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Multiloop calculations with Implicit Regularization in massless theories
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We establish a systematic way to calculate multiloop amplitudes of infrared safe massless models with Im-
plicit Regularization (IR), with a direct cancelation of the fictitious mass introduced by the procedure. The
ultraviolet content of such amplitudes have a simple structure and its separation permits the identification of
all the potential symmetry violating terms, the surface terms. Moreover, we develop a technique for the cal-
culation of an important kind of finite multiloop integral which seems particularly convenient to use Feynman
parametrization. Finally, we discuss the Implicit Regularization of infrared divergent amplitudes, showing with
an example how it can be dealt with an analogous procedure in the coordinate space.
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1. INTRODUCTION

Higher order calculations in massless theories can be per-
formed with the help of several techniques [1]-[10]. In this
paper we show that IR is a good tool for treating typical mul-
tiloop massless integrals. Among the reasons that justify the
use of IR, we can cite two important ones. The first one is the
fact that the method works in the physical dimension of the
theory, and this avoids complications with theories which are
sensible to dimensional modifications [11]-[13]. The second
one is the simple algorithm that the IR provides for the iden-
tification of potentially symmetry violating terms: the surface
terms which come from basic divergent integrals with Lorentz
indices [16], [19], [20], [24]-[26].

It is just the second reason referred above that could bring
some difficulties when one intends to apply the method to
massless models. This is because the IR standard expansion,
used to separate the divergent from the finite part of an in-
tegral, in this case can only be performed with the introduc-
tion of a fictitious mass; it turns out that the two parts are
infrared divergent (here we are talking about infrared safe in-
tegrals). Of course, the parts must be added in order to cancel
this mass; this is accomplished by means of a scale relation
which introduces an independent mass parameter. However,
the basic divergent integrals are a simple form of express-
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ing the ultraviolet divergent content of the amplitude, since it
does not ask for an explicit regularization [30].

On the other hand, this enforces the necessity of a method
for performing the calculation of some pieces of the finite
part obtained by such expansion, or the cancelation of the fic-
titious mass will not be evident. In this paper, we establish
a systematic way to calculate multiloop integrals in massless
models. In addition, we develop a technique for dealing with
an important kind of ultraviolet finite integral which emerge
from the expansion of the integrand. We use a simple alge-
braic identity to put the integrand in a convenient way to use
Feynman parametrization. As a consequence, we obtain a
direct cancelation of the fictitious mass when the finite and
divergent parts are put together.

It is well known that the use of a fictitious mass is not con-
sistent when a genuine infrared divergence is to be treated.
For the sake of completeness, we briefly comment on a pro-
cedure to implicitly regularize such kind of amplitudes, as it
will be presented in [31].

This paper is organized as follows: in section two we
overview the basics of Implicit Regularization; the system-
atic calculation of multiloop massless integrals is presented
in section three; we give an example of a five-loop amplitude
in section four; some comments on the Implicit Regulariza-
tion of genuine infrared divergent amplitudes are presented
in section five; the concluding comments are in section six.
Detailed calculations of a typical finite part are presented in
Appendix A and the procedure for obtaining the scale rela-
tions is presented in the appendix B.
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2. OVERVIEW OF IMPLICIT REGULARIZATION

Now, some important aspects of IR are needed; the detailed
discussion can be found in the references [14]-[29]. The con-
dition is that the regularization, which is maintained implicit,
does not modify the dimension neither the integrand. So, a
simple cutoff is a good choice, since the basic divergences
will not be calculated, and IR has a simple recipe to enforce
symmetries.

