by 26.5% in Brazil (ABRAF, 2013). 
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Eucalyptus plantations in Brazil are primarily used for the 
production of cellulose and energy, and on a smaller scale, 
for sawnwood and lumber. Plantations also offer the 
additional benefit of minimizing the pressure on the 
commercial use of native forests. 

In the context of development of the Brazilian forestry 
sector, the art of managing a Eucalyptus forest stand 
involves updating the growth and yield parameters of the 
forest at regular intervals, to optimize plans and future 
decisions that involve planting, harvesting, and planning 
the supply of the enterprise, in accordance with 
environmental and marketing variables. A key process for 
monitoring forest growth is the forest inventory. This 
facilitates the generation of benefits based on the 
information obtained; thus enabling, the quantification of 
the economic return of the forest. This involves 
continuous investment in the creation of maps, designing 
and installing forest inventory plots and measuring 
variables, such as diameter, height, and sometimes the 
canopies of individual trees (Avery and Burkhart, 2002). 

Usually, in forest inventories the diameter of all the 
trees in the plot is measured at 1.30 m above ground. On 
the other hand, because of the difficulty of measuring 
height, only a few trees are measured. The hypsometric 
relationship is defined as the relationship between the 
height and diameter of a tree. Knowing this relationship is 
of great significance in the data collection system. By 
measuring only a portion of the heights and all the 
diameters in the plot, a mathematical relationship can be 
established using the height–diameter pairs measured, 
thus, enabling the heights of unmeasured trees in the plot 
to be estimated. This relationship is particularly important 
when it is more difficult to measure the height of the tree, 
as in older plantations, and it represents a financial 
saving of forestry inventory resources without much loss 
of precision (Silva et al., 2007).  

Although, the hypsometric relationship is an excellent 
alternative for estimating unmeasured heights and 
lowering inventories cost, there are situations where 
deterioration of the height–diameter relationship makes it 
necessary to find other options. For example, in 
malformed stands or in locations with high variability, a 
weak correlation between diameter and height is 
expected, given that for the same diameter there will be 
different heights, and for the same height, different 
diameters (Scolforo, 2006). 

Furthermore in clonal stands, the deterioration of the 
height–diameter relationship occurs. Although the genetic 
constitution of the plants is similar, there are interactions 
with the environment. This usually results in stands with 
similar heights but with a great variability in diameters, 
because this variable is very heavily influenced by 
management and the environment. This leads to a weak 
or nonexistent relationship between the two variables, 
that is, it is natural in these cases for the coefficient of 
determination to be close to zero (Barros et al., 2002).  

Stands subjected to thinning  present  another  case  in 
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which the deterioration of the height–diameter 
relationship occurs, because when thinning is performed, 
mainly smaller trees are removed, resulting in a trend 
towards height standardization. However, with wider 
spacing, the trees respond with an increased diameter 
growth, leading to greater differences in this variable. 
This occurs because the post-thinning or remaining trees 
have different diameters. Thus, the higher the number of 
thinnings, the lower the correlation between the height 
and diameter, and in some instances the correlation will 
be zero (Barros et al., 2002). 

Thus, factors impacting the hypsometric relationship 
should be observed. The relationship is affected by 
location, density, crown class, canopy size, species, and 
age (Curtis, 1967; Loetsch et al., 1973; Gómez-García et 
al., 2015). The development of geographic information 
systems and specific forestry inventory software enable 
the control of all these factors. Since there are several 
factors affecting the hypsometric relationship it is usually 
fitted at the plot level. The reason for this is because of 
the small plot size, similar location and canopy pattern, 
and the same density, species, and age (Tome et al., 
2007). Therefore, consistent relationships are obtained 
that contribute to good forest inventory estimates.  

Other options for large plantation areas are to make 
model fitting by adding plot covariables that help reduce 
variation, or combining the traditional hypsometric 
relationship model with the variables that affect this 
relationship, particularly age, density, and productivity 
measurements of the locations, as these are the 
variables that greatly impact this relationship. This 
method is the generic hypsometric relation model 
(Soares et al., 2004). 

