

ISSN = 1980-993X - doi:10.4136/1980-993X www.ambi-agua.net E-mail: ambi-agua@agro.unitau.br

Tel.: (12) 3625-4212

Modelos de predição de chuvas intensas para o estado do Mato Grosso, Brasil

(http://dx.doi.org/10.4136/ambi-agua.553)

Luiz Fernando Coutinho de Oliveira¹; Marcelo Ribeiro Viola²; Sidney Pereira³, Nara Rúbia de Morais⁴

¹Universidade Federal de Lavras; e-mail: coutinho@deg.ufla.br;

²Universidade Federal de Tocantins; e-mail: m.r.viola@hotmail.com;

³Instituto Federal do Norte de Minas Gerais; e-mail: sidneypereira@ymail.com;

⁴Universidade Federal de Goiás; e-mail: nararmgarcia@hotmail.com

RESUMO

A ausência de equações de chuvas intensas para o Estado do Mato Grosso e a necessidade de maior segurança na elaboração de projetos e dimensionamento de obras hidráulicas, objetivou este estudo na obtenção das relações de intensidade-duração-frequência (IDF) e do modelo de Bell. Utilizou-se, então, da metodologia da desagregação da chuva de 24 h para as observações diárias de 136 estações pluviométricas do Estado do Mato Grosso disponíveis no banco de dados da Agência Nacional de Águas. Empregando a distribuição de Gumbel foram estimadas para cada tempo de duração, as chuvas intensas para os períodos de retorno de 2, 5, 10, 25, 50 e 100 anos e, posteriormente, para cada estação, ajustaram-se as relações IDF e os modelos de Bell. Os coeficientes das relações IDF e dos modelos de Bell ajustados pelo método dos mínimos quadrados, para todas as estações avaliadas, apresentaram coeficientes de determinação e o índice de concordância de Willmott superiores a 0,98 e 0,85, respectivamente, o que classifica o ajustamento como ótimo.

Palavras-chave: chuva de projeto; modelo de Bell; intensidade-duração-frequência.

Intense rainfalls prediction models for the state of Mato Grosso, Brazil

ABSTRACT

Rain intensity data are necessary to increase security of hydraulic projects. The objective of this study was to determine the relationships among intensity-duration-frequency (IDF) and Bell's model for the State of Mato Grosso, Brazil. The equations were obtained by disaggregation of 24 h rainfall data from 136 rain stations available in the National Water Agency (ANA) data base. Employing Gumbel distribution, the rainfalls were estimated for each time duration and for the return periods of 2, 5, 10, 25, 50 and 100 years, and thereafter for each season. The coefficients of IDF relationships and Bell's models were adjusted by the minimum square method, for all seasons evaluated. The coefficients of determination and Willmott agreement index exceeded 0.98 and 0.85, respectively, for all stations, which classifies the adjustment of the rainfall models as great.

Keywords: rainfall; Bell's model; intensity-duration-frequency.

1. INTRODUÇÃO

No ciclo hidrológico, a precipitação representa a principal variável de entrada de água no sistema, sendo fundamental para o entendimento da dinâmica hídrica do meio físico. Seu entendimento e comportamento são de suma importância para estudos estratégicos associados ao planejamento do meio ambiente, geração de energia e manejo da agricultura, especialmente em condições tropicais (Mello e Silva, 2009).

Para o dimensionamento de obras hidráulicas, tanto urbanas, como rurais, é necessário o conhecimento da precipitação esperada, de modo que a estrutura planejada possa resistir adequadamente. No caso de obras rurais, esse tipo de conhecimento é necessário para o planejamento de sistemas de terraceamento agrícola, drenagem em estradas e implantação de barragens para atenuação de cheias, entre outros (Mesquita et al., 2009).

As chuvas naturais durante sua ocorrência têm distribuição irregular tanto temporalmente quanto espacialmente, apresentando consideráveis alterações em termos de intensidade (Oliveira et al., 2010). As precipitações pluviométricas de maior intensidade e com grande frequência elevam o risco de ocorrência da erosão do solo, inundações, perdas agrícolas, além de problemas em reservatórios (Araújo et al., 2008). Essas características são mais significativas quando associadas às condições de relevo movimentado, características físico-hídricas do solo adversas, uso e manejo dos solos inadequados (Santos et al., 2010).

O dimensionamento de drenos, vertedores de barragens e obras de proteção contra cheias e erosão hídrica, requer o estudo das precipitações intensas ocorridas no local de interesse, para definição da chuva de projeto a partir da qual é definida a vazão a ser utilizada. A chuva crítica de projeto é aquela que apresenta grande lâmina precipitada, durante pequeno intervalo de tempo mesmo que, frequentemente, essas chuvas causem consideráveis prejuízos materiais e humanos (Silva et al., 2003; Costa et al., 2001).

Segundo Mello et al. (2008), quando a chuva intensa é associada a uma duração e a um tempo de retorno específico, passa a ser considerada como uma chuva de projeto, que uma vez aplicada a um modelo chuva-vazão, possibilita a estimativa da vazão de projeto. Quando se necessita da chuva de projeto para localidades que não dispõem de séries históricas de precipitação, muitas vezes são utilizadas equações de locais próximos, o que pode comprometer a confiabilidade da estimativa (Cruciani et al., 2002).

Back (2008) e Oliveira et al. (2008a) comentam que, para a utilização prática e adequada dos dados de chuva, na elaboração de projetos de drenagem, barragens e obras de proteção contra cheias e erosão hídrica, faz-se necessário conhecer a relação intensidade-duração-frequência (IDF) das chuvas intensas. Clarke e Silva (2004) sugeriram que as séries de dados têm que ser suficientemente longas e representativas do local de estudo, pois só assim pode-se observar a variabilidade climática de uma região, principalmente em relação a chuvas intensas.

Segundo Oliveira et al. (2008a), a determinação da relação IDF apresenta grandes dificuldades em função da escassez de registros pluviográficos, da baixa densidade da rede de pluviógrafos e do pequeno período de observações disponível; além disso, a metodologia para sua obtenção exige um exaustivo trabalho de tabulação, análise e interpretação de grande quantidade de pluviogramas (Oliveira et al., 2008b; Cecílio e Pruski, 2003). Entretanto, os dados pluviográficos não são tão facilmente disponíveis; o que existem em abundância são dados pluviométricos. Diante dessa realidade, é preciso desenvolver metodologias de estimativas de curvas IDF, em locais que possuam pouco ou nenhum dado pluviográfico.

A ausência de estações pluviográficas e de séries históricas longas tem levado os engenheiros a utilizarem relações que permitam a estimativa da chuva crítica de projeto, com base em dados de pluviômetros. No meio científico, tem-se buscado um modelo de desagregação de chuva diária que leve à obtenção da relação IDF cujo desvio entre o valor

ajustado e o observado seja admissível de ser utilizado em projetos de obras hidráulicas, ou seja, na estimativa da chuva de projeto, que é um dos dados de entrada em modelos que fazem a transformação chuva-vazão (Damé et al., 2008).

No Brasil, algumas metodologias foram desenvolvidas com vista à obtenção de chuvas de menor duração a partir de registros pluviométricos, devido à existência, no território nacional, de uma vasta rede pluviométrica. Essas metodologias empregam coeficientes para transformar chuva máxima diária em chuvas de menor duração, dentre as quais estão a das isozonas proposta por Torrico (1975) e a da desagregação da chuva de 24 h, do DAEE-CETESB (1979).