For treating massless theories, the following steps should
be carried out:

• the space-time and internal group algebra are per-
formed and the amplitude is written as a combination
of basic integrals;

• taking into account that the integral is infrared safe,
a fictitious mass µ2 is introduced. This must be done
because the characteristic expansion of Implicit Regu-
larization breaks the integral in parts that are infrared
divergent;

• the expansion of the integrand is carried out until the di-
vergent piece does not have the external momentum in
the denominator. The following identity is recursively
used:

1
(pi− k)2−µ2 =

1
(k2−µ2)

− p2
i −2pi · k

(k2−µ2) [(pi− k)2−µ2]
, (1)

with pi a linear combination of the external momenta;

• the divergent part is written in terms of basic divergent
integrals of the type

I(i+1)µ1···µγ

log (µ2) =
∫

Λ

k

kµ1 · · ·kµγ

(k2−µ2)β
lni
(
−k2−µ2

λ2

)
,

(2)

with γ = 2β− 4,
∫

k ≡
∫

d4k/(2π)4 and where the Λ is
to indicate the presence of an implicit regularization;

• the basic divergent integrals with Lorentz indices are
expressed as functions of basic divergent integrals
without indices and surface terms;

• the finite part is calculated;

• scale relations are used in order to write the basic di-
vergent integrals in terms of a non-null, arbitrary mass
scale λ2. The scale relation will allow an interplay be-
tween the finite and the divergent parts;

• the limit µ2→ 0 is taken.

3. THE CALCULATION OF MULTILOOP INTEGRALS

A complete discussion on the ultraviolet content of infrared
safe massless models within the context of Implicit Regular-
ization is carried out in ref. [30]. It has been shown that

the divergent part of an amplitude for such a theory can be
completely displayed in terms of I(i)

log(λ
2), according to the

definition

I(i)
log(µ

2) =
∫

Λ

k

1
(k2−µ2)2 lni−1

(
−k2−µ2

λ2

)
. (3)

It has been also shown that after judiciously applying the
identity (1), the divergent part of any multiloop amplitude will
be contained in a set of integrals of the type

Jµ1···µr =
∫

Λ

k

kµ1 · · ·kµr

(k2)α(k− p′1)2 lni−1
(
− k2

λ2

)
, (4)

with p′1 some linear combination of the external momenta and
2α ≤ r + 3. In the expression above, it will be necessary the
introduction of a fictitious mass µ2. A fictitious mass may
always be introduced as long as the integral is infrared safe.
This is necessary when using IR to treat massless infrared safe
ultraviolet divergent integrals, because the expansion of the
integrand, as we will see below, breaks it in two infrared di-
vergent pieces. When a genuine infrared divergence appears
this procedure can be problematic. For such cases a new pro-
cedure within IR defining basic infrared divergent integrals
is necessary [31], and we will comment on this approach in
section V.

There are other finite contributions to the finite part besides
the ones that come from the integral of eq. (4). For some of
them there is no analytic solution, but they have no problems
with the limit µ2 → 0. This fact can be simply showed by
proving that (4) is infrared finite, since the whole amplitude
is infrared finite. So, we are interested here in the explicit
calculation only of this part of the finite content, because it
is this one that will guaranty us, when the ultraviolet diver-
gent part is considered together, the infrared finiteness of the
amplitude. This justifies and shows the consistency of IR for
treating infrared safe massless models. As discussed in the
paper [30], the calculation of higher order renormalization
group functions can be completely carried out by knowing
the coefficients of the I(i)

log(λ
2)’s which display the ultravio-

let content of all infrared safe massless amplitudes. Never-
theless, we must be secure that no new problem will emerge
when the separation of these objects is performed. This is the
reason why we dedicate ourselves to establish a procedure for
solving the finite part of integrals of the type (4).

We now perform a complete calculation of a typical n+1-
loop integral, which has the form of (4):

I(n+1)
α =

∫
Λ

k

kα

k2(p− k)2 lnn
(
− k2

λ2

)
= lim

µ2→0

{∫
Λ

k

kα

(k2−µ2)[(p− k)2−µ2]

lnn
(
−k2−µ2

λ2

)}
. (5)
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Carrying out the expansion of the integrand:

I(n+1)
α =

∫
Λ

k

kα

(k2−µ2)
lnn
(
−k2−µ2

λ2

)
{

1
(k2−µ2)

− p2−2p · k
(k2−µ2)2 +

(p2−2p · k)2

(k2−µ2)2[(p− k)2−µ2]

}
= 2pβI(n+1)

log αβ
(µ2)+ Ĩ(n+1)

α . (6)

