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RESUMO GERAL 

 

Café é uma das principais commodities no mundo. Sabe-se que a produção do cefeeiro 

apresenta variações bruscas ao longo dos anos, fenômeno chamado de bienalidade. Tal 

comportamento impõe enormes desafios na análise estatística de dados de produção de café. 

Nessa espécie os genótipos apresentam comportamento diferencial devido a resposta 

fisiológica frente as condições ambientais o que sugere a formação de mistura de 

subpopulações. Estudos prévios propõe algumas soluções, porém eles assumem um único 

processo estocástico gerando o fenótipo. No primeiro artigo é proposto um modelo de mistura 

para lidar com o padrão da bienalidade, considerando o fenômeno uma variável latente. 

Realizou-se análises individuais (por colheita) e de medidas repetidas para modelos mistos 

padrão e modelo misto de mistura gaussiano. Houve aumento significativo na eficiência das 

estimativas dos parâmetros e maior ganho genético, sugerindo que na análise de dados de 

progênies de C. arabica exibindo diferentes padrões de bienalidade, modelos mistos de 

mistura são superiores a modelos mistos e a modelos que estruturam os efeitos da bienalidade 

com matrizes de covariância. No segundo artigo o modelo misto de mistura é estendido para 

predição genômica (GMGBLUP) e comparado com um modelo convencional de predição 

genômica (GBLUP). O objetivo foi verificar a acurácia preditiva  quando os efeitos das marcas 

são corrigidos para a bienalidade. Nos dados reais o GBLUP gerou melhores resultados, 

entretanto nos dados simulados o GMGBLUP foi superior quando as subpopulações são 

contrastantes e o parâmetro de mistura é próximo de 0.5. Os resultados GMGBLUP deve ser 

considerado como uma alternativa para predição genômica em dados do gênero Coffea, 

especialmente em espécies com forte bienalidade. 

Palavras-chave: Modelos de mistura, Modelos mistos, Seleção Genômica. 



GENERAL ABSTRACT 

 

Coffee is one of the most important traded commodities in the world. It is well known that coffee 

bean yield is subjected to strong variation through the years in a phenomenon called biennial 

growth. This behavior has imposed great challenges on statistical analysis of coffee bean yield 

data. In these species genotypes show a differential biennial behavior due to its physiological 

response to environmental condition which suggests a mixture of subpopulations. Previous 

studies have tried to solve the problem, however they assume the presence of only one stochastic 

process generating the phenotypes. In the first paper it is proposed a finite mixture model to deal 

with the biennial pattern as hidden variable. Individual (per harvest) and repeated measures analyses 

were performed using conventional mixed models and Gaussian mixture mixed models. The results 

showed a great increase on parameter efficiency estimation and lead to greater genetic gain 

suggesting that for analysis of C. arabica progenies exhibiting different biennial patterns, mixture mixed 

models are superior to traditional mixed models and to models that structure biennial effects using 

covariance matrices. On the second paper the gaussian mixed mixture model is extended for genomic 

prediction (GMGBLUP) and compared with a traditional genomic prediction model (GBLUP). The aim 

was to verify the prediction accuracy when the markers effects are corrected for bias of the biennial 

growth. For the real data set the GBLUP performed better in all harvests, however the simulated data 

results showed that the GMGBLUP is superior when the subpopulations means are contrasting and the 

mixture parameter is close to 0.5. The results suggest that GMGBLUP should be considered as an 

alternative for genomic prediction in coffea genus, especially for species with strong biennial 

growth behavior. 

Keywords: Mixture Model, Mixed Model, Genomic Selection 
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FIRST PART 

 

1 GENERAL INTRODUCTION 

Coffee is one of the most important commodities traded in the world (Davis et al., 2012; 

Tran et al., 2016). In 2018 it is estimated that the world produced more than 10M tons of coffee, 

from this volume Brazil and Vietnam were responsible to approximately 3.5 M and 1.6 M, 

respectively (FAO, 2018). Thus, coffee bean plays a fundamental role not only on the world 

economy, but also on cultural and socioeconomic life of developing countries. 

Yield is the most important evaluated trait for Coffee bean progenies selection and one of 

the most complex. This happens not only due to its polygenic nature, but also because of the 

biennial growth behavior. These aspects affect selection and lead to small genetic gain and they 

are more problematic for coffee species since their perennial cycle requires long time of evaluation 

and are very costly. 

Biennial growth is a well-known characteristic of coffee species. It causes strong variation 

on yield through harvest, therefore a genotype which shows a high yield one year, probably will 

decrease substantially its production on subsequent harvest. This phenomenon occurs because 

plants exhibiting biennial growth allocate photosynthetic products to fruit formation and growth 

during years of high production and to vegetative functions during years of low production, 

causing a pattern of production alternation (Bacha, 1998). Coffee therefore alternates between 

vegetative growth in one year and fructification in the next. 

Among the methods used in the analysis of this type data, the two-year mean is one of the 

most common (Oliveira et al., 2011). It is an attempt to meet the assumptions required for analysis 

of variance (ANOVA). However, this strategy considers that the probability of all coffee plants 

being in the productive or vegetative phase is 1; thus, the production expectation is the arithmetic 
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mean of two years, and selection is always based on data sets considering the mean of two 

consecutive years. This approach is not the best way of managing this problem as it assumes 

homogeneous variance and null covariance between consecutive years, which causes information 

loss and bias in estimates of variance components. 

These aspects require more complex and robust statistical model and tend to result in 

selection bias when the statistical model is not in accordance with the biological nature of the data 

(Hu and Spilke, 2011; Piepho and Eckl, 2014). More recently, (Andrade et al., 2016) proposed 

modeling coffee bean yield  using mixed models, with the correct choice of genetic and residual 

covariance structures in order to capture the serial correlation through harvests. The results 

obtained by these authors showed improvement in the efficiency of parameter estimation when 

compared to ANOVA models. 

All the afore mentioned methods assume a common stochastic process generating the 

phenotypes. As mentioned above, an attempt to meet this presupposition is by averaging harvests 

values of consecutive years and this can generate worse results.  It assumes that all genotypes are 

in the same physiological stage and that this stage follows a (0, 1) sign function (that is, it assumes 

all genotypes are in the same stage (high or low) of production at a given year), which is not always 

true. For a given experimental field and harvest, one set of progenies may be in a high-production 

year and another in a low-production year, generating data overdispersion and a false signal, and 

compromising the experimental precision. In addition, the alternation between productive and 

vegetative stages is not always clear and may be triennial (e.g., two years of low production 

followed by one year of high production), and this particularity must be taken into account in the 

selection of the best genotypes. Many models used for the analysis of coffee traits assume that the 

data originate from a single (Gaussian) stochastic process. However, this assumption is not always 
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accurate because samples may originate from different non-observable processes. In these cases, 

mixture models may be used to search for latent factors (Murphy, 2012), as these models provide 

a very flexible tool to work with data having a finite number of unobserved subpopulations. Under 

the hypothesis of differential biennial growth, overdispersion may be modeled based on the mean 

of finite mixtures. 

In the last years, the technological development allowed significant drop in the cost of 

genotyping and genome wide selection (GWS) has been successfully applied in breeding programs 

of different species (Crossa et al., 2014; Xu et al., 2014; Grinberg et al., 2016; Kwong et al., 2017). 

In coffee beans e other perennial species, some papers have showed great potential to increase the 

genetic gain per unit of time (Andrade et al., 2017; Ferrão et al., 2017, 2018).  