However, ignoring the spatial dependency that is often 
present in observations of forest data can cause incorrect 
inferences regarding the parameters of the model (Finley 
et al., 2013). Thus, geostatistics emerges as an 
alternative in forest inventory procedures, in addition to 
being associated with spatial dependency models for 
estimating height (Zhang et al., 2009; Lu and Zhang, 
2011). The data obtained from specific collections, such 
as dendrometric variables from forest inventory, require 
the use of spatial prediction methods for their mapping, of 
which kriging is one such method. Besides the use of 
ordinary kriging, co-kriging, which is treated as a 
multivariate extension of kriging (Yamamoto and Landim, 
2013), and regression-kriging, which comprises a 
combination of regression models and stochastic kriging 
behavior (Hengl et al., 2007), are alternatives with the 
potential to provide this spatialization. 

In tropical countries that work with fast-growing species 
in rotations that often do not exceed eight years of age, 
the effect of environmental variables has much more 
impact than those species that grow in temperate 
climates (Almeida et al., 2004). Therefore, modeling 
studies in tropical countries are significantly more 
complex (Castro and Morrot, 1996). In a global context of
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Table 1. Coefficient of variation (CV), minimum, average and maximum values for the HT and DBH variables according to each stem 
quality (SQ). 
 

SQ N Variable CV (%) Minimum Average Maximum 

1 208 
HT 21.9 13.2 42.0 59.7 

DBH 32.4 13.7 44.9 80.9 

       

2 126 
HT 33.3 2.7 32.7 56.3 

DBH 39.3 10.9 33.3 76.1 

       

3 126 
HT 44.9 4.7 23.8 55.4 

DBH 65.7 8.0 26.4 98.7 

       

Total 460 
HT 36.3 2.7 34.5 59.7 

DBH 44.7 8.0 36.6 98.7 
 

Where: SQ = stem quality, N = number of individuals, CV (%) = coefficient of variation, HT and DBH measured in meters and centimeters, 
respectively. 

 
 
 
more accurate height estimates in Eucalyptus stands, 
there is a gap in the scientific research on methods that 
evaluate the performance of methods that generate 
height estimates, which have exclusively focused on 
ordinary regression using traditional or generic models. 
This study proposes a novel form of comparative 
evaluation in the height estimation of Eucalyptus spp., a 
species that is synonymous of the forestry sector 
development in Brazil.  

Thus, the objective of this study was to define a method 
to estimate height, considering approaches that use the 
hypsometric relationship in spatial prediction models, 
ordinary regression model, regression models with 
addition of covariables, and a combination of regression 
models and kriging for experiment with Eucalyptus spp.  
 
 
MATERIALS AND METHODS 
 
Description of the study area and data collection 

 
The data used in this study is from a provenance trial of Eucalyptus 
spp. in a 35-year-old seminal plantation of 1.2 ha located on the 
campus of the Universidade Federal de Lavras (Federal University 
of Lavras, UFLA) in the municipality of Lavras, Brazil. The 
municipality of Lavras, according to Köppen’s classification, has a 
humid subtropical climate, with hot and rainy summers, and cold 
and dry winters (Cwa climate), an average annual temperature of 
19.3°C, an average annual rainfall of 1530 mm, and an average 
annual relative humidity of 76% (Sa Junior et al., 2012). 
A census of the area was conducted, measuring the diameter at 
1.30 m above ground (DBH) and the total height (HT) of all the 
individuals in the stand. All individuals were also georeferenced by 
adopting a system of arbitrary coordinates (x,y) in meters, in which 
the first tree in the stand was designated as the reference tree, for 
which the values of the arbitrary coordinates  were zero (0,0). 

A qualitative evaluation of the trees in the stand was also 
conducted in relation to stem quality (SQ). This variable was used 

as a covariable in the regression model. It is expected that this will 
be a determining factor in differentiating growth standards. 

 
SQ 1: Trees of large dimensions with straight trunks and with a 

potential use in sawmills for the manufacture of furniture and 
structures; 
SQ 2: Trees of medium to large dimensions, with a potential use for 

charcoal, fence posts, or stakes; 
SQ 3: Trees of small dimensions, suppressed or dominated, with 
twisted trunks that can be used in the production of charcoal, 
firewood, and in some cases as fence posts or stakes.  
 