The last term, the finite part, is given by

Ĩ(n+1)
α =

∫
k

kα(p2−2p · k)2

(k2−µ2)3[(p− k)2−µ2]
lnn
(
−k2−µ2

λ2

)
. (7)

We first turn our attention to the tensorial divergent integral,
which is given by

I( j)
log µν

(µ2) =
∫

Λ

k

kµkν

(k2−µ2)3 ln j−1
(
−k2−µ2

λ2

)
=

1
4

{
gµν

∫
Λ

k

1
(k2−µ2)2 ln j−1

(
−k2−µ2

λ2

)
+2( j−1)

∫
Λ

k

kµkν

(k2−µ2)3 ln j−2
(
−k2−µ2

λ2

)
−

∫
Λ

k

∂

∂kν

[
kµ

(k2−µ2)2 ln j−1
(
−k2−µ2

λ2

)]}
. (8)

The procedure is recursively repeated for I(i−1)
log µν

, I(i−2)
log µν

etc,
until we obtain

I( j)
log µν

(µ2) =
gµν

4

j

∑
i=1

1
2 j−i

( j−1)!
(i−1)!

I(i)
log(µ

2)+ surface terms. (9)

Recall that we still have to deal with the fictitious mass,
which in the limit µ2→ 0 will give infrared divergent pieces
both in the ultraviolet divergent and finite parts. This problem
is simply dealt with by the use of regularization independent
scale relations (they can be easily obtained with the help of a
cutoff), which read

I( j)
log(µ

2) = I( j)
log(λ

2)−b
j

∑
k=1

( j−1)!
k!

lnk
(

µ2

λ2

)
, (10)

with b = i/(4π)2, for arbitrary non-vanishing λ. For in-
frared safe models a systematic cancelation of all powers of
ln
(

µ2

λ2

)
between the ultraviolet divergent and finite parts fi-

nally crowns λ a renormalization group scale.
We use equations (9) and (10) to write

I(n+1)
log αβ

(µ2) =
gαβ

4

n

∑
k=0

1
2n−k

n!
k!{

I(k+1)
log (λ2)−b

k+1

∑
i=1

k!
i!

lni
(

µ2

λ2

)}

=
gαβ

4

n

∑
k=0

1
2n−k

n!
k!

I(k+1)
log (λ2)

−b
gαβ

4
n!
2n

n

∑
k=0

2k
k+1

∑
i=1

1
i!

lni
(

µ2

λ2

)
(11)

After some algebra and the reorganization of the summations,
we obtain

I(n+1)
log αβ

(µ2) =
gαβ

2
n!

n+1

∑
i=1

{
1

2n−i+2
1

(i−1)!
I(i)
log(λ

2)

−b
(
1−2i−n−2) 1

i!
lni
(

µ2

λ2

)}
. (12)

We see in the equation above that the second part, which is
ultraviolet finite, diverges in the limit µ2→ 0. This part must
be canceled by some contribution coming from the ultravi-
olet finite integral. We now turn ourselves to this integral.
There is an interesting trick that allows us to use the tradi-
tional Feynman parametrization for solving this integral. We
use the identity

lna = lim
ε→0

1
ε

(aε−1) (13)

to write

Ĩ(n+1)
α = lim

ε→0

1
εn

n

∑
k=0

(−1)n−k n!
k!(n− k)!

Ik
α, (14)

with

Ik
α =

1
(−λ2)kε

∫
k

kα(p2−2p · k)2

(k2−µ2)3−kε[(p− k)2−µ2]
. (15)

We leave the detailed calculation of this finite part for the
appendix. We select the term of order n in ε, since it is the
only one which contributes. The result is

Ik,n
α = bpα

n+1

∑
i=0

{[
1−2i−n−2] 1

i!
lni
(

µ2

λ2

)
−(−1)n−i+1 1

2n−i+2
1
i!

lni
(
− p2

λ2

)}
(kε)n. (16)

Remembering that I(n+1)
α is given by

I(n+1)
α = 2pµI(n+1)

logµα
(µ2)+

lim
ε→0

1
εn

n

∑
k=0

(−1)n−k n!
k!(n− k)!