Obtendo-se dados de precipitação diária, associados aos períodos de retorno de interesse, pode-se utilizar de forma adequada a metodologia da desagregação. Assim, a relação entre as alturas de precipitação, em função da duração de desagregação e o período de retorno, originam curvas IDF a partir de registros pluviométricos (Damé et al., 2008). Segundo Back (2008), o método da desagregação apresenta a vantagem de ser de uso simples e fornecer resultados satisfatórios e com grande similaridade para diferentes localidades para as quais os coeficientes foram gerados.

Oliveira et al. (2008a) avaliaram o desempenho pelo uso do índice de concordância de Willmott, de algumas metodologias para a estimativa da precipitação máxima no estado de Goiás, e verificaram que o método das isozonas apresentaram menores desvios que o da desagregação quando comparados com as relações IDF ajustadas a partir de pluviogramas.

Robaina (1996), avaliando a técnica da desagregação para 32 localidades do Estado do Rio Grande do Sul, concluiu que a metodologia é conveniente, uma vez que se obtiveram os desvios máximos em torno de 15%. Os autores recomendaram o uso da metodologia em localidades em que não há disponibilidade de registros pluviográficos. Por outro lado, Oliveira et al. (2005) ajustaram, para algumas localidades do Estado de Goiás e Distrito Federal, a relação IDF empregando o método de desagregação de chuvas de 24 h, cujos resultados obtidos pelas relações ajustadas apresentaram desvios relativos médios que variaram de -1,6 a 43,9%.

Segundo Damé et al. (2008), o método de desagregação da chuva utilizando os coeficientes propostos pelo DAEE-CETESB (1979) representou a amostra de dados de intensidades máximas de precipitação para a localidade de Pelotas, RS, nos períodos de retorno de 2 e 10 anos, sendo esse, portanto, o recomendado para desagregar a precipitação diária.

Uma alternativa para a obtenção da altura pluviométrica de chuva intensa associada a uma determinada duração e frequência de ocorrência consiste na utilização do método de Bell (1969). Segundo Bertoni e Tucci (1993) e Righetto (1998), o método de Bell associa a altura pluviométrica de uma chuva intensa para um determinado tempo de duração e período de retorno à chuva intensa, padrão de 60 minutos de duração, e dois anos de período de retorno.

Segundo Back (2008), o método de Bell se baseia na existência da similaridade entre os mecanismos das tormentas, em que o valor máximo das chuvas está associado às células convectivas, que tem características semelhantes em muitas partes do mundo e, por isso se utiliza de uma equação para a estimativa da chuva de projeto. A limitação dessa metodologia se deve ao fato de que a mesma foi gerada a partir de dados de chuva de diversas partes do mundo, sendo, portanto, seus resultados, função de valores médios e não específico para um local.

Para contornar essa limitação, Righetto (1998) ajustou os coeficientes do modelo de Bell, empregando várias estações pluviográficas distribuídas no território brasileiro, obtendo assim uma equação geral para o Brasil. Oliveira et al. (2008b) compararam a equação ajustada por Righetto (1998) com outras metodologias e verificaram que ela apresentou um bom

OLIVEIRA, L. F. C.; VIOLA, M. R.; PEREIRA, S., MORAIS, N. R. Modelos de predição de chuvas intensas para o estado do Mato Grosso, Brasil. Ambi-Agua, Taubaté, v. 6, n. 3, p. 274-290, 2011. (http://dx.doi.org/10.4136/ambi-agua.553)

desempenho na estimativa das precipitações máximas de curta duração, o que representa uma alternativa na determinação das chuvas críticas de projeto.

Mello et al. (2003) ajustaram para as macrorregiões do Estado de Minas Gerais os coeficientes do modelo de Bell e obtiveram desvio porcentual máximo de 7,6% entre os valores das precipitações máximas estimados e observados. Para o Estado de Goiás, Oliveira et al. (2008b) ajustaram o modelo de Bell para diferentes localidades e uma equação geral para o estado, para as quais foram observados valores do erro-padrão médio menores que 5%. Para Urussanga, SC, Back (2008) verificou que as relações entre as precipitações intensas de duração entre 10 a 120 minutos, apresentaram diferenças inferiores a 10% pelo emprego do modelo de Bell ajustado localmente.

Portanto, assume-se como hipótese de que o método da desagregação da chuva diária e os modelos para expressar a relação entre a intensidade, a duração e a frequência são adequados para se estimar a chuva de projeto associado a um período de retorno.

Em vista do exposto, este trabalho tem como objetivos a obtenção das relações IDF e do modelo de Bell para diferentes localidades do Estado do Mato Grosso, empregando para tal a metodologia da desagregação de chuvas máximas diárias e a análise da variabilidade espacial dos parâmetros ajustados para ambas as metodologias empregadas na estimativa das chuvas de projeto de obras hidráulicas que envolvam a drenagem das vazões de pico no processo do escoamento superficial, tanto em áreas urbanas como nas rurais.

2. MATERIAIS E MÉTODO

Utilizaram-se os dados pluviométricos pertencentes ao banco de informações hidrológicas da rede da Agência Nacional das Águas com 15 anos de observações diárias para 136 estações pluviométricas do Estado do Mato Grosso. Para cada estação foram extraídos os valores extremos de chuvas para a composição das séries anuais.

A desagregação da chuva de um dia em chuvas de menor duração, foi obtida pela metodologia proposta pelo DAEE-CETESB (1979). Obtiveram-se, então, para cada localidade séries anuais para as chuvas com durações de 5, 10, 15, 20, 25 e 30 minutos, e de 1, 6, 8, 10, 12 e 24 horas.

Segundo Araújo et al. (2008) e Oliveira et al. (2005), a variação da intensidade da chuva com a frequência está relacionada com a probabilidade de ocorrência ou superação do evento chuva, obtida, portanto, por meio de uma função de distribuição de probabilidade que permite a extrapolação para um número maior em anos relativamente ao número de anos de observação. Em geral, as distribuições de valores extremos de grandezas hidrológicas ajustam-se satisfatoriamente à distribuição de Gumbel (Equação 1).

$$h_T = \alpha - \beta Ln \left[Ln \left(\frac{T}{T-1} \right) \right]$$
 em que: [1]

h_T = altura pluviométrica associada a um período de retorno, mm;

T = período de retorno em anos;

 α e β = parâmetros da distribuição de Gumbel.

Os parâmetros da distribuição de Gumbel, segundo Oliveira et al. (2008b), pelo método dos momentos são obtidos por:

$$E(h) = α + 0,577β$$

$$VAR(h)=1,645β2$$
[2]

$$VAR(h)=1,645\beta^{2}$$
 [3]

em que:

E(h) = valor esperado pela média dos valores máximos anuais, mm;

OLIVEIRA, L. F. C.; VIOLA, M. R.; PEREIRA, S., MORAIS, N. R. Modelos de predição de chuvas intensas para o estado do Mato Grosso, Brasil. **Ambi-Agua**, Taubaté, v. 6, n. 3, p. 274-290, 2011. (http://dx.doi.org/10.4136/ambi-agua.553)

VAR(h) = variância dos valores máximos anuais, mm.

Posteriormente à desagregação da chuva de 1 dia e a obtenção das séries anuais dos valores extremos, fez-se a análise de aderência da distribuição de Gumbel pelo teste de Sminorv-Kolmogorov no nível de 1% de significância. Verificada a aderência dos dados à distribuição de Gumbel, foram estimados os valores extremos para os períodos de retorno de 2, 5, 10, 25, 50 e 100 anos e ajustadas às relações IDF e os modelos de Bell, para cada estação, conforme as Equações 4 e 5, respectivamente.

$$i_{(t;T)} = \frac{a T^b}{\left(t + c\right)^d}$$
 [4]

$$i_{(t;T)} = (A LnT + B)(C t^{D} - E) \frac{H_{(60;2)}}{t}$$
 [5]

em que:

 $i_{(t;T)}$ = intensidade máxima média da chuva associada a uma duração e período de retorno, mm h^{-1} ;

t = duração da chuva, min;

 $H_{(60;2)}$ = altura pluviométrica padrão de 60 min de duração e período de retorno de 2 anos, mm;

a, b, c e d = coeficientes de ajustamento da relação IDF específicos para cada estação; A, B, C, D e E = coeficientes de ajustamento do modelo de Bell específicos para cada estação.