Table 1 presents descriptive statistics separately for each SQ and 
also for the stand. Based on an analysis of the data, it can be seen 
that the number of individuals for SQ 1 is greater than those of SQ 
2 and SQ 3, that is, there is a greater tendency for the individuals of 
these stands to be used as lumber. Furthermore, the table shows 

that the variability of the data on HT and DBH is also increasing 
from SQ 1 to SQ 3, as would be expected by the characterization of 
quality of each trunk type, described above. 
 
 
Hypsometric approaches 
 
Variographic study 

 
The variographic study was established from the generation of 
experimental semivariogram and its modeling for the application in 
ordinary kriging, co-kriging, and ordinary residual kriging; the latter 
for the application of regression-kriging. 

In this study, the exponential model, described by Journel and 
Huijbregts (1978), was fitted to obtain the set of parameters to be 
used in the estimation of ordinary kriging, co-kriging, and 
regression-kriging. This model was chosen because it 
demonstrated good performance in previous studies in forestry, 
such as that of Galeana-Pizana et al. (2014). 

The exponential model fitted for each situation was conducted by 
the method of weighted least squares. The fittings were made by 
using R software (R development core team 2013), using the geoR 
package (Ribeiro Jr. and Diggle, 2001) and gstat (Pebesma, 2004).  
 
 
Spatial prediction models - Ordinary kriging and co-kriging 

 
The prediction of unsampled points based on  ordinary  kriging  was 



 
 
 
 
first described by Journel and Huijbregts (1978), and more recently 
by Meusburger et al. (2012) and Hengl et al. (2004). In this 
approach, weight was obtained with the parameters of the 
semivariogram fitted for the characteristic being evaluated (HT). 
The ordinary kriging estimator (Equation 1) is: 
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                                                                      (1) 

 

Where: 0
ˆ

XZ  is the estimated value in position 0X ; n is the 

number of sampled neighboring points used for the prediction of 

unsampled value 0
ˆ

XZ  (kriging neighborhood); λi is the i
th
 weight 

attributed to each i
th
 observation of the variable of interest in 

position X ; and Zxi, is the observed value.  
The estimation of unsampled points made from co-kriging was 

described by Yamamoto and Landim (2013), among other authors, 
and is an extension of kriging, in which one or more easy-to-
measure variables helps explain a difficult-to-measure primary 

variable(Wu et al., 2009). For this approach, the identification of 
weights was obtained with the parameters of crossed semivariance 
fitted for the variable HT, where the secondary variable was the 
DBH, which was obtained for all the individuals in the stand. The 
linear correlation of 0.79 between the variables HT and DBH was 
statistically significant. This calculation is relevant because a good 
correlation between the auxiliary and principal variables make co-
kriging more effective (Basaran et al., 2011). The co-kriging 
estimator (equation 2) is: 
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                                                         (2) 

 

Where: 0
ˆ

XZ  is the estimate of the value in position 0X ; n is the 

number of sampled neighboring points used to predict the 

unsampled points 0
ˆ

XZ  (kriging neighborhood); λ1i and λ2i are the i
th

 

weights attributed to each i
th
 observation of the 

variables 1iZ (variable observed) and 2iZ (covariable observed).  

 
 
Regression model 
 

The estimation of HT was done by fitting the Curtis model (Equation 
3), which has desirable efficiency describing height-diameter 
relationships, as the studies of Ribeiro et al. (2010) and Filho et al. 
(2010) have shown: 
 

 
0 1

1
ln(HT)

DAP
    

                                                   (3) 
 
Where: HT and DBH were previously defined; ln is the natural 

logarithm; and 0  and 1  are the parameters of the model;  is 

the error term. 
First, the fit was performed by the traditional method, which is 

based on ordinary least squares regression and the model used HT 
only as a function of DBH. The second form of fit was performed by 
adding categorical covariables into the model. For the second 
approach, additional characteristics that differ from the standard 
distribution of the variable of interest (HT) were incorporated. This 
addition being understood for this study as a categorical covariable.  
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The covariable considered in this study was SQ, that is, this 
variable was considered to be an important variable in changing 
growth patterns. Therefore, to fit the ordinary regression models by 
adding categorical covariables, two distinct situations were 
considered for the Curtis model.  In the first, the three SQ’s were 
inserted as dummy variables in the model intercept (ß0), which 
means that the fitted model have different intercepts for each SQ, 
but same slope. In the second situation, these three SQ’s were 
inserted as dummy variables in the intercept and slope (ß0 e ß1) 
parameters of the fitted model, which means different ß0 and ß1 
according to each SQ. 
 