I(k)
α (17)

and using
n

∑
k=0

(−1)(n−k) kn

k!(n− k)!
= 1, (18)

we see the perfect cancelation of the dependence on the ficti-
tious mass µ. The final result is given by

I(n+1)
α = n!pα

{
n+1

∑
i=1

(
1

(i−1)!
1

2n−i+2 I(i)
log(λ

2)

−b(−1)n−i+1 1
2n−i+2

1
i!

lni
(
− p2

λ2

))
+b
[
1−
(
1+(−1)n+1)2−(n+2)

]}
. (19)

The procedure adopted above can be applied to any integral
of the type of (4). The evaluation of multiloop amplitudes in
massless theories becomes simple, since the divergences and
the finite piece necessary for the cancelation of the fictitious
mass are always originated in such kind of integral. In the
next section we show an example in which the only necessary
result is given in equation (19).
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FIG. 1: n-loop nested selfenergy of spinorial QED

4. A MULTILOOP AMPLITUDE

We now perform, as an example, the calculation of a mul-
tiloop amplitude. Specifically, we will treat the n-loop nested
selfenergy of spinorial QED, as represented in the figure 1.
With the subtraction of the subdivergences, we can write

Σ
(n)(p) =

∫
Λ

k

γρk/Σ̃(n−1)(k)k/γρ

k4(p− k)2 , (20)

where the tilde is to designate the finite part of the (n− 1)th
order graph. From the Lorentz structure, it is easy to see that
such an amplitude, whatever the order, may be displayed as
Σ(i)(p) = p/S(i)(p2), with S(i)(p2) a scalar function of p2. So,
we obtain

Σ
(n)(p) =−2γ

α

∫
Λ

k

kα

k2(p− k)2 S̃(n−1)(k2), (21)

and again the tilde is used to designate the finite part. Now,
let us suppose that

S̃(n−1)(k2) =
n−1

∑
i=0

ai lni
(
− k2

λ2

)
. (22)

So, we will get

Σ
(n)(p) =−2γ

α
n

∑
i=1

aiI
(i)
α , (23)

according to the definition of the previous section. Conse-
quently, from eq. (19), it is found

S̃(n)(k2) =
n

∑
i=0

bi lni
(
− k2

λ2

)
. (24)

From a simple calculation for the one-loop graph, we have

S̃(1)(k2) =
i

(4π)2

[
ln
(
− k2

λ2

)
−2
]
, (25)

and by induction, it is proved that the result (23) is correct.
As a specific result, for n = 5 it is simple to obtain

Σ
(5)(p) =−b4

γ
α{

1
12

I(5)
α −

7
6

I(4)
α +

23
4

I(3)
α −

49
4

I(2)
α +

37
4

I(1)
α

}
.

(26)

5. COMMENT ON IMPLICIT REGULARIZATION OF
GENUINE INFRARED DIVERGENT AMPLITUDES

The Implicit Regularization of infrared divergences is the
subject of a work in progress [31]. Here we present the ba-
sics of the whole process. The essential steps which rendered

Implicit Regularization adequate in the case of ultraviolet di-
vergences have their counterpart for infrared ones. Moreover,
a new scale appears, typically an infrared scale which is com-
pletely independent of the ultraviolet one.

First, let us consider the following ultraviolet divergent
massless integral and its result within Implicit Regularization,

I =
∫ d4k

(2π)4
1

k2(p− k)2 = Ilog(λ2)−b ln
(
− p2

λ2

)
+2b,

(27)
and then let us proceed with the following calculation:

U =
∫ d4k

(2π)4
1

k4(p− k)2 . (28)

By power counting U is infrared divergent and ultraviolet fi-
nite. In order to be able to use all the mathematics developed
for ultraviolet divergent integrals we firstly note the follow-
ing:

1
k4 =−

∫
Λ

d4u eiku
∫

Λ d4z
(2π)4

1
z2(z−u)2 , (29)

where z and u are configuration variables.
Note the strinking similarity between the above z integral

and equation (27). We can thus write the result immediately:

I(u2) =
∫

Λ

z

1
z2(z−u)2

= Ĩlog(λ̃−2)−b ln
(
−u2

λ̃
2
)

+2b. (30)

But now Ĩlog(λ̃−2) is an infrared basic divergent integral and
a scale relation has been used in order to get rid of a fictitious
length in favor of the infrared scale l2 = 1/λ̃2.