O desempenho dos ajustes das relações IDF e dos modelos de Bell foi avaliado pelo coeficiente de determinação, índice de concordância Willmott (Equação 6) que foi classificado empregando a Tabela 1 (Cortês, 2004).

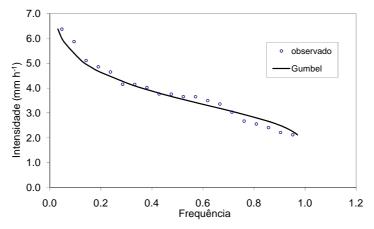
$$d = 100 \left[1 - \frac{\sum (e_i - o_i)^2}{\sum (|e_i - o_m| + |o_i - o_m|)^2} \right]$$
 [6]

em que:

d = coeficiente de desempenho de Willmott, %;

 o_i e e_i = valores extremos observados e estimados, respectivamente;

o_m = média dos valores extremos observados, respectivamente.


Tabela 1. Classificação do coeficiente de desempenho de Willmott.

d (%)	Classificação
>85	Ótimo
76 a 85	Muito bom
66 a 75	Bom
61 a 65	Mediano
51 a 60	Sofrível
41 a 50	Mau
≤ 40	Péssimo

Fonte: Cortês (2004).

3. RESULTADOS E DISCUSSÃO

Para todas as estações pluviométricas analisadas, a distribuição de probabilidade de Gumbel se mostrou adequada na estimativa da intensidade de precipitação máxima avaliada pelo teste de Sminorv-Kolmogorov ao nível de 1% de significância. A Figura 1 apresenta as distribuições de frequência da série das precipitações máximas anuais observadas e estimadas pelo modelo de Gumbel, para o município de Cuiabá. Pode-se observar, nesta figura, boa aderência entre a distribuição observada e a teórica, comportamento este que também foi constatado nos demais municípios analisados.

Figura 1. Distribuição de frequência das intensidades máximas diárias observadas e estimadas pelo modelo de Gumbel, para a estação de Cuiabá, MT.

Verificada a aderência do modelo de Gumbel se estimaram, para todas as estações, as intensidades das precipitações máximas para os períodos de retorno de 2, 5, 10, 20, 50 e 100 anos e durações de 5, 10, 15, 20, 25 e 30 minutos e 1, 6, 8, 10, 12 e 24 horas. A partir dos valores das intensidades das precipitações máximas, foram ajustados os coeficientes das relações IDF e dos modelos de Bell pelo método dos mínimos quadrados para as Mesorregiões do Estado do Mato Grosso (Tabelas 2 a 6).

Os coeficientes ajustados, para todas as estações avaliadas, os coeficientes de determinação e os índices de concordância de Willmott foram superiores a 0,98 e 0,85, respectivamente, o que classifica o ajuste como ótimo, conferindo boa credibilidade na estimativa da chuva de projeto. Portanto, se aceita a hipótese de que o método da desagregação da chuva diária e os modelos para expressar a relação entre a intensidade, a duração e a frequência são adequados para se estimar a chuva de projeto associado a um período de retorno.

Tabela 2. Coeficientes da relação IDF e modelo de Bell ajustados para as estações pluviométricas da Mesorregião Norte Mato-Grossense.

Código	Estação	a	b	c	d	H _(60,2)	A	В	C	D	
857000	Sta. Rosa	876,5977	0,1402	9,8114	0,7251	40,9424	0,1396	0,5606	2,5846	0,1296	2,8316
954001	Cachimbo	953,3555	0,1226	9,7893	0,7243	66,9378	0,0989	0,5020	2,0983	0,1258	2,3014
956000	Alta Floresta	1008,9460	0,1441	9,7853	0,7242	69,6939	0,1389	0,5418	2,6305	0,1019	2,8764
956001	Peixoto Azevedo	973,6913	0,1347	9,7862	0,7242	67,8092	0,0709	0,3050	2,6047	0,1483	2,8458
957001	Novo Planeta	1246,5786	0,2330	9,7872	0,7243	71,8651	0,2163	0,2574	2,6111	0,1424	2,8407
958000	Núcleo Ariel	922,1257	0,1334	9,7886	0,7243	43,4207	0,1198	0,5247	2,7684	0,1302	3,0325
960001	Concisa	839,1925	0,1565	9,7877	0,7243	38,6383	0,1582	0,5160	2,7678	0,1287	3,0330
1053001	Faz. Santa Emília	1078,8562	0,2063	9,7861	0,7242	45,4958	0,2670	0,4608	2,7640	0,1293	3,0279
1054000	Agropecuária Cajabi	943,6021	0,1459	9,7891	0,7243	43,9435	0,1475	0,5512	2,6288	0,1290	2,8802
1055001	Indeco	1111,7972	0,1891	9,7856	0,7243	48,6901	0,2236	0,4839	2,7637	0,1289	3,0278
1055002	Colider	1011,3891	0,1493	9,7890	0,7243	46,9372	0,1466	0,5203	2,7632	0,1290	3,0280
1057000	Faz. Agrotep	974,4884	0,1649	9,7869	0,7243	44,3891	0,1743	0,5122	2,7629	0,1284	3,0282
1057001	Trivelato	961,4467	0,1170	9,7870	0,7243	45,7748	0,0988	0,5365	2,7629	0,1302	3,0281
1058003	Juruena	960,8433	0,1100	9,7864	0,7242	45,9112	0,0768	0,4585	2,7571	0,1445	3,0152
1058004	Novo Tangará	893,0061	0,1750	9,7894	0,7243	40,0726	0,1711	0,4419	2,7598	0,1387	3,0132
1058005	Vale do Natal	860,1571	0,1258	9,8055	0,7248	40,6468	0,0974	0,4686	2,7581	0,1404	3,0147
1059000	Humboldt	1020,2415	0,1584	9,7895	0,7244	46,8563	0,1454	0,4611	2,7592	0,1376	3,0141
1154000	Rancho de Deus	935,7796	0,1123	10,5599	0,7437	40,8150	0,0939	0,5337	2,7527	0,1311	3,0157
1154001	Santa Felicidade	910,8701	0,1158	9,7882	0,7243	43,3894	0,0770	0,4230	2,7378	0,1519	2,9887
1154002	Faz.Rio Negro	892,7109	0,1196	9,7903	0,7244	42,4231	0,0877	0,4598	2,7354	0,1440	2,9906
1155000	Cachoeirão	800,2607	0,1431	9,7880	0,7243	37,3766	0,1322	0,5119	2,7362	0,1322	2,9990
1156000	Faz. Itaúba	1542,8948	0,2833	9,7874	0,7243	46,3921	0,5617	0,3010	2,7521	0,1406	2,9893
1156001	Sinop	945,3850	0,1638	9,7868	0,7243	43,1406	0,1966	0,5848	1,9184	0,1484	2,0939
1157000	Porto dos Gaúchos	905,2316	0,1489	9,7869	0,7243	42,0370	0,1216	0,4351	2,6396	0,1485	2,8823
1157001	Juara	906,3453	0,1562	9,7864	0,7242	41,7554	0,1335	0,4368	2,6304	0,1476	2,8737
1158001	Fontanilhas	914,5718	0,1562	9,7874	0,7243	42,1230	0,1313	0,4298	2,6252	0,1491	2,8642
1158002	Juína	879,7102	0,1123	9,7443	0,7231	42,1913	0,0785	0,4534	2,6353	0,1483	2,8562
1158003	Faz. Tombador	965,6430	0,1567	9,7856	0,7242	44,4612	0,1546	0,5075	2,7393	0,1313	3,0015
1159000	Boteco dos Mineiros	808,9479	0,1674	8,4145	0,6836	43,6668	0,1502	0,4214	2,7344	0,1451	2,9867
1254001	Agrovensa	846,9203	0,1674	9,7871	0,7243	38,4457	0,1315	0,3714	2,6787	0,1592	2,9173
1255001	Teles Pires	1165,0527	0,2439	9,7883	0,7243	43,5301	0,3691	0,3622	2,6870	0,1387	2,9243
1255002	Colonial Rio Ferro	802,7182	0,1249	9,7862	0,7243	38,0386	0,1187	0,5893	2,6785	0,1247	2,9300
1257000	Brasnorte	1009,6137	0,1397	9,7894	0,7243	47,2861	0,1205	0,4893	2,6712	0,1383	2,9155
1259001	Cachoeirinha	950,8507	0,1308	9,8598	0,7261	44,4854	0,1157	0,5260	2,6707	0,1333	2,9217
1354000	Faz. Agrochapada	1005,4533	0,1403	9,7849	0,7242	47,0933	0,1015	0,4039	2,6999	0,1542	2,9386
1355001	Porto Roncador	1099,9899	0,1741	9,7897	0,7243	49,4337	0,1827	0,4808	2,7002	0,1341	2,9518
1356002	Nova Mutum	1016,7154	0,1488	9,7887	0,7243	47,2061	0,1220	0,4391	2,6995	0,1450	2,9315
1357000	Nova Maringá	1230,1540	0,2306	9,7874	0,7243	48,3176	0,2872	0,3468	2,6807	0,1484	2,9211
1358001	Bacaval	916,2405	0,1619	9,7862	0,7242	41,9129	0,1629	0,4998	2,7538	0,1312	3,0150
1358002	Faz. Tucunaré	967,7557	0,1245	9,7863	0,7243	45,8740	0,1236	0,6058	1,9342	0,1499	2,1127
1359000	Padronal	821,1895	0,1282	9,7899	0,7243	38,8170	0,0857	0,3998	2,6960	0,1580	2,9449
1359001	Vila Alegre	898,8665	0,1532	9,8014	0,7246	41,4768	0,1462	0,4998	2,7018	0,1340	2,9553
1454000	Paranatinga	857,7453	0,1287	9,8401	0,7257	40,2686	0,1130	0,5289	2,6503	0,1337	2,8957
1454002	Nova Brasilândia	813,4807	0,1310	9,7950 9,7854	0,7245	38,3486	0,0966	0,4348	2,6413	0,1507	2,8757
1456004	Quebó	957,1419	0,1375	9,7854	0,7242	44,9361	0,1199	0,5022	2,6054	0,1384	2,8384
1456009	Parecis (BR364)	945,8599	0,1514	9,7852	0,7242	43,8141	0,1174	0,4050	2,5852	0,1561	2,8034