 

Regression-kriging 
 

This is a hybrid form of fitting for the estimation of HT, that is, it is a 
combination of a regression and a spatial prediction model that 
lends a stochastic aspect to the estimates. The regression identifies 
the spatial behavior of the interest variable throughout the area, 
although without specific details of more specific locations (Mello et 
al., 2013; Scolforo et al., 2015). For the final result of the estimates 
to have more details about the specific points, a correction of the 

estimates developed by the regression model is necessary. This 
correction is made by applying ordinary kriging to the residuals 
generated by this model, with the main objective of correcting 
trends and detailing the spatial behavior of the principal variable 
(Meusburger et al., 2012). 

Thus, after fitting the regression models, the next step was to 
study the behavior of the residuals derived from each regression 
model in the space. For each of the three situations (traditional 
regression model and two regression models with the addition of a 

covariable), the study of its spatial autocorrelation as a function of 
distance was performed, fitting the theoretical semivariogram 
models to the experimental semivariogram models by means of the 
R software (R Development core team, 2013) using the geoR 
package (Ribeiro Jr. and Diggle, 2001). Then the residual for each 
individual was estimated by ordinary kriging.  

Given that all individuals in the area were georeferenced, 
continuous cells with dimensions of 3 × 3 m (regular planting 

spacing) were developed throughout the stand using the ArcMap 
program (ESRI, 2010). In each of these cells, the independent 
variable DBH was characterized and the regression model was 
applied to generate the HT estimates. Afterwards, the values based 
on the residuals kriging were extracted for each cell, enabling 
correction of the values produced by the fitted regression model. 
 
 
Predictive validation of the different hypsometric approaches 
 
A comparison of the estimates generated from the hypsometric 
approaches was made. The statistic of standard residual error (Syx) 
in meters (Equation 4), and residual average were analyzed. In 
addition, the predicted values around a 1:1 line was analyzed, to 
assess the variance behavior in terms of its homogeneity. 

he dataset was separated into data to perform the fits and data 
for the predictive validation of the models, corresponding to 322 
(70%) and 138 (30%) of the individual trees, respectively. The 
predictive validation means that 30% of the data was not used in 
fitting the models. Thus, the predictive validation enabled the 
evaluation of the best technique by statistical criteria (Crescente-
Campo et al., 2010). 

The data for fitting and predictive validation were separated 
randomly, with weighting proportional to the number of individuals 
per SQ: 
 

( )

1
yx

MS E
S

n p


 
                                                                            (4) 
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Figure 1. Theoretical and experimental unidirectional semivariogram (a) and theoretical and experimental 

unidirectional cross semivariogram (b) modeled for the HT variable. 

 
 
 

Where: ( )MS E  is the mean square error; n the number of 

observations; and p the number of parameters. 

 
 
RESULTS AND DISCUSSION 
 
Variographic modeling for ordinary kriging and co-
kriging of HT – Spatial prediction models 
 
Figure 1 shows the experimental and modeled 
semivariograms for HT (a) and crossed experimental and 
modeled semivariograms for this same variable with the 
aid of the secondary variable DBH (b). The exponential 
model was appropriately fitted in both cases, allowing 
spatial continuity modeling of the variable of interest. 

For the univariate (semivariogram) and multivariate 
(crossed semivariogram) approaches, nugget effect and 
sill values enabled similar spatial dependency degree 
(around 35%), which characterizes a moderate spatially 
dependent structure for both cases according to 
Cambardella et al. (1994). 

The practical ranges of both modeled semivariograms 
that represent the maximum distance, within which the 
characteristic is spatially correlated, were 37 and 46 m for 
the univariate and multivariate approaches, respectively. 