Traditional GWS approaches uses the phenotypic information of the genotyped individuals 

to estimate the effect of each SNP and then predict the genetic merit other individuals (Meuwissen 

et al., 2001). There are many methods to estimate the SNP effects on literature (VanRaden, 2008; 

de los Campos et al., 2013; Azodi et al., 2019) and all of them consider that phenotypes come from 

a homogenous population, that is, the stochastic process which generates the studied trait is the 

same through the whole population. As mentioned above this is not true for coffee beans due to 

biennial bearing. Ignoring this phenomenon for markers estimation effect can cause strong bias 

and significantly decrease the prediction ability of GWS. In order to address this problem we 

extended the model proposed by (Vieira Júnior et al., 2019) and create a gaussian mixture GBLUP 

model, where the markers effects are estimated considering a mixture of two subpopulations. To 

the best of our knowledge this is the first time on the literature that this class of model is used for 

genomic prediction. 
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SECOND PART 

ARTICLE 1 - Mixture mixed models: biennial growth as a latent variable in coffee bean progenies 

(Coffea arabica L.) 
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RESEARCH

Coffee (Coffea spp.) is one of the most important commodities 
in the world (Waller et al., 2007; Davis et al., 2012), and its 

cultivation is essential to the economy of Brazil and other devel-
oping countries (Lewin et al., 2004). It is estimated that, around 
the world, 125 million people are dependent on coffee for their 
livelihoods (Osorio, 2002).

An important characteristic of coffee is its marked fluctuation 
in production between successive years—that is, its alternation 
between low and high production in consecutive harvests. This 
phenomenon is called biennial growth (Rodrigues et al., 2014; 
Andrade et al., 2016) and is highly pronounced in the species 
Coffea arabica L. This biennial alternation results from the physi-
ological nature of coffee plants, which need to vegetate for 1 yr to 
produce well in the following year (Rena et al., 1986).

Biennial growth is related to the sink–source relationships 
between leaves and fruit. Leaves are sources of photoassimilates, 
and growing tissues drain these metabolites. Plants exhibiting 
biennial growth allocate photosynthetic products to fruit forma-
tion and growth during years of high production and to vegetative 
functions during years of low production, causing a pattern of 

Mixture Mixed Models: Biennial Growth as a 
Latent Variable in Coffee Bean Progenies

Indalécio Cunha Vieira Júnior,* Carlos Pereira da Silva, Joel Jorge Nuvunga, César Elias Botelho, 
Flávia Maria Avelar Gonçalves, and Márcio Balestre

ABSTRACT
Statistical analysis of Coffea arabica L. progeny 
production has been a great challenge. In this 
species, genotypes may present differential 
biennial behaviors due to different physiological 
responses to the environmental conditions, indi-
cating a mixture of two subpopulations in the 
tested progenies. Previously proposed statistical 
methods are unable to handle data overdisper-
sion and/or bimodality because they assume the 
same stochastic process generating different 
phenotypes. This study proposes a finite mixture 
mixed model for modeling the biennial patterns. 
Production data for 21 S0:1 progenies, evaluated 
through eight harvests, were used. Individual (per 
harvest) and repeated measures analyses were 
performed using conventional mixed models and 
Gaussian mixture mixed models. The proposed 
methodology is also illustrated in a simula-
tion study. On a real dataset, the approximated 
prediction error variance, CV, and residual 
variance were drastically reduced using mixture 
mixed models, resulting in a higher estimated 
heritability and expected gain from selection. 
Residual dependence across years was lower 
for the mixture model, but no differences were 
observed in genetic correlations. The posterior 
probability matrix captured the biennial pattern, 
which indicates the probability of a progeny’s 
physiological stage. The Spearman correlation 
coefficient (0.87) indicates that selection based 
on grouped means may not be efficient. In 
general, the proposed model was more efficient 
for higher subpopulations means differences. 
The results suggest that for analysis of C. arabica 
progenies exhibiting different biennial patterns, 
mixture mixed models are superior to traditional 
mixed models and to models that structure 
biennial effects using covariance matrices.

I.C. Vieira Júnior and F.M.A. Gonçalves, Dep. of Biology, Federal Univ. 
of Lavras, Lavras, Minas Gerais, Brazil; C.P. da Silva and M. Balestre, 
Dep. of Statistics, Federal Univ. of Lavras, Lavras, Minas Gerais, Brazil; 
J.J. Nuvunga, Dep. of Agriculture, Eduardo Mondlane Univ., Maputo, 
Maputo, Monzambique; C.E. Botelho, Empresa de Pesquisa Agropecuária 
de Minas Gerais-EPAMIG, Unidade Regional do Sul de Minas, Lavras, 
Minas Gerais, Brazil. Received 27 Feb. 2018. Accepted 25 Mar. 2019. 
*Corresponding author (indasjunior@hotmail.com). Assigned to Marcio 
Resende Jr.

Abbreviations: APEV, approximated prediction error variance; BIC, 
Bayesian information criterion; BLUP, best linear unbiased prediction; 
EBLUE, estimated best linear unbiased estimation; EBLUP, estimated 
best linear unbiased prediction; EM, expectation–maximization; GS, 
gain from selection; REML, restricted maximum likelihood.

Published in Crop Sci. 59:1424–1441 (2019). 
doi: 10.2135/cropsci2018.02.0141 
 
© 2019 The Author(s). Re-use requires permission from the publisher.

Published May 30, 2019

https://www.crops.org
mailto:indasjunior@hotmail.com


crop science, vol. 59, july–august 2019 	  www.crops.org	 1425

production alternation (Bacha, 1998). Coffee therefore 
alternates between vegetative growth in one year and 
fructification in the next.

Modeling this type of data is a challenge. Biennial 
growth may decrease selection efficiency. Furthermore, 
evidence indicates that biennial growth causes heteroge-
neity of variances and temporal correlation patterns over 
multiple harvests (Andrade et al., 2016), and the longitu-
dinal feature of coffee bean yields makes the process of 
selecting the best progenies harder. Some authors have 
recommend the use of 2-yr means to decrease the effect 
of this phenomenon on analyses (de Oliveira et al., 2011) 
and to meet the assumptions required for ANOVA. This 
strategy considers that the probability of all coffee plants 
being in the productive or vegetative phase is 1; thus, the 
production expectation is the arithmetic mean of 2 yr, and 
selection is always based on datasets considering the mean 
of two consecutive years. However, this approach is not the 
best way of managing this problem, as it assumes homoge-
neous variance and null covariance between consecutive 
years, which causes information loss and bias in estimates 
of variance components. Recently, Andrade et al. (2016) 
proposed that this type of data should be modeled using 
mixed models, with the correct choice of genetic and 
residual covariance structures. The results obtained by 
these authors showed some increases in the efficiency of 
estimation compared with the use of ANOVA models.

Genotype evaluation and selection based on 2-yr 
means assumes that all genotypes are in the same physio-
logical stage and that this stage follows a (0, 1) sign function 
(i.e., it assumes all genotypes are in the same stage [high 
or low] of production at a given year), which is not always 
true. For a given experimental field and harvest, one set of 
progenies may be in a high-production year and another 
in a low-production year, generating data overdispersion 
and a false signal and compromising the experimental 
precision. In addition, the alternation between produc-
tive and vegetative stages is not always clear and may be 
triennial (e.g., 2 yr of low production followed by 1 yr 
of high production), and this particularity must be taken 
into account in the selection of the best genotypes. Many 
models used for the analysis of coffee traits assume that 
the data originate from a single (Gaussian) stochastic 
process. However, this assumption is not always accurate 
because samples may originate from different unobserv-
able processes. In these cases, mixture models may be used 
to search for latent factors (Murphy, 2012), as these models 
provide a very flexible tool to work with data having a 
finite number of unobserved subpopulations. Under the 
hypothesis of differential biennial growth, overdispersion 
may be modeled based on the mean of finite mixtures.

Finite mixture models have been applied in the identi-
fication of main-effect quantitative trait loci (QTL) (Fisch 
et al., 1996; Lynch and Walsh, 1998; Gianola et al., 2004), 

for selecting haploid seeds based on oil contents (Melch-
inger et al., 2013) and to select against mastitis in dairy 
cows using only somatic cell counts (Detilleux and Leroy, 
2000; Gianola et al., 2004; Jamrozik and Schaeffer, 2010).