Using this result and (29) in (28) we have

U =−
∫

Λ

k

1
(p− k)2

∫
Λ

d4u eikuI(u2)

=− i
(4π)2

∫
Λ

k

∫
Λ

d4u
∫

Λ

d4x
ei(p−k)x

x2 eikuI(u2)

=
i

(4π)2

∫
Λ

d4u
e−ipu

u2

(
Ĩlog(λ̃−2)

−b ln
(
−u2

λ̃
2
)

+2b
)

=
1
p2

(
Ĩlog(λ̃−2)+b ln

(
− p2

¯̃
λ2

)
+2b

)
, (31)

with ¯̃
λ2 ≡ 4

e2γ λ̃2, where γ = 0,5772... is the Euler-Mascheroni
constant. This framework is similar to the Differential Renor-
malization of infrared divergences [32].

6. CONCLUSION

This paper has been devoted to systematize the Implicit
Regularization of massless models for any loop order. For
the infrared safe theories, a systematic way to evaluate multi-
loop Feynman integrals in the context of Implicit Regulariza-
tion has been presented. The ultraviolet content of probability
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amplitudes have a simple structure and we can easily identify
all the potential symmetry violating terms, the surface terms.
We have obtained a general expression for the scale relations,
which establish the interplay between the divergent and fi-
nite parts of the amplitude, playing a fundamental role in
the elimination of terms which are dependent of the fictitious
mass. In addition, we have developed a technique for evalu-
ating an important kind of finite Feynman integral which are
typical of higher order calculations with Implicit Regulariza-
tion in massless theories. We have extend the usual Feynman
parametrization for integrals which are not written in terms of
rational functions of the momenta. Through a simple exam-
ple, we have exhibited the main elements of the procedure,
showing how the finite part and the scale relations work to-
gether in order to restore the infrared safety of the amplitudes.
Finally, we have discussed the Implicit Regularization of in-
frared divergent amplitudes, showing with an example how it
can be dealt with an analogous procedure in the coordinate
space.

7. APPENDIX A - THE CALCULATION OF THE FINITE
PART

We carry out the detailed evaluation of Ik, which can be
written, after Feynman parametrization and integration in k,
as

Ik
α =

1
(−λ2)kε

(A+B+C), (32)

where

A =
b

(2− kε)
pα(−µ2)kε−2

∫ 1

0
dx [p2(1−2x)]2x(1− x)2−kε

(
H2

(−µ2)

)kε−2

,

(33)

B =
2bp2

(1− kε)(2− kε)
pα(−µ2)kε−1

∫ 1

0
dx(1− x)2−kεx

(
H2

(−µ2)

)kε−1

(34)

and

C =− 2b
(1− kε)(2− kε)

pα(−µ2)kε−1

∫ 1

0
dx(1− x)2−kε p2(1−2x)

(
H2

(−µ2)

)kε−1

.

(35)

In the equations above, we have b = i/(4π)2 and

H2 = p2x(1− x)−µ2. (36)

Before considering the limit µ2→ 0, some important manip-
ulations have to be done. First, we observe that

d
dx

H2 = p2(1−2x). (37)

So, some integrations by parts are performed until the expo-
nent of H2 is kε. After this we can write H2 → p2x(1− x)
without problem. We will have, then,

Ik
α =−b

[
1

1− kε

]
pα

{
− 1

kε(2− kε)

(
µ2

λ2

)kε

+

∫ 1

0
dx
[
(1− x)

kε
+(1−2x)

](
− p2x

λ2

)kε
}

. (38)

In this point, it is convenient to evaluate each term separately,
and so, we label the first term by ξ and the second one by ζ

(Ik
α = ξ+ζ). So, we can write

ξ = b
1

2kε

1
1− kε

1
1− kε

2

(
µ2

λ2

)kε

pα . (39)

For small ε, we can perform a binomial expansion in each
term and after some algebra we obtain

1
2kε

1
1− kε

1
1− kε

2

=
1

2kε

∞

∑
j=0

∞

∑
i=0

(kε)i
(

kε

2

) j

=
1
2

∞

∑
i=0

[
2−
(

1
2

)i
]

(kε)i−1.