Thus, the HT variation was captured better by using the 
crossed semivariogram, which indicates the gain from the 
use of the auxiliary variable DBH. 
 
 

Regression models for estimating HT 
 
Table 2 contains the fitted parameters of Curtis models 
(via traditional regression and regression considering SQ 
as a covariable), in addition to the residual standard error 

(Syx) in meters. The fitted regression models using the 
addition of covariables had better performance than the 
ones without, according to values of Syx (m). This 
improvement in results when compared with the 
traditional fitted regression model was expected, given 
that SQ captures the different growth standards, reducing 
the variability effect of the data and minimizing the 
estimation errors. 
 
 
Variographic modeling for regression-kriging 
  
Figure 2 shows the experimental and modeled 
semivariograms for the residuals of the HT variable 
derived for each of the three situations of the Curtis fitted 
regression model. An evaluation of Figure 2 showed that 
in each of the three situations the exponential model was 
fitted adequately, enabling modeling of the spatial 
continuity of the variable of interest. The nugget effect 
and sill values in all three situations allowed 
characterization of a moderate spatially dependent 
structure, according to the concept of Cambardella et al. 
(1994).  
 
 
Predictive validation of the hypsometric approaches 
 
Figure 3 presents the predicted values around a 1:1 line, 
and Table 3 shows the statistical precision for each 
hypsometric approach evaluated. The hypsometric 
estimates from the regression models and the 
regression-kriging models presented an adequate 
balance of predicted values around a 1:1 line (Figure 3). 
This situation characterizes these methods as having 
good statistical performance, that is, indication of
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Table 2. Fitted hipsometric model parameters. 
 

Models SQ ß0 p-value ß1 p-value Syx (m) 

Curtis - 4.1670 2e-16 -20.8906 2e-16 6.70 

Curtis with different ß0 for each SQ 

1 4.1787 2e-16 -18.9981 2e-16 

6.40 2 4.0512 4e-4 -18.9981 2e-16 

3 4.0271 2e-4 -18.9981 2e-16 

       

Curtis with different ß0 and ß1 for each SQ 

1 4.2313 2e-16 -21.1171 2e-16 

5.83 2 4.1721 1e-3 -22.5159 1e-3 

3 3.9419 1e-3 -17.2664 1e-3 
 

Where: SQ = quality of the trunk, ß0 and ß1 are the parameters of the models. 

 
 
 

 
 
Figure 2. Experimental and modeled semivariograms of the residuals relating to the models: (a) 

Traditional Curtis regression; (b) Curtis with different ß0 for each SQ; (c) Curtis with different ß0 
and ß1 according to each SQ. 

 
 
 
homoscedasticity (Mello et al., 2013). The spatial models 
(essentially a geostatistical approach) showed an overall 
bias in the predicted values around a 1:1 line. The spatial 
models presented low prediction capacity due to high 
variability between individuals (Table 1), thus, 
concentrating   the   estimates   on   intermediate   values 

(Figure 3). 
The regression models did not present any trends and 

the addition of SQ as a categorical covariable improved 
the results when compared to the traditional Curtis 
regression model (Figure 3). Also, Figure 3 highlights that 
the incorporation  of  the  stochastic  aspect  to  the  fitted
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Figure 3. Distribution of the predicted values around a 1:1 line of the HTs estimated by the 

different approaches - (a) Spatial model – ordinary kriging; (b) Spatial model – co-kriging; (c) 
Ordinary regression model – Curtis; (d) Ordinary regression model – Curtis with different ß0 for 

each SQ; (e) Ordinary regression model – Curtis with different ß0 and ß1 for each SQ; (f) 
Regression-kriging model –Curtis; (g) Regression-kriging model – Curtis with different ß0; (h) 
Regression-kriging model – Curtis with different ß0 and ß1. 

 
 
 
regression (regression-kriging) added more precision to 
the results, that is, the regression-kriging was the most 
efficient fit technique. Furthermore, this technique 
resulted in a  tighter  dispersion  of  HT  estimates  and  a 

more balanced distribution of residuals between the 
under and overestimates around a 1:1 line plot (Figure 3). 
Nanos et al. (2004) conducted a study in central Spain in 
a  stand  of  Pinus pinaster,  where   they   observed   the
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Table 3. Statistical precision Syx and residual average generated by the hypsometric approaches. 
 