Tabela 3. Coeficientes da relação IDF e modelo de Bell ajustados para as estações pluviométricas da Mesorregião Nordeste Mato-Grossense.

Código	Estação	a	b	c	d	$H_{(60,2)}$	A	В	C	D	E
951000	Vila Rica	872,8209	0,1370	9,7656	0,7238	41,0596	0,1364	0,5685	2,5585	0,1296	2,8031
1050000	Luciara	943,5198	0,1733	9,7890	0,7243	42,4545	0,1624	0,4308	2,7619	0,1418	3,0206
1051001	Porto Alegre Norte	982,8325	0,1391	9,7907	0,7243	46,0556	0,1125	0,4546	2,7677	0,1410	3,0162
1052000	Vila S. José Xingu	934,2738	0,1686	9,7880	0,7243	42,3333	0,1766	0,4947	2,7636	0,1306	3,0281
1150001	S. Félix Araguaia	1095,1932	0,1657	9,7878	0,7243	49,8366	0,1460	0,4243	2,7504	0,1447	3,0070
1151000	Bate Papo	870,6090	0,1777	9,7886	0,7243	38,9026	0,1946	0,4872	2,7520	0,1309	3,0166
1152000	Suia Liquilândia	822,3988	0,1125	9,7880	0,7243	39,2438	0,0923	0,5240	2,7525	0,1323	3,0160
1152001	Espigão	884,1345	0,1688	9,7866	0,7243	40,0656	0,1791	0,5061	2,7532	0,1294	3,0154
1251000	Alô Brasil	891,1710	0,1424	9,7887	0,7243	41,6465	0,1116	0,4340	2,7306	0,1465	2,9823
1251001	Divínea	849,9251	0,1671	10,0022	0,7291	37,6788	0,1694	0,4777	2,7318	0,1342	2,9896
1351000	Trecho Médio	872,9260	0,1181	9,7976	0,7246	41,5298	0,1015	0,5472	2,6701	0,1315	2,9246
1352000	Faz 7 de Setembro	964,0172	0,1326	9,7868	0,7243	45,4293	0,1222	0,5431	2,6716	0,1304	2,9232
1352001	Garapu	1048,7128	0,1570	9,7858	0,7242	48,2677	0,1630	0,5336	2,6710	0,1292	2,9236
1352002	Serra Dourada	870,1730	0,1383	9,7879	0,7243	40,8146	0,1242	0,5128	2,7643	0,1317	3,0274
1353001	Estância Rodeio	908,8351	0,1602	9,7877	0,7243	41,6610	0,1617	0,5041	2,7640	0,1302	3,0277
1353002	Pousada Matrinxã	907,6080	0,1211	9,7863	0,7243	43,1075	0,0764	0,3877	2,7099	0,1607	2,9521
1452000	Xavantina	1042,8651	0,1343	9,7854	0,7242	49,0908	0,0937	0,3995	2,6477	0,1579	2,8790
1452004	Água Boa	782,9269	0,1266	9,7873	0,7243	37,0588	0,1097	0,5273	2,6498	0,1342	2,8961
1552000	Barra do Garças	1023,1751	0,1124	9,7853	0,7242	48,8375	0,0783	0,4485	2,5558	0,1524	2,7740
1552002	Toriqueje	955,8047	0,1645	9,7893	0,7243	43,5583	0,1708	0,5133	2,5564	0,1350	2,7869
1552006	Pindaíba	912,3000	0,1163	9,7862	0,7243	43,4544	0,0790	0,4273	2,5419	0,1569	2,7534
1654001	Sta. Terezinha	1458,4496	0,2882	9,7086	0,7223	42,4150	0,6685	0,2550	2,4149	0,1458	2,6196

Tabela 4. Coeficientes da relação IDF e modelo de Bell ajustados para as estações pluviométricas da Mesorregião Centro-Sul Mato-Grossense.