Several approaches have been proposed for indirectly 
modeling biennial growth in coffee, but finite mixture 
models can be a better alternative to model this phenom-
enon directly in tests of progenies. Thus, the aim of the 
present study was to propose a mixture mixed model to 
analyze coffee production data and clustering genotypes 
in different physiological phases.

MATERIALS AND METHODS
The data used in the present study originated from the coffee 
breeding program coordinated by the Agricultural Research 
Company of Minas Gerais (Empresa de Pesquisa Agropecuária 
de Minas Gerais [EPAMIG]). Twenty-one S0:1 progenies were 
tested. The progenies derived from crosses between C. arabica 
cultivars (Mundo Novo ´ Mundo Novo and Mundo Novo 
´ Bourbon Vermelho) originating from a distinct population 
developed at in the Agronomy Institute of Campinas (Instituto 
Agronômico de Campinas). The experiment was set up in the 
city of Machado, Minas Gerais State (21°40¢ S, 45°55¢ W), in 
a randomized complete block design with three replications. 
Each experimental unit (plot) consisted of eight plants with 
a spacing of 3.0 m between rows and 1.5 m between plants. 
Coffee production (kg) was evaluated over eight harvests. The 
type of soil and climate of the region are described in Andrade 
et al. (2016). In the present study, the terms “years,” “harvests,” 
and “environments” are used synonymously with “crop season.”

Modeling
Individual (per harvest) and repeated measures analyses were 
performed using models with one or two mixture components, 
corresponding to differential biennial responses. In this case, 
four models were used: an individual mixed model (M1), an 
individual mixture mixed model (M2), an unstructured mixed 
model (M3), and an unstructured mixture mixed model (M4).

The individual analyses using the conventional mixed 
model (without biennially latent effects) were executed 
with the PROC MIXED procedure in SAS (SAS Institute, 
2009). The remaining analyses were performed using code 
developed on the R platform. Variance parameters were 
estimated with the restricted maximum likelihood (REML) 
function using the expectation–maximization (EM) algo-
rithm (Dempster et al., 1977). For all the analyses, the 
replicate (block) effect was considered as a fixed effect, and 
the progeny effect was considered as a random effect. The 
detailed models are described below.

Gaussian Mixed Model
In this scenario, the latent parameter related to biennial growth 
is absent, converging for a classical linear mixed model. In this 
framework, two approaches were adopted: individual analysis 
(per harvest), and repeated measures analysis with unstruc-
tured matrices for residuals and genotypes. The models are 
described below.
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From the matrix system of equations for the mixed model, 
solutions for bk and uk can be obtained as follows:

−− − −

− − − −

′ ′ ′

′ ′ ′

    
    

     

11 1 1

1 1 1 1

ˆ

ˆ

k k k k kk

k k k k k k

X R X X R Z X R y
=

u Z R X Z R Z + G Z R y

b
	 [4]

To facility the notation in this work, it will assume that

− −

− − −

′ ′

′ ′

   
     

1 1

11 12

1 1 1
21 22

k k k k

k k k k

X R X X R Z C C
C = =

C CZ R X Z R Z + G
	 [5]

The EM algorithm was used to estimate the best linear 
unbiased prediction (BLUP) and to obtain the REML solutions 
for G and R, as shown below (here, the indices i and j refer to 
the ith and jth harvest, respectively):

s −  
1ˆ tr

iju i j ij gT= u u + (C ) 	 [6]

s
s

s

 == 


2ˆ  if 
ˆ

ˆ  otherwise
k

ij

ij

u
u

u

k i j
	[7]

Matrix −1
ijC corresponds to submatrices ij of C22, which 

is contained in matrix C−1 in Eq. [5]. The residual covariance 
estimators contained in R are given as follows:

( )s − ∗      
1

eˆ tr
ij i j ij

nT T= e e + KC K 	 [8]

ó
ó

ó

 =



ˆ if 
ˆ

ˆ  otherwise

k i j
k

ij

ij

2
e

e
e

 
= 	 [9]

where K = {Xk, Zk}, the trace depends on the i and j subma-
trices of [KC−1K], and n* is the length of vector {ij} related to 
the kth harvest.

Gaussian Mixture Mixed Models 
for Biennial Growth
The individual and repeated measures analyses were performed 
using a mixture mixed model that includes the biennial effect 
as a latent effect as described below.

Individual Analyses
Since the physiological state is unknown, it must be modeled 
using a latent variable s that indicates the production phase of the 
plant. Classical mixture models using the observed likelihood 
might address these issues. The justification for using further 
modeling for biennial effects is presented in the supplemental 
material. Taking the latent variable as missing information, the 
following linear model was used for each harvest analysis:

y = Jm + Xb + Zu + e	 [10]

where y(n´1) is the phenotypic observation vector, m(2´1) and 
b(b´1) are the fixed effect vectors (general mean related to 
biennial status and block, respectively). It was imposed side 
conditions on vector b to ensure that b1 + b2 + … + bb = 0, as 
suggested by (Rencher and Schaalje, 2008), u(g´1) is the random 

Individual Analyses
Per harvest (year) analyses were performed using the following 
mixed model:

y = Xb + Zu + e	 [1]

where y(n´1) is the phenotypic observation vector, b(b´1) is the 
fixed effect (block) vector, u(g´1) is the random effect (genotype) 
vector, and e(n´1) is the residual vector. X(n´b) and Z(n´g) are the 
fixed and random effect incidence matrices, respectively, where 
subscripts n, b, and g are the number of observations, replica-
tions, and genotypes, respectively. The following distribution 
assumptions were made for the random effects:

s2
g~ Nu  (0, I)

s2
e~ Ne  (0, I)

s2
e~ Ny (X +Zu, I)b

where s2
g  and s2

e  are the genetic and residual variance, respec-
tively, and I is an identity matrix.

Repeated Measures Mixed Model
The analyses considering all harvests were performed using a 
model of repeated measures in time with unstructured residual 
and genetic covariance matrices, which has been proposed to 
model biennial growth (Andrade et al., 2016). The following 
repeated measures linear mixed model was used:

yk = Xkbk + Zkuk + ek	[2]

where 
×( 1)nky  is the observation vector, 

×( 1)bkb  is the fixed 
effect (block) vector, 

×( 1)gku  is the random effect (genotype) 
vector, and 

×( 1)nke  is the error vector. 
×( )n bkX  and 

×( )n gkZ are the 
fixed and random effect incidence matrices, respectively. The 
following distribution assumptions were made:

⊗0,k Nu ~ (  G I)

0,k N ⊗e ~ (  R I)

+k k k k kNy ~ (X Z u , V)b
where G and R are the unstructured genetic and residual 
covariance matrices, respectively. All the matrices have k ´ k 
dimensions. We consider ⊗V = R I .

The repeated measures model is better visualized as follows:

yk = Xkbk + Zkuk + ek


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	 [3]

where each subscript corresponds to a vector or matrix of 
experimental observations for each evaluated year.
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effect (genotype) vector, and e(n´1) is the error vector. J(n´2) is the 
missing Bernoulli random variable related to the biennial status. 
Each element of this J matrix (pil) in this work will be replaced 
by its expectation (i.e., the probability that the ith observation 
has been taken from the lth biennial state; Supplemental File 
S2). X(n´b) is the fixed matrix for block, and X(n´g) is the random 
effect incidence matrix (genotypes). Because the matrix for the 
2-yr means (m) is unknown, the expected Bernoulli variable 
was used as an indicator of the genotype stage in the mixture.

As showed in the Supplemental File S2, since the latent 
Bernoulli random variable is unknown, it is replaced by its 
expected value of the complete data likelihood. In other words, 
sn´1 ? Bernoulli(pi); therefore, E (si = 1) = pi, where pi is the 
ith element of J and represents the expectation of an individual 
assuming any state in the mixture.