Models Syx (m) 
Residual average 

(m) 

Spatial models 
Kriging 12.27 -0.83 

Co-kriging 10.99 -0.37 

    

Ordinary regression models 

Curtis 7.80 0.95 

Curtis with different ß0 for each SQ 7.34 0.83 

Curtis with different ß0 and ß1 for each SQ 7.11 0.81 

    

Regression-kriging 

Curtis 7.55 -0.20 

Curtis with different ß0 for each SQ 7.10 -0.18 

Curtis with different ß0 and ß1 for each SQ 6.86 -0.09 

 
 
 
potential of this technique, that is, the combination of 
regression and geostatistics in the height-diameter 
relationship. 

The closer the Syx statistics and the average residual 
are to zero, the more reliable and less prone to error the 
generated estimates become. Thus, Table 3 shows that 
the regression-kriging and regression modeling 
approaches are marginally superior to the geostatistical 
approach (spatial modeling). The fact that co-kriging 
produced better results than ordinary kriging is also 
pointed out, although these geostatistical approaches are 
more often indicated for mapping of areas than point 
estimates in situations where the vegetational variability 
is great in a reduced space. 

It is inferred that the Curtis model with regression-
kriging, considering different ß0 and ß1 (different growth 
standards of the trees classified according to each SQ), 
presented the best estimates, as shown in Table 3. Given 
the marked variability of the data due to the advanced 
age of the Eucalyptus stand and pointed out that 
analyses done here came from the predictive validation, 
these validation values from the Syx and the residual 
average are satisfactory. It should also be highlighted 
that the residual graphic tends to go towards a balance 
between the sub and superestimates, which in fact 
characterizes the Curtis model with regression-kriging 
procedure as an estimator with low bias. 

A major advantage of the application of regression-
kriging models is that in addition to prediction, the 
productivity map with spatial information about the stand 
is also produced (Scolforo et al., 2015). As a continuation 
of the developments regarding the hypsometric 
relationship approach  presented in this study, it is 
believed that combining the results obtained here with the 
use of LiDAR (Light Detection and Ranging) technology 
will make it possible to model the height–diameter 
relationship using regression-kriging, achieving greater 
benefits. LiDAR enables an extraordinary understanding 
of the terrestrial biomass through direct three-
dimensional measurements of the  biophysical  properties 

of the vegetational profile (Jaskierniak et al., 2011), as 
well as by obtaining the heights of all the individuals in 
the stand and their locations in the space (Lingnau et al., 
2008; Oliveira et al., 2012). Giongo et al. (2010) pointed 
out that LiDAR has great potential for forestry 
applications, suggesting the use of this technique for 
operational forestry measurements in the near future. 
 
 
Conclusions  
 
When spatial modeling was applied with the goal of 
generating the hypsometric relationship in a stand of 
mature Eucalyptus spp. with high variability, it was not 
possible to fit the model adequately, because of the 
difficulty in generating kriging weights, which affected the 
estimates generated by the spatial models. 

The use of the regression technique by adding stem 
quality (SQ) as a covariable to predict height estimates 
was more precise and produced greater accuracy than 
estimates obtained through traditional regression. The 
insertion of variables that help capture the different 
standards of tree development make this technique more 
accurate when compared with traditional regression. 
Regression-kriging was more accurate in estimates of 
HT. Inclusion of the stochastic effect in the general 
spatial behavior of the total height variable, helped to 
capture specific details about the stand. In other words, it 
makes corrections for locations where the behavior of the 
regression was not followed and presented higher rates 
of estimation errors. From a statistical and accuracy point 
of view, kriging combined with regression is the 
recommended method for modeling the height–diameter 
relationship. 
 
 
Conflict of Interests 
 
The authors declared that they have no conflict of 
interests. 



4184          Afr. J. Agric. Res. 
 
 
 
ACKNOWLEDGMENTS 
 
The authors are grateful to the Coordenação de 
Aperfeiçoamento de Nível Superior (CAPES), the 
Conselho Nacional de Desenvolvimento Científico 
(CNPq) and the Fundação de Amparo à Pesquisa do 
Estado de Minas Gerais (FAPEMIG) for supporting this 
work. Also, we thank all our colleagues who participated 
in the sampling efforts, particularly Julio Vilela Pires and 
Gabriel Marcos de Oliveira. 
 