Código	Estação	a	b	c	d	H _(60,2)	A	В	С	D	
1250001	Sto. Ant. Leverger	909,6929	0,1334	9,7854	0,7242	42,8544	0,1017	0,4448	2,7417	0,1444	2,9810
1455004	Faz. Corrente Verde	1089,3424	0,1780	9,7889	0,7243	48,6551	0.1709	0.4234	2,6466	0.1450	2.8719
1455007	Faz. Corrente Verde	929,9673	0,1482	9,7894	0,7243	43,2056	0,1233	0,4485	2,6480		2,8715
1455008	Fazenda Raizama	869,5269	0,1424	9,8424	0,7256	40,3610	0,1314	0,5141	2,6421	0,1348	2,8874
1456003	Nortelândia	842,7694	0,1539	9,7857	0,7242	38,9319	0,1169	,		0,1591	2,8234
1456006	Rosário Oeste	938,8351	0,1390	9,7852	0,7242	44,0219	0,1076	0,4364	2,5965	0,1507	2,8226
1456010	Camargo Correia	821,0997	0,1568	9,7890	0,7244	37,7834	0,1237	0,3968	2,5650	0,1576	2,7766
1555000	Ponte Alta	978,5208	0,1718	9,7863	0,7242	44,1469	0,1483	0,3976	2,5303	0,1562	2,7333
1555001	Chapada Guimarães	835,4675	0,1559	9,7852	0,7242	38,5076	0,1548	0,5162	2,5261	0,1367	2,7552
1555004	S. Vicente da Serra	905,8267	0,1716	9,7870	0,7243	40,8734	0,1484	0,3955	2,4843	0,1584	2,6872
1555007	Usina Casca III	1027,5803	0,1605	9,7897	0,7243	47,0737	0,1649	0,5205	2,4696	0,1373	2,6908
1555008	Fazenda Estiva	843,8496	0,1111	9,7874	0,7243	40,2968	0,0801	0,4694	2,4657	0,1517	2,6733
1556000	N.S. da Guia	1045,1162	0,1687	9,7888	0,7243	47,3494	0,1591	0,4550	2,4695	0,1474	2,6702
1556001	N.S. Livramento	869,2538	0,1342	9,7893	0,7243	40,9040	0,1042	0,4476	2,4576	0,1536	2,6618
1556002	Cuiabá	789,8042	0,1541	9,7867	0,7243	36,4703	0,1249	0,4179	2,5312	0,1545	2,7395
1556005	Acorizal	827,8381	0,1601	9,7017	0,7223	38,2895	0,1555	0,4768	2,9566	0,1286	3,2401
1556006	Faz.Seco	893,3520	0,2192	9,7881	0,7243	36,3784	0,2504	0,3794	2,5401	0,1517	2,7327
1556007	Sta. Edwiges	967,1839	0,1469	9,7853	0,7242	45,0148	0,1185	0,4340	2,5151	0,1529	2,7281
1557003	Barranquinho	904,4154	0,1513	9,7851	0,7242	41,9022	0,1221	0,4240	2,4794	0,1556	2,6812
1655000	Baia Nova	886,5583	0,1720	9,7879	0,7243	39,9755	0,1670	0,4449	2,2316	0,1574	2,4092
1655001	Córrego Grande	1045,4993	0,1979	9,7855	0,7242	44,9803	0,2275	0,4378	2,9572	0,1296	3,2399
1655003	Taiamã	1078,9672	0,2404	9,7498	0,7233	41,0470	0,3635	0,3765	2,2394	0,1520	2,4074
1655004	Sta. Lúcia	988,2577	0,1805	9,7893	0,7243	43,9455	0,1931	0,4624	2,2147	0,1528	2,3962
1656001	Porto Cercado	925,1966	0,1972	9,7866	0,7243	39,8473	0,2300	0,4434	2,2056	0,1533	2,3842
1656002	Poconé	957,2483	0,1416	10,9566	0,7551	39,0931	0,1289	0,5039	2,2105	0,1509	2,3807
1656003	S. José do Boriréu	1194,4894	0,2376	9,7869	0,7243	45,7517	0,3565	0,3814	2,1761	0,1546	2,3498
1656004	S. João	1130,4781	0,2172	9,7780	0,7240	46,3791	0,3420	0,5140	2,1772	0,1374	2,3681
1657002	Descalvados	907,2005	0,1431	9,7884	0,7243	42,3633	0,1325	0,5078	2,1577	0,1527	2,3342
1657003	Cáceres	876,2927	0,1611	9,7900	0,7243	40,1093	0,1829	0,5703	2,1612	0,1404	2,3472
1657004	Flechas	1166,9274	0,2174	9,7852	0,7242	47,7873	0,3316	0,5168	2,1643	0,1395	2,3454
1658000	Destacamento Corixá	1232,4654	0,2259	9,7874	0,7243	49,1682	0,3774	0,4901	2,1430	0,1397	2,3468
1754002	Posto Correntes	887,2308	0,1459	9,7911	0,7244	41,3071	0,1506	0,5628	2,0625	0,1483	2,2540
1755003	S. Jerônimo	1299,8850	0,2065	9,7902	0,7244	54,7733	0,2888	0,4965	2,0366	0,1492	2,2239
1756000	Ilha Camargo	861,2197	0,1396	10,1987	0,7362	38,3423	0,1321	0,5319	1,9725	0,1588	2,1515
1756001	S. José do Piquiri	915,3451	0,1091	9,7906	0,7245	43,7149	0,1102	0,6634	1,9871	0,1404	2,1700
1757001	Porto Conceição	1301,3200	0,2356	9,7743	0,7239	50,3130	0,4512	0,5602	1,9874	0,1374	2,1723
1757002	Uberaba	940,8639	0,1817	9,7894	0,7243	41,7504	0,2373	0,5640	1,9512	0,1473	2,1336

OLIVEIRA, L. F. C.; VIOLA, M. R.; PEREIRA, S., MORAIS, N. R. Modelos de predição de chuvas intensas para o estado do Mato Grosso, Brasil. **Ambi-Agua**, Taubaté, v. 6, n. 3, p. 274-290, 2011. (http://dx.doi.org/10.4136/ambi-agua.553)

Tabela 5. Coeficientes da relação IDF e modelo de Bell ajustados para as estações pluviométricas da Mesorregião Sudoeste Mato-Grossense.

Código	Estação	a	b	с	d	H _(60,2)	A	В	С	D	E
1457000	Tapirapuã	820,0036	0,1245	9,7871	0,7243	38,8671	0,1071	0,5325	2,5623	0,1366	2,7985
1457001	Tangará da Serra	935,5407	0,1422	10,4668	0,7410	40,4664	0,1351	0,5272	2,5642	0,1350	2,7967
1458002	Brasfor	1117,5856	0,1761	9,7877	0,7243	50,0716	0,1976	0,5109	2,5630	0,1333	2,7978
1557000	Porto Estrela	819,1640	0,1481	11,0141	0,7624	32,4618	0,1180	0,4247	2,5108	0,1547	2,7193
1557001	Barra do Bugres	867,8941	0,1555	9,7852	0,7242	40,0198	0,1273	0,4160	2,4834	0,1565	2,6886
1557005	S. José Sepotuba	954,3559	0,1238	9,7916	0,7244	45,2339	0,0891	0,4425	2,4885	0,1541	2,6742
1558000	Colônia Rio Branco	771,7056	0,1476	9,7880	0,7243	35,8796	0,1388	0,5115	2,4777	0,1400	2,6974
1558001	Ponte Cabacal	884,9319	0,1552	9,7853	0,7242	40,8179	0,1797	0,5987	1,9270	0,1476	2,1051
1558003	Porto Esperidião	840,6291	0,1283	9,7530	0,7234	39,9131	0,1105	0,5206	2,4803	0,1403	2,6953
1558004	Alto Jaurú	945,9299	0,2454	8,7242	0,6991	39,7357	0,3385	0,3223	2,4632	0,1551	2,6629
1559000	Pontes e Lacerda	849,9701	0,1407	9,7867	0,7243	39,7858	0,1132	0,4484	2,4332	0,1536	2,6347
1560000	Faz. Areião	745,2371	0,1434	9,7790	0,7241	34,8274	0,1182	0,4516	2,4304	0,1526	2,6317

Tabela 6. Coeficientes da relação IDF e modelo de Bell ajustados para as estações pluviométricas da Mesorregião Sudeste Mato-Grossense.