The following assumptions were made for random vectors:

s2
g~ Nu  (0, I)

s2
e~ Ne  (0, I)

Given the above assumptions, the observed data likelihood 
can be given by

s s

p s

p p +

+ +

2 2
e e

2
e

, )

(1 - )

| , , , ~ (

N

N 1

2

u Zu, I

( Zu, I)

y + X

+ X

m b m b
m b

	 [11]

However, in an expectation–maximization (EM) algo-
rithm, the observed data (y), and the missing information (u, s) 
must be jointly modeled using the expectation of the complete 
log-likelihood (Sorensen and Gianola, 2007), whose objective 
function is given by

s

s

s

p s

s p

s

2
e

2
e

2
e

2
e, | ,

2
2
e| ,

2
g| ,

     

[ , | , , , , ]

log ( | ) ( 1) log  

+ log ( |0, )       

s y

l l l ly
l i

y

E s

E p I s

E p

=

=

+ + + =  ∑

u

u

u

y u

y j X Zu, I

u I

m b

m b  [12]

where
s2

e| ,y
E

u
is the expectation in relation to the random effect 

of genotypes, s2
g  and s2

e  are the genetic and residual variance, 
respectively, p is the unknown mixture parameter, m1 and m2 
are scalars representing the means related to Physiological State 
1 and 2, and J is the expectation of the sn´1 indicator binary 
vector relating each mean to its subpopulation. In the model 
described above, p is the a priori probability of genotypes being 
in the high- or low-production stage, which was assumed to 
be unknown in the present study. For REML estimates of 
variance components, the expectation must be taken in relation 
to random and fixed effects as showed in Supplemental File S2.

Mixture Mixed Model with Repeated Measures
Joint analyses considering all the years evaluated were performed 
using a mixture mixed model with unstructured matrices, 
following the same conventional mixed model structure (i.e., 
considering unstructured residual and genetic covariance matrices). 
The mixture mixed model with repeated measures using the 
complete data log-likelihood can be described as follows:

yk = Jkmk + Xkbk + Zkuk + ek	 [13]

where 
×( 1)nky  is the vector for all the observations obtained 

during the 8 yr of evaluation, 
×( 2 1)km  and 

×( 1)bkb  are the fixed 
effect vectors (general mean related to biennial status and block, 
respectively), 

×( 1)gku  is the random effect (genotype) vector, 
and 

×( 1)gke  is the error vector. ×( 2)k kn kJ  is the unknown block 
diagonal posterior matrix related to the biennial status, ×( )k n bX  
is the fixed block diagonal matrix for block, and ×( 2)k kn kZ  is the 
random effect (genotype) block diagonal incidence matrix. The 
following distribution assumptions were made for the random 
effects:

= ⊗~ 0,k Nu  (  G A I)

⊗~ 0,k Ne  (  R I)

Given the above assumptions the expectation of the complete 
(data) log-likelihood (objective function) can be given by (to 
simplify the representation, it was omitted the subscript k)
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where A is the genetic unstructured covariance matrix, and R 
is the unstructured residual covariance matrix. We now have 
vector p, which was described in the scalar form in the per year 
analyses, and j is a vector as described in the individual model.

These equations are better visualized as shown below:
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	 [15]

where the subscript is a vector or matrix representing the kth 
year evaluated, and mkl represents the lth mixture (l = 1, 2) for 
the kth harvest. The elements of weight matrix P are the prob-
abilities of each observation belonging to Population (biennial 
status) 1 or 2, as described for the individual analyses and in the 
Supplemental File S2.

From the matrix system of equations for the mixed model, 
solutions for mk, bk, and uk can be obtained as follows:
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[16]
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Matrix −1
ijC corresponds to submatrices ij of C33, which is 

contained in the inverse matrix on Eq. [17]. The residual 
covariance estimators contained in R are given as follows:

( ){ }s − ∗ ′ ′=   
1

eˆ ˆ ˆ tr
ij i j ij

ne e + KC K 	 [23]

s
s

s

 =

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2
e

e
e

ˆ if 
ˆ

ˆ  otherwise
k

ij

ij

k i j 
= 	 [24]

where e is the residual in the kth harvest, K = {Xk, Zk} 
and the trace depends on the submatrices i and j. C is 
given in Eq. [17], and the subscripts i and j depend on 
submatrices related to the kth harvest, and n* is the length 
of vector {ij}.

4. Estimating the probability of mixture p deriving the 
objective function as follows:

p = =

=

= =
+

∑ ∑

∑

1 1
1 1

1 2
1

ˆ

k k

k

n n

i k i l
i i

k n
k

i k i k
i

P P

n
P P

where pk is the mixture parameter for the lth physiolog-
ical state in the kth year, and nk is the sample size in the kth 
year. Considering two states (vegetative and productive), 
only p 1ˆ k  must be estimated given that ( )p p= −2 1ˆ ˆ1k k .

The estimated BLUPs (EBLUPs) were obtained for the 
genotypic values of each model. Here, “estimated” means that 
the variance components and latent variable are replaced by 
their estimations and expectation, respectively. The marginal 
EBLUPs were considered for the repeated measures models 
according to (Smith et al., 2007).

Model Selection
To test model fit and the effects of increasing the number of 
parameters in the mixture model, the Bayesian informa-
tion criterion (BIC) (Schwarz, 1978) was calculated for the 
per harvest and repeated measures analyses via the following 
equation:

BIC = −2Llik + q[log(n)] 
where q is the number of free parameters in the model, and n is 
the observation length.

An approximated prediction error variance (APEV) of 
genotypic values was also estimated for all the analyses using the 
diagonal of matrix s−1 2

22 eC  for the individual analyses and that 
of matrix −1

33C  for the joint analysis. The genetic variance error 
for the individual analysis was calculated by the negative of the 
inverse of the expected Fisher information matrix. The observed 
likelihood and one step in the Fisher scoring algorithm from the 
EM convergence values were used for these estimates.

Additionally, the CV (%) was estimated for all the models 
as follows:

Mixed models: s m= e
ˆˆCV (%)j j

where = ⊗V R I .
From this system, we describe the C matrix as
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The EM algorithm was used to maximize the restricted 
likelihood (REML) function, where the random u and latent 
Bernoulli variable j were considered as missing information, 
and their expected values were used.

The Expectation–Maximization Algorithm
Here, we present the EM steps for the mixture mixed model 
with repeated measures. The others analysis can be derived 
starting from that point. The EM steps were as follow:

E step (Expectation):
1. Given an initial guess of p = 0.5, the probability of yik 

clustering in the lth group was estimated using the expec-
tation of s given by

p
p p

= = ϒ =
+ −

1
1

1 2

( 1)
(1 )

i k
i k ilk

i k i k

P
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P P
s 	 [18]
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2
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i k i k i k

i k i k

P
E E
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s s 	[19]

where Pi1k = p(yik | mk1 + Xkbk + Zkuk, ⊗ 1R I ), Pi2k = 
p(yik | mk2 + Xkbk + Zkuk, ⊗ 1R I ), m1 is the mean for 
the lth mixture of observation i and year k, and q = {b, u, 
V} is the invariable vector across the mixture components.

M step (Maximization):
2. The joint maximization of fixed effects and the expec-

tation of random effects can be obtained by solving the 
mixed model equations related to restricted log-likeli-
hood given in Eq. [16] as follows:
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3. Obtaining the maximization REML scale parameters for 
matrix G and R as follows:
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Mixture mixed models: ( )s p m p m = + − e 1 2
ˆ ˆˆ ˆ ˆCV (%) 1j j j

where m̂ j  is the estimated overall mean for the jth harvest, ì 1
ˆ

j
and ì 2

ˆ
j are the harvest “ j” means for Subpopulations 1 and 2, 

respectively, p̂  is the mixture parameter, and seˆ  is the residual 
standard deviation.

For the mixture models, the bimodality was tested according 
to (Holzmann and Vollmer, 2008) using the following steps: 

1. Estimating the distance between the two means through 
the following calculus:

( )s s

m m−
= 2

0.5
1 22

d 1

where s1 and s2 are the standard deviation of the first and 
second mixture (in this study, s1 = s2);

2. The distribution is unimodal if and only if d £ 1, or if 
d > 1 and |log(p) – log(1 − p)| ³ 2log(d − −2 1d ) + 

−22 1d d . Otherwise, there is evidence of bimodality.