(40)

Now we expand the term
(

µ2

λ2

)(kε)
, for ε→ 0. After this, we

have

ξ = bpα

1
2

∞

∑
i=0

[
2−
(

1
2

)i
]

(kε)i−1

[
1+ kε ln

(
µ2

λ2

)
+

1
2
(kε)2 ln2

(
µ2

λ2

)
+ . . .

]
.

(41)

The coefficient of (kε)n will be given by

1
2

{[
2−
(

1
2

)n+1
]

+
[

2−
(

1
2

)n]
ln
(

µ2

λ2

)

+

[
2−
(

1
2

)n−1
]

1
2

ln2
(

µ2

λ2

)
+ . . .+[

2− 1
2

]
1
n!

lnn
(

µ2

λ2

)
+2

1
(n+1)!

lnn+1
(

µ2

λ2

)}
.

(42)

Finally, the term of ξ of order n in ε can be written as

ξ
(n) = bpα

n+1

∑
i=0

[
1− (2)i−n−2] 1

i!
lni
(

µ2

λ2

)
(kε)n.

(43)

For ζ, we have

ζ =−bpα

∫ 1

0
dx

1
1− kε[

1− x
kε

+(1−2x)
](
− p2x

λ2

)kε

, (44)
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which, in the nth order can be expressed as

ζ
(n) =−bpα

1
2

n+1

∑
i=0

(−1)n−i+1 1
2n−i+1

1
i!

lni
(
− p2

λ2

)
(kε)n. (45)

8. APPENDIX B - THE SCALE RELATIONS

In this appendix we discuss the main steps which are nec-
essary in order to obtain the scale relations at nth order. As
we have seen before, although the integral (5) by itself is in-
frared finite, when the separation by means of the relation (1)
is performed, we are left with two infrared divergent parts.
The scale relations are important because they establish the
connection between the finite and divergent parts in order to
make the limit µ2→ 0 possible.

A typical basic logarithmic divergence at (n+1)th order in
massless theories can be written, using a cutoff regulator, as

I(n+1)
log (µ2) =

∫
Λ

k

1
(k2−µ2)2 lnn

(
−k2−µ2

λ2

)
(46)

and, going to the Euclidean space, it can be rewritten as

I(n+1)
log (µ2) = b

∫
d(k2)

k2

k2 +µ2 lnn
{

k2 +µ2

λ2

}
= b

∫
∞

µ2
dx

x−µ2

x2 lnn
( x

λ2

)
= b

∫
Λ2

µ2

dx
x

lnn
( x

λ2

)
−µ2b

∫
Λ2

µ2

1
x2 lnn

( x
λ2

)
dx .

(47)

The logarithmic scale relations can be obtained from the fol-
lowing difference

I(n+1)
log (µ2)− I(n+1)

log (λ2) = b
∫

λ2

µ2

dx
x

lnn
( x

λ2

)
−bn!

n

∑
i=0

1
i!

lni
(

µ2

λ2

)
+bn!

n

∑
i=0

1
i!

lni
(

λ2

λ2

)

= b

{
− 1

n+1
lnn+1

(
µ2

λ2

)
−n!

n

∑
i=0

1
i!

lni
(

µ2

λ2

)}

=−b
n+1

∑
i=0

n!
i!

lni
(

µ2

λ2

)
(48)

Finally, we write

I(n+1)
log (µ2) = I(n+1)

log (λ2)−b
n+1

∑
i=0

n!
i!

lni
(

µ2

λ2

)
. (49)

At one loop (n = 0), for example, we have:

Ilog(µ2) = Ilog(λ2)−b ln
(

µ2

λ2

)
. (50)

In two loops (n = 1), we obtain:

I(2)
log(µ2) = I(2)

log(λ2)−b
{

1
2

ln2
(

µ2

λ2

)
+ ln

(
µ2

λ2

)}
. (51)
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Sampaio, M. C. Nemes, Phys. Lett. B 673, 220 (2009).
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