Código	Estação	a	b	с	d	H _(60,2)	A	В	C	D	E
1453000	Passagem BR309	900,6171	0,1487	9,7885	0,7243	41,8241	0,1436	0,5205	2,6501	0,1327	2,8958
1552001	General Carneiro	785,6519	0,1277	9,7865	0,7242	37,1598	0,1106	0,5258	2,5555	0,1374	2,7877
1554001	Poxoréo	934,7147	0,1494	9,7847	0,7242	43,3961	0,1203	0,4253	2,5332	0,1535	2,7466
1554005	Rio das Mortes	974,8650	0,1747	9,7874	0,7243	43,7810	0,1889	0,4990	2,5323	0,1367	2,7617
1554006	Jaciara	1017,2590	0,1624	9,7873	0,7243	46,4965	0,1652	0,5081	2,5337	0,1368	2,7604
1555005	S. José da Serra	828,0984	0,1734	9,7887	0,7243	37,2553	0,1532	0,4000	2,4716	0,1573	2,6700
1652001	Ponte Branca	938,6908	0,1637	9,7882	0,7243	42,8273	0,1439	0,4268	2,4160	0,1555	2,6134
1652002	Torixoréu	979,7756	0,1787	9,7852	0,7242	43,7232	0,2065	0,5137	2,4151	0,1371	2,6315
1653000	Tesouro	1033,5112	0,1381	9,7872	0,7243	48,4883	0,1117	0,4567	2,4056	0,1533	2,6046
1653002	Guiratinga	945,0826	0,1601	9,7941	0,7245	43,2767	0,1676	0,5300	2,4062	0,1379	2,6192
1653003	Alto Garças (DNER)	850,7907	0,1375	9,7857	0,7242	39,9426	0,1290	0,5423	2,4075	0,1386	2,6180
1653004	Alto Garças	850,8873	0,1545	9,7885	0,7243	39,2601	0,1580	0,5356	2,4065	0,1376	2,6190
1653005	Cafelândia Leste	843,1767	0,1238	9,7904	0,7243	39,9710	0,1092	0,5498	2,4070	0,1390	2,6185
1654000	Rondonópolis	964,2627	0,1784	9,7661	0,7237	43,1430	0,2087	0,5259	2,4056	0,1358	2,6198
1654004	Sta. Escolástica	959,4481	0,1407	9,7862	0,7242	44,9155	0,1226	0,4836	2,2649	0,1530	2,4511
1654005	Vale Rico	846,5807	0,1742	9,7666	0,7241	38,0930	0,2082	0,5528	2,2665	0,1374	2,4675
1753000	Alto Araguaia	934,2599	0,1706	9,7861	0,7243	42,2255	0,2215	0,6008	2,1435	0,1347	2,3455
1755000	Sto. Antônio Paraíso	934,9183	0,1762	9,7890	0,7243	41,8757	0,2577	0,6586	1,9286	0,1355	2,1106
1853000	Faz. Taquari	821,0734	0,1678	9,7852	0,7242	37,2617	0,2374	0,6756	2,1490	0,1264	2,3598

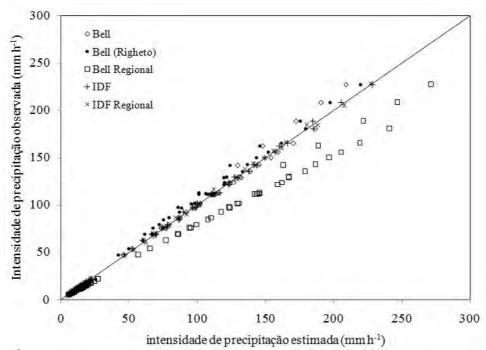

Observa-se na Tabela 7 que existe uma variação dos coeficientes ajustados com relação às médias, com valores de CV variando entre 0,88 a 54,19%. Para os coeficientes ajustados que apresentaram pequenas variações, como é o caso do "c" (CV = 0,88%) e "d" (CV = 2,35%) das relações IDF, pode-se admitir na Equação 4 os valores médios desses coeficientes para todas as estações avaliadas, como sendo um valor regionalizado para o Estado do Mato Grosso. Com relação aos coeficientes ajustados para ambos os modelas avaliados, observa-se que para a Mesorregião Sudeste Mato-Grossense os menores valores com CV variando entre 0,02 a 11,21% e, 7,07 a 27,65% para a relação IDF e modelo de Bell, respectivamente, caracterizando um regime mais uniforme das chuvas intensas em relação às demais mesorregiões. As maiores variações nos valores dos coeficientes ajustados das relações IDF e modelos de Bell foram verificadas nas Mesorregiões Norte e Nordeste devido à extensão superficial destas e pela maior proximidade da região amazônica, responsável em grande parte pelo aporte de umidade à atmosfera e formação de chuvas de grandes intensidades.

Tabela 7. Estatísticas dos ajustes dos coeficientes da relação IDF e modelo de Bell ajustados para as estações pluviométricas estudadas.

Estatística	A	b	с	d	H _(60,2)	A	В	C	D	E				
Mesorregião Norte Mato-Grossense														
Média	964,1394	0,1535	9,7775	0,7239	45,5887	0,1505	0,4671	2,6504	0,1389	2,8951				
CV(%)	13,94	23,74	2,40	0,93	17,42	56,19	16,30	7,10	7,91	7,13				
Mesorregião Nordeste Mato-Grossense														
Média	949,7578	0,1510	9,7932	0,7244	42,9319	0,1559	0,4728	2,6791	0,1390	2,9265				
CV(%)	14,47	24,77	0,51	0,16	8,50	77,11	14,86	3,64	7,46	3,88				
	Mesorregião Centro-Sul Mato-Grossense													
Média	969,8618	0,1705	9,8279	0,7254	42,8019	0,1895	0,4706	2,3758	0,1476	2,5795				
CV(%)	13,89	20,53	2,07	0,75	9,70	49,40	13,84	11,28	5,72	11,34				
			Mesorre	gião Sud	loeste Ma	to-Gros	sense							
Média	879,4123	0,1526	9,8541	0,7267	39,8400	0,1478	0,4756	2,4487	0,1466	2,6585				
CV(%)	11,33	21,44	5,34	1,99	11,51	45,62	15,22	6,97	6,08	6,93				
			Mesorre	egião Su	deste Ma	to-Gross	ense							
Média	912,8244	0,1579	9,7853	0,7242	41,8377	0,1665	0,5227	2,3841	0,1409	2,5948				
CV(%)	7,77	11,21	0,07	0,02	7,59	27,65	13,58	7,18	6,29	7,07				
]	Estado d	o Mato G	rosso								
Média	948,7249	0,1582	9,8016	0,7247	43,3695	0,1640	0,4775	2,5253	0,1422	2,7515				
CV(%)	13,37	21,67	2,35	0,88	13,44	54,19	15,21	9,48	7,32	9,66				

Na Figura 2, pode-se observar um bom ajuste dos modelos ajustados para a estimativa das intensidades máximas médias, devido à pequena dispersão dos valores em torno da reta 1:1, com erros relativos médios de 0,017 e 0,028 mm.h⁻¹ para os modelos IDF e de Bell, respectivamente. Embora as estimativas empregando o modelo de Bell tenha sido inferior ao IDF, os valores das intensidades máximas médias, obtidos para tempos de duração entre 5 minutos e 24 horas e períodos de retorno entre 2 a 100 anos contaria a recomendação de que o modelo de Bell é válido apenas para durações entre 5 e 120 minutos, pois o erro relativo médio foi inferior a 0,03 mm.h⁻¹.