To evaluate mixture model usage for the selection of coffee 
cultivars, the gain from selection (GS) was estimated consid-
ering models M3 and M4, according to the estimator

==
∑

1

..

ˆ
GS

n

i
i

g n

Y

where ˆig  is the marginal EBLUP of the ith progeny, and ..Y the 
phenotypic mean over all harvests. The top five best 
progenies were considered to apply a selection intensity of 23%.

In the repeated measures analysis, the multivariate heri-
tability and maximum heritability were estimated considering 
the largest eigenvalue of the (co)heritability H matrix (heri-
tability limit considering all the harvests) (Klingenberg and 
Leamy, 2001; Balestre et al., 2013). In multiple trait selection, 
the estimated heritability is the maximum heritability of a 
linear combination of traits and is given by the largest eigen-
value of H. In the present study, this value can be interpreted 
as the linear combination of harvests that would generate the 
highest possible heritability in the joint analysis. Matrix H is 
given as follows:

H = GF−1

F = G + R

where G, R, and F are the genetic, residual, and phenotypic 
unstructured covariance matrices, respectively.

Simulation Study
In the simulation study, we evaluated the model ability to 
estimate the mixture parameters. For this, the models M1 and 
M2 were compared in four scenarios, varying the mixture 
proportion and mean of each subpopulation. Each scenario was 
run 1000 times, and the parameters estimate for each model was 
taken as an average over all runs.

In all scenarios, 100 genotypes were evaluated in a 
randomized complete block design with two replications. The 
genetic effects were independently sampled from a Gaussian 
distribution with mean 0 and variance s2

g  [i.e., s2
g~ (0, )Ng I

]. The phenotypic values were simulated as y = Jm + Xb + 
Za + e, where m is the vector of means of each subpopu-
lation indicating the physiological state (whose differences 
varied according to the scenario), J is the matrix indicating 
the physiological state, b is the vector of block effects, g is 
the vector genetic values as described above, and e represents 
the residual effects vector. The residual effects values were 
sampled from a Gaussian distribution [i.e., s2

e~ (0, )Ne I ], 
where ( )s s = − 

2 2 2 2
e g1 h h , and h2 and s2

g  are the univariate 
heritability and the genetic variance, respectively.

RESULTS
In this study, alternations between low and high produc-
tion during the harvests, a feature of biennial growth, were 
observed (Fig. 1). The estimated variance components 
varied widely throughout the years (Fig. 2). However, the 
estimated residual variance and its variation were drasti-
cally lower for the mixture models (Fig. 2). For example, 
the variation range (difference between highest and lowest 
estimate) of the estimated residual variances was 277.16 
for the unstructured mixed model (M3) and 90.3 for the 
unstructured mixture mixed model (M4) (i.e., the range 
was 3.06 times lower for model M4 than for M3). A 
small increase in genetic variance was also observed from 
the mixture model with repeated measures, which may 
indicate an increase in the estimated heritability.

The estimated CV showed the same pattern as that 
for the residual variance (Fig. 2). The CV was lower for 
individual mixture mixed model (M2) and M4 than for 
individual mixed model (M1) and M3 and was slightly 
lower for M4 than for M2. The estimated CV presented 
a pattern contrary to that of the residual variance over the 
years, i.e., years with a high mean presented a relatively 
high residual variance but low CV, indicating lower uncer-
tainty and better experimental precision for these years.

The heatmap showed lower residual correlations for 
the model M4 than for M3 (Fig. 3A). This result may be 
related to the modeling of biennial patterns with mixture 
components. For some year pairs, the estimated residual 
correlations were much lower in M4, such as for year pairs 
(2, 3), (3, 4), (4, 8), and (5, 7). This result was confirmed by 
the fact that the residual covariances between years were 
always higher for M3 than for M4 (Supplemental Tables S1 
and S2). Furthermore, M4 presented less alternation 
between positive and negative covariance (e.g., the alterna-
tion patterns were very different for M3 and M4 in Year 3).

No differences in the estimated genetic correlations were 
observed between M3 and M4. However, a tendency for 
relatively high estimated genetic correlations was observed 
during the first years for M4, namely, during Harvests 1 
and 2. In addition, years with a high mean tended to show 
a high genetic correlation between them, and the same 
pattern was verified for years with a low mean. (Fig. 3B). 
Overall, the estimated genetic variance for the years of high 
production was higher for M4 than for M3, and the opposite 
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was observed for the years of low production (Supplemental 
Tables S3 and S4). The genotypic variance was higher for 
models M3 and M4 than for M1 and M2 (Table 1), and 
given the drastic decrease in residual variance, the herita-
bility was higher for the mixture models.

The distribution of predicted values of the mixture 
models for the coffee phenotype data is presented in Fig. 

4. These models were better fitted to the data than the 
traditional mixed models, indicating the existence of 
different coffee genotypes at different physiological stages. 
The mixture models were able to capture data overdis-
persion, predicting even the most extreme values. The 
prediction curves were “slimmer” for M1 and M3 than 
for M2 and M4, indicating a concentration of predicted 

Fig. 1. Mean coffee production (kg) over the evaluated harvests.

Fig. 2. Estimated genetic variance, CV, and residual variance in individual analyses during each year for the individual mixed model (M1), 
individual mixture mixed model (M2), repeated measures mixed model (M3), and repeated measures mixture mixed model (M4).
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values around the overall mean and not effectively accom-
panying the phenotypic dispersion. As an example, the 
pattern of maximum and minimum values in the observed 
value curve was perfectly captured by M2 and M4 during 
the third year, indicating high predictive efficiency. As 
expected, the predictions were better for harvests with 
comparatively high mean production levels (2, 4, 6, and 
8), which presented comparatively low CVs.

The APEV of the EBLUP was almost twice as high for 
M1 than for the remaining models (Fig. 5). The model M3 
exhibited drastically decreased APEV. However, model M2 
presented a lower prediction error than M3 for most harvests, 

indicating that biennial growth may be more effectively 
modeled based on mixtures of means than on (co)variance 
structures. However, both types of information (latent 
means plus heterogeneity of variances) in the joint modeling 
improved the EBLUP estimation, as observed in M4. The 
APEV value was only slightly lower for M4 than for M2 in 
Year 8. Because of this lower APEV, the mixture models 
were better able to detect differences between the EBLUPs.

Despite the evidence of mixture model superiority for 
all the evaluated scenarios, these models require the esti-
mation of more parameters than the other models, and the 
effort to increase the number of parameters in the model 

Fig. 3. Heatmap of (A) residual and (B) genetic correlations between harvests for two repeated measures models: the mixed model 
(below the diagonal) and mixture mixed model (above the diagonal).

Table 1. Estimated genetic variance (GV), standard error associated with genetic variance (SD error), and the Z statistic for the 
individual mixed model (M1) and individual mixture mixed model (M2).

M1 M2
Harvest GV SD error GV SD error Z1 Z2
1 9.445 9.662 15.384 6.294 1 2.444

2 62.125 52.159 64.843 27.650 1.191 2.345

3 16.730 13.048 5.236 3.352 1.282 1.561

4 59.480 46.994 76.600 30.036 1.265 2.55

5 9.622 6.356 3.111 2.356 1.514 1.32

6 263.870 121.980 199.463 73.377 2.163 2.718

7 1.417 2.796 0.118 0.868 0.507 0.136

8 423.000 158.060 176.779 63.742 2.676 2.773
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may not be compensated by this gain. The BIC among 
the models was estimated, and the lowest BIC value was 
adopted as being indicative of the most suitable model.

Compared with the other models, the mixture models 
presented lower BIC values for all the harvests (Fig. 5). 
Even with repeated measures analysis, which included an 
additional 16 parameters in the model (M4), a lower BIC 
value was observed than in the M3 model, indicating that 
the mixture models were more informative than the other 
models in all cases.