 
REFERENCES 
 
Associação Brasileira de Produtores de Florestas Plantadas – ABRAF 

(2013). Anuário estatístico ABRAF 2013 ano base 2012/ABRAF. 
Brasília: DF. P 148. 

Almeida AC, Landsberg JJ, Sands PJ, Ambrogi MS, Fonseca S, 

Barddal SM, Bertolucci FL (2004). Needs and opportunities for using 
a process-based productivity model as a practical tool in Eucalyptus 

plantations. For. Ecol. Manage. 193:167-177.  

Avery TE, Burkhart HE (2002). Forest Measurements. New York: 
McGraw-Hill P 456. 

Barros DA, Machado SA, Acerbi Junior FW, Scolforo JRRS (2002). 
Behavior of traditional and generic hypsometric models for Pinus 
oocarpa plantations for different treatments. Bol. Pesq. Fl. 45:3-28. 

Basaran M, Erpul G, Ozcan AU, Saygin DS, Kibar M, Bayramin I, 

Yilman FE (2011). Spatial information of soil hydraulic conductivity 
and performance of cokriging over kriging in a semi-arid basin scale. 
Environ. Earth Sci. 63:827-838.  

Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco 
RF, Konopka AE (1994). Field scale variability of soil properties 
incentral Iowa soils. Soil Sci. Soc. Am. J. 58:1501-1511.  

Castro AG, Morrot S (1996). Perspectivas de desenvolvimento 
sustentável para o setor florestal na América Latina. Estud. Av. 

10(27):321-347. 

Crescente-Campo F, Tome M, Soares P, Dieguez-Aranda U (2010). A 
generalized nonlinear mixed-effects height–diameter model for 
Eucalyptus globulus L. in northwestern Spain. For. Ecol. Manage. 

259:943-952. 
Curtis RO (1967). Height-diameter and height-diameter age equations 

for second-growth Douglas fir. For. Sci. 13(4):365-375. 

Environmental Systems Research Institute, ESRI (2010). Geostatistical 
analyst tutorial. Redlands P 57. 

Filho FA, Dias AN, Kohler SV, Verussa AA, Chiquetto AL (2010). 
Evolution of the hypsometric relationship in Araucaria angustifolia 

plantations in the mid-south region of Paraná State. Cerne 16:347-
357.  

Finley AO, Banerjee S, Cook BD, Bradford JB (2013). Hierarchical 

bayesian spatial models for predicting multiple forest variables using 
waveform LiDAR, hyperspectral imagery, and large inventory 
datasets. Int. J. Appl. Earth Obs. Geoinf. 22:147-160.  

Galeana-Pizana JM, López-Caloca A, López-Quiroz P, Silván-Cárdenas 
JL, Couturier S (2014). Modeling the spatial distribution of above-
ground carbon in Mexican coniferous forests using remote sensing 

and a geostatistical approach. Int. J. Appl. Earth Obs. Geoinf. 30:179-
189.   

Giongo M, Koehler HS, Machado AS, Kirchner FF, Marchetti M (2010). 

LiDAR: principles and forest applications. Pesqui. Florest. Bras. 
30:231-244.  

Gómez-García E, Fonseca TF, Campo FC, Almeida LF, Diéguez-

Aranda U, Huang S, Marques CP (2015). Height-diameter models for 
maritime pine in Portugal: a comparison of basic, generalized and 
mixed-effects models. iForest (early view) e1-e7.  

Hengl T, Heuvelink G, Stein AA (2004). A genetic framework for spatial 
prediction of soil variables based on regression-kriging. Geoderma 
122:75-93.  

Hengl T, Heuvelink GBM, Rossiter DG (2007). About regression-kriging: 
From equations to case studies. Comput. Geosci. 33:1301-1315.  

 
 
 
 
Jaskierniak D, Lane PNJ, Robinson A, Lucieer A (2011). Extracting 

LiDAR indices to characterise multilayered forest structure using 
mixture distribution functions. Remote Sens. Environ. 115:573–585.  