Na tentativa de se obter modelos regionalizados para o estado do Mato Grosso, empregaram-se os valores médios dos coeficientes ajustados dos modelos IDF e de Bell para as estações estudadas (Tabela 7). Para o modelo de Bell regionalizado, verificou-se que os valores da intensidade de precipitação foram superestimados, quando comparados com os valores observados (Figura 2), em função da grande variabilidade dos coeficientes dos modelos ajustados para as diferentes estações com CV entre 7,3% e 54,2% (Tabela 7), com índice de concordância de Willmott de 0,85 e erro relativo médio de 0,26 mm.h⁻¹. Por outro lado, quando se empregou o modelo IDF regionalizado, observou-se uma melhoria no ajuste com o índice de concordância de Willmott de 0,998 e erro relativo médio de 0,027 mm.h⁻¹. Empregando-se o modelo regionalizado de Bell obtido por Righetto (1998) para todo o território nacional, observam-se menores desvios nos valores das intensidades máximas de precipitação para Cuiabá em relação aos dados observados, com índice de Willmott de 0,997 e erro relativo médio de 0,12 mm.h⁻¹.

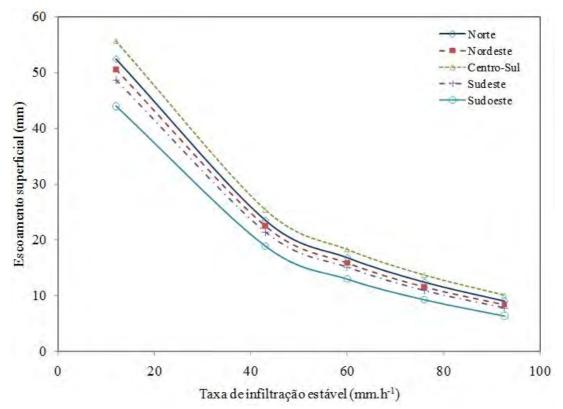
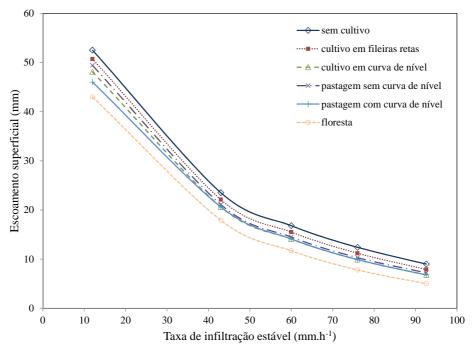
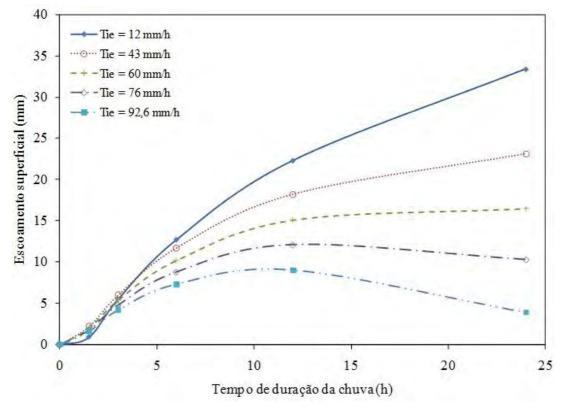


Figura 2. Dispersão dos valores das intensidades máximas médias estimadas pela relação IDF e pelos modelos de Bell ajustados para a estação de Cuiabá.

Com a finalidade de se verificar a aplicação dos modelos de predição de chuvas intensas para o estado do Mato Grosso na geração do escoamento superficial em áreas agrícolas, fez-se a simulação empregando-se o método do balanço de água na superfície do solo desenvolvido por Pruski et al. (1997). Para tal, consideraram-se nas simulações as intensidades das chuvas que proporcionam os maiores valores do escoamento superficial com período de retorno de 10 anos, essenciais para os projetos de terraceamento, prática usual no controle da erosão hídrica. Nas simulações foram consideradas as taxas médias de infiltração estável (Tie) determinadas por Silva e Kato (1998) para o Latossolo Vermelho Amarelo desprovido de cobertura vegetal (61 mm.h⁻¹) e com a presença de cobertura (76 mm.h⁻¹); Sales et al. (1999), para o Argissolo Vermelho-Amarelo (12,1 mm.h⁻¹); Urchei e Fietz (1999), para o Latossolo Roxo (92,6 mm.h⁻¹) e por Panachuki (2003), para o Latossolo Vermelho aluminoférrico (43 mm.h⁻¹), associados a diferentes tipos de cobertura vegetal.

A Figura 3 apresenta as variações das lâminas de água escoada superficialmente em função dos valores de Tie empregados neste estudo, para o solo desprovido de cobertura


vegetal, para os modelos de predição de chuvas intensas ajustados para as Mesorregiões do Estado do Mato Grosso (Tabela 7). Observa-se, na referida figura, um decréscimo do escoamento superficial com o aumento da Tie, reduzindo assim o transporte de sedimentos pelo processo erosivo, sendo, portanto, o Argissolo o mais propenso a esse processo e o Latossolo Roxo o menos propenso à erosão quando da ocorrência das chuvas intensas. Com relação às Mesorregiões, verificam-se que os maiores valores simulados do escoamento superficial são possíveis de ocorrer no Centro-Sul, Norte e Nordeste em função das chuvas de maiores intensidades estimadas pelos modelos ajustados neste trabalho.


Figura 3. Variação do escoamento superficial em função da taxa de infiltração estável para as diferentes Mesorregiões do Estado do Mato Grosso para a superfície do solo desprovida de vegetação.

A Figura 4 apresenta a variação do escoamento superficial simulado, considerando o modelo de predição de chuva intensa ajustado para a Mesorregião Norte Mato-Grossense, diferentes coberturas do solo e os valores das Tie empregadas neste trabalho. Para a condição de solo desprovido de cobertura há a possibilidade de ocorrência dos maiores valores da lâmina de água escoada, favorecendo assim o processo erosivo. Por outro lado, para as superfícies vegetadas com floresta observam-se os menores valores do escoamento superficial. Para a superfície cultivada e coberta com pastagem, verifica-se que há uma redução do escoamento superficial com a adoção das práticas conservacionistas, como a adoção da prática do terraceamento.

A fim de verificar o comportamento do escoamento superficial para a Mesorregião Norte Mato-Grossense em função da duração da chuva, fez-se a simulação para a condição crítica, ou seja, solo desprovido de cobertura vegetal. Nesta análise pôde-se evidenciar que para cada tipo de solo existe uma duração da chuva que produz o máximo escoamento superficial (Figura 5), para o Argissolo a lâmina máxima ocorre para chuvas de longa duração.

Figura 4. Variação do escoamento superficial em função da taxa de infiltração estável para a Mesorregião Norte Mato-Grossense para diferentes coberturas da superfície do solo.

Figura 5. Variação do escoamento superficial com a duração da chuva para diferentes valores da taxa de infiltração estável para a condição de solo sem cultivo para a Mesorregião Norte Mato-Grossense.

4. CONCLUSÃO

O ajuste dos modelos IDF e de Bell foi classificado como ótimo pela análise do índice de concordância de Willmott para as estações pluviométricas do estado do Mato Grosso, o que confere boa credibilidade na estimativa da chuva de projeto. Devido à variabilidade dos valores dos coeficientes dos modelos avaliados para a estimativa da intensidade máxima de precipitação, o modelo de Bell regionalizado superestimou a chuva de projeto.