The marginal EBLUPs predicted by M3 and M4 are 
presented in Fig. 6. The differences between the geno-
typic values were clearer for the mixture model, especially 
during the high production years. For example, the green 
and gray lines overlap for M3 but are clearly separated 
for M4. Furthermore, the genotype corresponding to 
the yellow line was very close to the x axis in the mixed 

model for all the years but was considerably distant from 
the axis in the mixture mixed model, which confirms the 
superiority of mixture mixed models in identifying and 
separating the best individuals.

Similar to the observed APEV values, the estimated 
error for the genetic variance component was much 
smaller for M2 than for M1 (Table 1). However, because 
the different models presented different genetic variances, 
directly comparing them to determine which model best 
estimated the genetic component is difficult. One way to 
eliminate the scale effect is to use the Z statistic, which 
is an estimate divided by its standard error. Except for 
Years 5 and 7, Z scores were always higher for the mixture 
model, indicating that the variance component was esti-
mated more accurately in the mixture models (Table 1).

The results of the bimodality test for contrasts M1 to 
M2 are presented in Table 2. The differences between the 

Fig. 4. Probability density for observed values (obs) and values predicted by different models: the individual mixed model (M1), individual 
mixture mixed model (M2), repeated measures mixed model (M3), and repeated measures mixture mixed model (M4).
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mixture means were high for all the harvests, showing 
strong evidence for a mixture of populations according 
to (Holzmann and Vollmer, 2008), where the bimodality 
was verified in all models under different values of p. 
Another way of verifying the importance of mixtures in 
models was suggested by Schilling et al. (2002). In their 
approach, a contrast between means that exceeds twice 
the residual (equivalent to a test under normality) indi-
cates the presence of two data modes. This criterion was 
met for all the years evaluated and for both the individual 
and repeated measures analyses (Table 2). Note that the 
magnitude of contrasts was lower for M4 than for the 
individual analysis model (M2).

Graphs describing the probability of each genotype 
belonging to the high (blue) or low (red) mean produc-
tion cluster over the harvests are presented in Fig. 7. The 
formation of subpopulations within each harvest for the 
different years and a stabilization of the physiological rela-
tionship (vegetative and reproductive stage) of the plants 

were observed. The genotypes indicated by red bars 
predominate in years of low mean production, and the 
genotypes indicated by the blue bars predominating in 
years of high mean production. These changes (as indi-
cated by the different colors) follow a well-defined pattern 
that is expected to occur in the presence of biennial 
growth: the genotypes presenting a high probability of 
belonging to the high-production cluster (blue) in a given 
year likely belong to the low-production cluster (red) 
in the following year. These findings confirm that the 
mixture model was able to capture latent variables, in this 
case biennial effects.

Progeny Selection
The mixture model was superior regarding the GS 
because of the high maximum heritability value, indi-
cated by the largest matrix (H2) eigenvalue. The GS 
was 1.4% higher for the mixture model than for the M3 
model (Table 3). The Spearman correlation coefficient 

Fig. 5. Bayesian information criterion (BIC) and approximated prediction error variance (PEV), for the individual mixed model (M1), individual 
mixture mixed model (M2), repeated measures mixed model (M3), and repeated measures mixture mixed model (M4).
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between the EBLUPs for both models was 0.87, with 
some altered ranks caused by the insertion of the 
mixture component (Table 3). For example, the five 
best progenies in the mixed model were (in descending 
order of EBLUP values) Progenies 13, 19, 18, 12, and 
21; the best ones in the mixture mixed model were 
Progenies 19, 18, 2, 21, and 20, with Progenies 20 and 
2 discarded by the classical mixed model (without the 
mixture component).

Simulation
The results of simulation study indicated that EBLUPs 
were better estimated for model M1 in scenarios where 
subpopulations had similar means (Scenarios 1 and 2) in 
other words, when the biennial effects are not evident. In 
these cases, the heritability and the correlation between 
the real and estimated BLUPs were greater for this model. 
However, it is evident that our model presented a better 
estimation of genetic variance and mixture means. When 

Fig. 6. Marginal  best linear unbiased predictions (BLUPs) predicted by models (A) M3 and (B) M4.
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the subpopulation means were distant or the biennial 
effect was evident (Scenarios 3 and 4), the model M2 
outperformed (Table 4) the classical linear mixed models. 
In all scenarios, model M2 estimated the genetic variance 
with greater accuracy.

Changing the mixture proportion (p) did not signifi-
cantly affect the parameter estimates on Scenarios 1 and 2, 
independently of the model. For Scenarios 3 and 4 (Table 
4), changing it from 0.2 to 0.5 significantly increased 
the accuracy on parameter estimates by model M2 and 
decreased the estimates by M1. These results suggest that 
the difference in subpopulation means has a stronger effect 
than mixture proportion on parameter estimates, which is 
in accordance with previous studies (Redner and Walker, 
1984; Detilleux and Leroy, 2000).

DISCUSSION
Although modeling individual biennial effects seems 
difficult, since this information is not available to 
breeders, the mixture model allows a simple and intui-
tive way to handle the effects of biennial growth, and 
these models present some advantages over traditional 
models. For example, these models allow for computing 
the posterior probability of a given genotype being 
in a different physiological stage, which avoids some 
of the bias present in currently used models where all 
genotypes are present in identical stages and represent 
a common mean. Mixture models, on the other hand, 
assume that both stages can occur in the same year and 
using probabilistic criteria, allocate each genotype into 
different groups.

Because the biennial growth pattern modifies the 
(co)variance pattern of coffee production data, some 
authors have proposed modeling these data by changing 
the covariance structure (Andrade et al., 2016). However, 
this approach does not seem to be the best for directly 
modeling the differential biennial effects, since it also 
assumes equal stages for the same year. In addition, it was 
observed that individual and repeated measures mixed 
models presented similar precision in parameter estima-
tion. This finding was confirmed by the APEV values and 
predictive ability related to individual mixture models 
(per harvest analyses) compared with those of the repeated 
measures mixed models; even the simplest mixture model 
generated better estimates than the classical mixed models 
with complex covariance structures. These results are 
in disagreement with the suggestions of Andrade et al. 
(2016). The authors propose modeling biennial patterns 
using different covariance structure matrices.

According to the hypothesis that there are two different 
means in coffee progeny tests, and their existence originates 
from the presence of coffee genotypes at different physi-
ological stages, it is expected that there will be a significant 
contrast between the two means. Although the Holzmann 
and Vollmer (2008) test is very attractive since it is based 
on likelihood ratio, there is currently no consensus on the 
detection of data bimodality (or the number of different 
distributions in the mixture), and the use of more than 
one test is usually recommended. Therefore, the criterion 
recommended by Schilling et al. (2002) was also applied to 
verify the presence of bimodality. These statistics agreed in 
all cases, indicating that the modeling of productivity data 

Table 2. Estimated means, contrast (difference) between modes, bimodality test, and 2´ standard error (2´ SD error) statistics for 
the individual mixture mixed model (M2) and mixture mixed model with repeated measures (M4) for the different evaluated years.

Harvest Mean 1† Mean 2† Difference b test‡ 2´ SD error
Univariate

1 8.33 (0.54) 24.19 (0.46) 15.86 *** 7.04

2 44.1 (0.35) 75.82 (0.65) 31.72 *** 15.78

3 4.39 (0.67) 20.82 (0.33) 16.43 *** 7.50

4 37.25 (0.44) 65.87 (0.56) 28.62 *** 14.28

5 2.99 (0.92) 20.76 (0.08) 17.77 *** 6.72

6 66.29 (0.47) 103.53 (0.53) 37.24 *** 19.02

7 2.41 (0.92) 16.23 (0.08) 13.82 *** 5.04

8 76.5 (0.42) 110.69 (0.58) 34.19 *** 16.53

Multivariate
1 10.09 (0.59) 23.73 (0.41) 13.64 *** 7.10

2 48.73 (0.35) 73.31 (0.65) 24.57 *** 15.23

3 4.64 (0.67) 20.2 (0.33) 15.56 *** 7.22

4 33.71 (0.21) 58.48 (0.79) 24.76 *** 16.04

5 3.18 (0.92) 18.2 (0.08) 15.01 *** 6.29

6 63.75 (0.22) 91.93 (0.78) 28.17 *** 19.56

7 2.53 (0.9) 12.99 (0.10) 10.46 *** 4.62

8 82.21 (0.37) 104.59 (0.63) 22.38 *** 13.80

† Values in parentheses are the mixture parameters.