Journel AG, Huijbregts CJ (1978). Mining geostatistics. London: Academic 
P. 600. 

Lingnau C, Silva MN, Santos DS, Machado A, Lima JGS (2008). 

Mensuração de alturas de árvores individuais a partir de dados laser 
terrestre. Ambiência 4:85-96. 

Loetsch F, Zohrer F, Haller KE (1973). Forest inventory. Munchen: BLV. 

P 469. 
Lu J, Zhang L (2011). Modeling and Prediction of Tree Height–Diameter 

Relationships Using Spatial Autoregressive Models. For. Sci. 57:252-

264. 
Mello CR, Viola MR, Beskow S, Norton LD (2013). Multivariate models 

for annual rainfall erosivity in Brazil. Geoderma 202(203):88-102.   

Meusburger K, Steel A, Panagos P, Montanarella L, Alewell C (2012). 
Spatial and temporal variability of rainfall erosivity factor for 
Switzerland. Hydrol. Earth Syst. Sci. 16:167-177.  

Nanos N, Calama R, Montero G, Gil L (2004). Geostatistical prediction 
of height/diameter models. For. Ecol. Manage. 195:221-235.  

Oliveira LT, Carvalho LMT, Ferreira MZ, Oliveira TCA, Acerbi Junior FW 

(2012). Application of LIDAR to forest inventory for tree count in 
stands of Eucalyptus sp. Cerne 18:175-184.  

Pebesma EJ (2004). Multivariable geostatistics in S: the gstat package. 

Comput. Geosci. 30:683-691.  
R development core team (2013). R: a language and environment for 

statistical computing. Vienna: R Foundation for Statistical Computing. 

Available: < http://www.R-project.org>. 
Ribeiro A, Ferraz Filho AC, Mello JM, Ferreira MZ, Lisboa PMM, 

Scolforo JRS (2010). Strategies and methodologys for adjustment of 
hypsometric models of Eucalyptus sp. stands. Cerne 16:22-31.  

Ribeiro Júnior PJ, Diggle PJ (2001). geoR: a package for geostatistical 
analysis. R-NEWS 1:15-18. 

Sa Junior A, Carvalho LG, Silva FF, Alves MC (2012). Application of the 
Köppen classification for climatic zoning in the state of Minas Gerais, 
Brazil. Theor. Appl. Climatol. 108(1-2):1-7. 

Scolforo HF, Scolforo JRS, Mello CR, Mello JM, Ferraz Filho AC (2015). 
Spatial Distribution of Aboveground Carbon Stock of the Arboreal 
Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-

Arid Woodland. Plos One 10(6):1-20.  
Scolforo JRS (2006). Biometria Florestal: Growth and Yield Models. 

Lavras: UFLA/FAEPE. P 393. 

Silva GFD, Xavier AC, Rodrigues FL, Peternelli LA (2007). Análise da 
influência de diferentes tamanhos e composições de amostras no 
ajuste de uma relação hipsométrica para Eucalyptus grandis. Rev. 

Árvore 31(4):685-694. 
Soares TS, Scolforo JRS, Ferreira SO, Mello JM (2004). Use of 

different alternatives to allow the use of the hypsometric relation in 
forest stands. Árvore 28(6):845-854. 

Tome M, Ribeiro F, Faias S (2007). Relação hipsométrica geral para 
Eucalyptus globulus Labill. em Portugal. Silva Lusitana 15(1):41-55. 

Wu C, Wu J, Luo Y, Zhang L, DeGloria SD (2009). Spatial estimation of 

soil total nitrogen using cokriging with predicted soil organic matter 
content. Soil Sci. Soc. Am. J. 73:1676-1677.  

Yamamoto JK, Landim PMB (2013). Geoestatistics: concepts and 

application. São Paulo: Oficina de textos P 215. 
Zhang L, Ma Z, Guo L (2009). Spatial autocorrelation and heterogeneity 

in the relationships between tree variables. For. Sci. 55:533-548. 

http://dx.doi.org/10.1016/j.jag.2014.02.005
http://dx.doi.org/10.1016/j.geoderma.2013.03.009