6. REFERÊNCIAS

- ARAÚJO, L. E.; SOUSA, F. A. S.; RIBEIRO, M. A. F. M.; SANTOS, A. S.; MEDEIROS, P. C. Análise estatística de chuvas intensas na bacia hidrográfica do Rio Paraíba. **Revista Brasileira de Meteorologia**, São José dos Campos, v. 23, n. 2, p. 162-169, 2008.
- BACK, A. J. Relações entre precipitações intensas de diferentes durações ocorridas no município de Urussanga, SC. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 13, n. 2, p. 170-175, 2008.
- BELL, F. G. Generalized rainfall-duration-frequency relationships. **Journal of the Hydraulics Division**, Reston, v. 95, n. 1, p. 311-27, 1969.
- BERTONI, J. C.; TUCCI, C. E. M. Precipitação. In: _____. **Hidrologia, ciência e aplicação**. Porto Alegre: ABRH, 1993. p. 177-242.
- CECÍLIO, R. A.; PRUSKI, F. F. Interpolação dos parâmetros da equação de chuvas intensas com uso do inverso de potências da distância. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 7, n. 3, p. 501-504, 2003.
- CLARKE, R. T.; SILVA, B. C. Análises estatísticas de chuvas intensas na bacia do rio São Francisco. **Revista Brasileira de Meteorologia**, São José dos Campos, v. 19, n. 3, p. 265-272, 2004.
- CORTÊS, F. C. Obtenção e validação de modelos de regionalização de vazão na bacia do rio dos Bois, Estado de Goiás. 2004. 56f. Dissertação (Mestrado em Ciências Agrárias) Universidade de Brasília, Brasília, 2004.
- COSTA, A. R.; SANTOS, A. C. C.; OLIVEIRA, L. F. C. Regionalização de equações de chuva no cerrado. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 14., Aracajú. **Anais...** Rio Grande do Sul: ABRH, 2001. 1 CD-ROM.
- CRUCIANI, D. E.; MACHADO, R. E.; SENTELHAS, P. C. Modelos da distribuição temporal de chuvas intensas em Piracicaba, SP. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 6, n. 1, p. 76-82, 2002.
- COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL DAEE-CETESB. **Drenagem urbana**: manual de projeto. São Paulo: DAEE-CETESB, 1979. 476 p.
- DAMÉ, R. C. F.; TEIXEIRA, C. F. A.; TERRA, S. S. Comparação de diferentes metodologias para estimativa de curvas intensidade-duração-frequência para Pelotas-RS. **Engenharia Agrícola**, Jaboticabal, v. 28, n. 2, p. 245-255, 2008.
- MELLO, C. R.; SILVA, A. M. Modelagem estatística da precipitação mensal e anual e no período seco para o estado de Minas Gerais. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 13, n. 1, p. 68-74, 2009.

- OLIVEIRA, L. F. C.; VIOLA, M. R.; PEREIRA, S., MORAIS, N. R. Modelos de predição de chuvas intensas para o estado do Mato Grosso, Brasil. **Ambi-Agua**, Taubaté, v. 6, n. 3, p. 274-290, 2011. (http://dx.doi.org/10.4136/ambi-agua.553)
- MELLO, C. R.; VIOLA, M. R.; MELLO, J. M.; SILVA, A. M. Continuidade espacial de chuvas intensas no estado de Minas Gerais. **Ciência Agrotecnologia**, Lavras, v. 32, n. 2, p. 532-539, 2008.
- MELLO, C. R.; SILVA, A. M.; LIMA, J. M.; FERREIRA, D. F.; OLIVEIRA, M. S. Modelos matemáticos para predição da chuva de projeto para regiões do Estado de Minas Gerais. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 7, n. 1, p. 121-128, 2003.
- MESQUITA, W. O.; GRIEBELER, N. P.; OLIVEIRA, L. F. C. Precipitações máximas diárias esperadas para as regiões central e sudeste de Goiás. **Pesquisa Agropecuária Tropical**, Goiânia, v. 39, n. 2, p. 73-81, 2009.
- OLIVEIRA, J. R.; PINTO, M. F.; SOUZA, W. J.; GUERRA, J. G. M.; CARVALHO, D. F. Erosão hídrica em um Argissolo Vermelho-Amarelo, sob diferentes padrões de chuva simulada. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 14, n. 2, p. 140-147, 2010.
- OLIVEIRA, L. F. C.; ANTONINI, J. C. A.; GRIEBELER, N. P. Estimativas de chuvas intensas para o Estado de Goiás. **Engenharia Agrícola**, Jaboticabal, v. 28, n. 1, p. 22-33, 2008a.
- OLIVEIRA, L. F. C.; ANTONINI, J. C. A.; FIOREZE, A. P.; SILVA, M. A. S. Métodos de estimativa de precipitação máxima para o Estado de Goiás. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 12, n. 6, p. 620-625, 2008b.
- OLIVEIRA, L. F. C.; CORTÊS, F. C.; WEHR, T. R.; BORGES, L. B.; SARMENTO, P. H. L.; GRIEBELER, N. P. Intensidade-duração-frequência de chuvas intensas para localidades no estado de Goiás e Distrito Federal. **Pesquisa Agropecuária Tropical**, Goiânia, v. 35, n. 1, p. 13-18, 2005.
- PANACHUKI, E. Infiltração de água no solo e erosão hídrica, sob chuva simulada, em sistema de integração agricultura-pecuária. 2003. 67f. Dissertação (Mestrado em Agronomia) Universidade Federal de Mato Grosso do Sul, Dourados, 2003.
- PRUSKI, F. F.; FERREIRA, P. A.; RAMOS M. M.; CECON, P. R. A model to design level terraces. **Journal of irrigation and Drainage Engineering**, New York, v. 123, n. 1, p. 8-12, 1997.
- RIGHETTO, A. M. Hidrologia e recursos hídricos. São Carlos: EESC/USP, 1998. 840 p.
- ROBAINA, A. D. Modelo para geração de chuvas intensas no Rio Grande do Sul. **Revista Brasileira de Agrometeorologia**, Santa Maria, v. 4, n. 2, p. 95-98, 1996.
- SALES, L. E. O.; FERREIRA, M. M.; SILVA de OLIVEIRA, M.; CURI, N. Estimativa da velocidade de infiltração básica do solo. **Pesquisa Agropecuária Brasileira**, Brasília, v. 34, n. 11, p. 2091-2095, 1999.
- SANTOS, G. G.; GRIEBELER, N. P.; OLIVEIRA, L. F. C. Chuvas intensas relacionadas à erosão hídrica. **Revista Brasileira de Engenharia Agrícola e Ambiental**, **Revista Brasileira de Agrometeorologia**, v. 14, n. 2, p. 115-123, 2010.

- OLIVEIRA, L. F. C.; VIOLA, M. R.; PEREIRA, S., MORAIS, N. R. Modelos de predição de chuvas intensas para o estado do Mato Grosso, Brasil. **Ambi-Agua**, Taubaté, v. 6, n. 3, p. 274-290, 2011. (http://dx.doi.org/10.4136/ambi-agua.553)
- SILVA, D. D.; PEREIRA, S. B.; PRUSKI, F. F.; GOMES FILHO, R. R.; LANA, A. M. Q.; BAENA, L. G. N. Equações de intensidade-duração-frequência da precipitação pluvial para o Estado de Tocantins. **Engenharia na Agricultura**, Viçosa, v. 11, n. 1-4, p. 7-14, 2003.
- SILVA, L. C.; KATO, E. Avaliação de modelos para a previsão da infiltração de água em solos sob cerrado. **Pesquisa Agropecuária Brasileira**, Brasília, v. 33, n. 7, p. 1149-1158, 1998.
- TORRICO, J. J. T. **Práticas hidrológicas.** Rio de Janeiro: Transcom, 1975. 120 p.
- URCHEI, M. A; FIETZ, C. R. Estimativa de infiltração básica de um Latossolo Roxo muito argiloso em dois sistemas de manejo. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 27., Pelotas . **Anais...** Jaboticabal: SBE, 1999. 1 CD-ROM.