‡ Bimodality test. *** Rejected the unimodality.
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for different coffee progenies is improved by the use of a 
mixture model with two components that correspond to 
the physiological stages of the plants.

The BIC values also indicated the importance of 
including biennial effects in the model (BIC values were 
always lower). Compared with the other models tested 
and despite the penalization in the likelihood values due 
to the higher number of parameters, the mixture models 
better fit the data.

Correlations between residuals for the different years 
also indicate the advantage of mixture models (Fig. 3A); 
thus, ignoring latent variables is especially problematic for 
longitudinal data because depending on the matrix struc-
ture (R and G), the estimated covariance will directly 
affect the random effect estimation (Andrade et al., 2016). 

This effect has been previously observed for mixture 
models with data presenting latent variables (Detilleux 
and Leroy, 2000; Jamrozik and Schaeffer, 2010).

Variance is known to be directly affected by the 
scale of the data. Therefore, comparing residual variance 
between high- and low-production years is inadequate. In 
this case, the use of the CV is preferable, since it is a free 
dimensional-scale estimate (Resende and Duarte, 2007). 
The CV estimates indicate that the experimental preci-
sion of analyzing coffee crops using classical models can be 
underestimated even when using appropriate experimental 
designs and good crop management, since the production 
stage is neglected. As mixture models estimate distinct 
means for each subpopulation, the CV can be computed 
without bias, which is another advantage of these models.

Fig. 7. Probability for each year of the evaluated genotypes being in the year of low (red) or high (blue) production. Values plotted for each 
genotype were obtained considering the mean probability for the three replicates and estimated using the repeated measures mixture 
mixed model (M4).
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Differences in genetic variance were expected specifi-
cally because of the distinct assumptions underlying each 
model. Despite the fact that genetic variance was consid-
ered constant for both subpopulations, the M4 model 
increased the estimates of this parameter, and the covari-
ances certainly had some influence on these estimates, 
which explains the lower genetic variance estimates for 
model M2 in some years.

The present study assessed the different behaviors 
of progenies within a single experiment. The progenies 
at different physiological stages within the same experi-
mental field can therefore be differentiated (Fig. 6 and 7; 
i.e., a progeny group undergoing high production may be 
distinguished within a specific year from another group 

undergoing low production). This shows that there is no 
constant biennial pattern throughout the years for coffee 
progenies (i.e., the magnitude of biennial effects varies 
widely among progenies, requiring that the physiological 
stage of each progeny be modeled separately). This result 
suggests that grouping data in a biennium is not adequate 
to model biennial effect since environmental condi-
tions can induce some progenies to repeat a physiological 
stage for >1 yr. For example, Progeny 7 showed constant 
production until the fourth evaluation (it was clustered in 
the group with a high mean physiological state), which 
violates the assumptions of traditional models about this 
phenomenon. Only after the fourth harvest was the 
biennial alternation pattern shown with consistency. This 
explains why mixture models were superior to the use 
of grouped data. In addition, grouping means presents a 
loss of information in which the parameter precision is 
underestimated and the APEV decreases (Andrade et al., 
2016). For some genotypes, an inversion of the EBLUP 
signal occurred in consecutive years (Fig. 6). For example, 
the EBLUPs were positive for some genotypes and 
negative for others in some harvests, and this pattern was 
reversed in other harvests. This inversion in classifica-
tion demonstrates the need for classifying the genotypes 
within the same year and supports the hypothesis that two 

Table 3. Estimated gain from selection (GS) for the five best 
progenies relative to the original mean, potential heritability 
(H2), and Spearman correlation between predicted estimated 
best linear unbiased predictions (EBLUPs) for the mixed 
model with repeated measures (M3) and mixture mixed 
model with repeated measures (M4).

Model GS H2
Spearman 
correlation

——————— % ———————

M3 13.710 86.196
0.875

M4 15.114 93.551

Table 4. Simulated and estimated values for models M1 and M2 considering the parameters means of Subpopulation 1 and 
2 (m1, m2), mixture proportion for the lowest mean subpopulation (p), genetic variance ( s2

g ), heritability (h2), and correlation 
between simulated and predicted estimated best linear unbiased prediction (EBLUPs) (Cor_blups).

Scenario Parameter Simulated value† M1‡ M2‡
1 m1

5 – 5.044 (0.296)

m2
7 – 8.098 (1.136)

p 0.2 – 0.488 (0.295)
s2

g 1.994 2.634 (0.777) 1.701 (0.484)

h2 0.496 0.616 (0.126) 0.749 (0.262)

Cor_blups – 0.737 0.598

2 m1
5 – 4.443 (0.622)

m2
7 – 7.548 (0.613)

p 0.5 – 0.499 (0.057)
s2

g 2.011 3.038 (1.155) 1.855 (0.443)

h2 0.499 0.633 (0.139) 0.76 (0.268)

Cor_blups – 0.704 0.586

3 m1
5 – 8.916 (0.4775)

m2
20 – 19.612 (0.737)

p 0.2 – 0.253 (0.063)
s2

g 1.996 38.383 (36.448) 9.406 (10.008)

h2 0.498 0.861 (0.365) 0.764 (0.295)

Cor_blups – 0.222 0.298

4 m1
5 – 5.002 (0.253)

m2
20 – 19.985 (0.252)

p 0.5 – 0.5 (0.001)
s2

g 2.01 58.719 (56.775) 2.008 (0.355)

h2 0.5 0.884 (0.387) 0.497 (0.062)

Cor_blups – 0.177 0.810

† Values for s2
g  and h2 are an average over 1000 runs.

‡ Values inside parentheses are standard error considering 1000 runs on the simulation.
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subpopulations may occur within the same harvest. This 
premise is also supported by the year-to-year variation in 
the probability that a given genotype belongs to the low- 
or high-production population (Fig. 7).

The results obtained here show that coffee produc-
tion data present overdispersion due to latent Gaussian 
mixtures, which is the result of different coffee genotypes 
that are in different physiological stages. This argument 
is supported not only by the mixture pattern and mean 
differences, but also by the predicted genotypic values and 
the pattern of the variance components. In this case, it 
could be argued to use a log-transformation on the data to 
solve overdispersion and distortions on variance compo-
nents estimates; nevertheless, this approach would require 
working with log-normal models, which makes it hard 
to infer about the parameters and extend the model to a 
more general case (e.g., multivariate model). On the other 
hand, the proposed model is biologically intuitive and 
mathematically simple.

Given the difficulty of explicitly modeling individual 
biennial effects among progenies, the variations between 
subpopulations are embedded into residuals, inflating 
or deflating their value depending on the fluctuations 
in biennial status. In mixture models, the parameter-
dependent variance is partly the weighted variance (mean) 
of groups and partly a measure of dispersion among the 
group means (subpopulations) (Gianola et al., 2004). 
When the group means are identical, this term is nullified. 
Therefore, the variance in this model is also affected by 
the mean of each group. This circumstance explains not 
only the high temporal dependence (covariance) between 
residuals throughout the years, but also the sudden fluctu-
ations in residual variance for the mixed models observed 
in the present study. Gianola et al. (2007) observed a 
similar behavior for the error component in mixture 
models and considered this difference to be attributable 
to variability between the means for the two mixture 
components, which is not considered in the conventional 
mixed model. When a population presents heterogeneity 
at the genetic or environmental level, genetic parameters 
based on a theory that derives the estimators assuming 
that homogeneous distributions can lead to erroneous 
interpretations (Gianola et al., 2007). Therefore, the esti-
mated variance components in mixed models tend to be 
biased when latent variables that affect stochastic processes 
exist. These observations are exemplified by the simula-
tion study (Table 4). In all scenarios, the bias on genetic 
variance estimates was greater for model M1.

As discussed above, plant breeders commonly use 2-yr 
means for multienvironment analyses or for calculating 
overall means for multiple harvests in a single environ-
ment. This practice is followed to eliminate the effects 
of biennial growth, but there is a loss of information 
regarding the amount of data and covariance structures 

between environments. In addition, the assumptions that 
all progenies are at the same physiological stage and that 
2-yr means that included a high- and a low-production 
year can capture the variability present in the field are 
naive. By contrast, the full analysis using data for multiple 
years loses power and precision due to high residual 
variance. However, our results indicate that these prog-
enies vary regarding biennial behavior, and the use of 2-yr 
means may result in the selection of plants at favorable 
physiological stages (Fig. 6 and 7).

Figure 6 shows that some progenies were in a favorable 
stage (positive slope) and others were in an unfavorable 
stage (negative slope). However, the attributes of several 
progenies should be highlighted in relation to mixture 
models: these progenies are fitted according to the physi-
ological stage and, in some cases, present an inverted 
slope. For example, the slope for Progeny 1 (green curve) 
indicates a drop in production between Years 1 and 2 in 
the repeated measures model, but a high production in 
the mixture model. In addition, this progeny tended not 
to present wide production fluctuations for the remaining 
years, indicating that the physiological stage was not 
sequentially binary.

To verify whether the grouping of 2-yr means elimi-
nates the biennial effect, a joint analysis was performed 
considering four biennial means (eight harvests), and the 
results were compared with the mixture mixed model 
results. The repeated measures mixture model applied to 
the biennial data resulted in more accurate EBLUP for 
each pair of years (Supplemental Table S5), higher fitness 
(lower BICs) estimates, and higher expected GS values. 
The Spearman correlation between marginal EBLUPs 
for both models (0.84) indicated changes in genotypic 
rankings. If the effect of biennial growth had been miti-
gated by grouping the data by year pairs, the estimates 
would be very close for both models, but even in this 
scenario, the mixture model was superior. This pattern 
shows that the analysis of yield data for coffee genotypes 
using 2-yr grouped means or the mean of multiple harvests 
may be inefficient when the different progenies are at 
different physiological stages. Practical issues also prevent 
the use of 2-yr means, including the need to discard one 
evaluation when the number of evaluations is uneven.

Errors in selection are especially problematic in 
perennial plants because the selection cycles are rela-
tively long and the per plot cost of evaluation is usually 
higher than that for annual crops. The main C. arabica 
cultivars adapted to Brazilian conditions have a narrow 
genetic background (Setotaw et al., 2013). Thus, the 
genetic variance and heritability are relatively low, further 
complicating the identification of the best progenies and 
requiring estimates with the lowest possible errors. Good 
phenotypic evaluations are therefore extremely important 
but do not guarantee selection efficiency when the models 
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are inadequate for the data. This situation even compro-
mises the evaluation of experimental precision, giving 
the false impression that experiments evaluating coffee 
production have a low experimental precision.

Conventional models for the phenotypic evaluation of 
coffee may lead to inference errors when fitted to data orig-
inating from stochastic processes other than Gaussian ones 
(Gianola et al., 2007). The production data for the different 
coffee progenies used in the present study were apparently 
formed by a mixture of two Gaussian distributions.

Computational demand and convergence are well 
known problems when fitting mixed models, especially 
when modeling (co)variance matrices structures. In the 
proposed model, the computational demand could be 
increased by estimating the Pn´2 matrix, which does 
not require great computational resource given its low 
dimensionality, even with a very large population size. 
In this work, we did not observe significant differences 
on computational time to fit mixture mixed models 
compared with standard mixed models. The problem 
of estimates being outside the parameter space can be 
alleviated by the use of an EM algorithm in the REML 
function (Dempster et al., 1977). On mixture model, 
the physiological state of the individual is estimated by 
a nonlinear function (as pointed out before) given the 
latent variable. It is also true that if the latent variable is 
observed, the model becomes linear (Supplemental File 
S2) and the solution for fixed and random effects becomes 
asymptotically estimated best linear unbiased estimation 
(EBLUE) and EBLUP, respectively, such as the clas-
sical mixed models on Gaussian distribution. Therefore, 
these terms (EBLUE and EBLUP) were adopted here 
assuming that the prefix “E” (estimated or empirical) 
is related to the asymptotic linearity, unbiasedness, and 
minimal variance when the true values are replaced by 
its estimates (Sorensen and Gianola, 2007, p. 212).

Given that EM-REML maximizes the marginal 
likelihood (free from the nuisance parameters), the 
resultant model is a residual or (average) of residual like-
lihoods. Then, in this manuscript, we prefer to use the 
term REML as “residual’ instead “restricted” likelihood, 
since EM-REML does not poses directly a restriction 
(contrast) on the fixed effects (KXb = 0), as suggested 
originally by Patterson and Thompson (1971). The mixed 
mixture models allow the inclusion of kinship informa-
tion as in traditional mixed models for a prior random 
effects distribution [i.e., s∼ 2

gNu  (0, G) ], where G is the 
kinship matrix (from pedigree or molecular markers). 
Therefore, using molecular markers, the model proposed 
in this study can be easily adapted to perform genomic 
selection. Considering multiple mixtures is also possible, 
which broadens the usage of this model; however, due to 
agronomical justification for biennially, it was used only 
two mixtures in this work.

Overall, the conventional and mixture models 
resulted in different rankings for the EBLUPs of progeny, 
and the mixture model resulted in a higher GS and a 
greater confidence in estimates than with the classical 
mixed model, even when considering the heterogeneity 
of variance. The mixture model corrected the genotype 
response according to the year of evaluation, indicating 
that the effect of the genotype ́  year interaction on selec-
tion may have been reduced.

With the methodology proposed in the present study, 
the best progenies could be identified in coffee breeding 
programs during early generations (S0:3, S0:4), when a 
stronger confounding biennial effect among progenies 
occurs compared with that in later generations. The 
biennial pattern is not stable until the fourth year, as 
commented on above. Since traditional models do not 
correct for biennial effects, the predicted breeding values 
will be confounded by latent variable effects, making them 
inefficient for use in performing selection. For example, 
Progeny 7, mentioned above, certainly would be selected 
if the four first harvests were used; however, after this 
harvest sequence, the biennial pattern became stable, and 
its EBLUP values approached zero (Fig. 6A). Many authors 
have recommended evaluating at least four harvests before 
selection (Pereira et al., 2013). A mixture model is able to 
capture the biennial behavior and correct for this hidden 
variable in the first evaluation, as can be observed in Fig. 7. 
Therefore, selection would be possible after fewer years of 
evaluation (2 or 3 yr), similar to what is possible for annual 
crops (Bernardo, 2002). This reduction could have impli-
cations for the way that phenotypic evaluations of coffee 
plants are conducted in Brazil. For example, the time and 
cost of launching a new cultivar could be greatly decreased 
by accelerating recurrent selection cycles and increasing the 
genetic gain per cycle. Currently, at least 8 yr are needed to 
complete a full recurrent selection cycle, and most of this 
time is spent on evaluation (Sera, 2001). We expect that 
evaluating two harvests before selection would save 4 yr of 
effort, depending on the breeding strategy adopted.

Simulation results illustrated the properties of the 
proposed model (Table 4). When the subpopulation means 
were close to each other, the standard mixed model was 
better. This behavior was expected, because the mixture 
parameter is not identifiable in that situation (Aitkin and 
Wilson, 1980). When this difference was >15, the mixture 
model was superior, especially in Scenario 4 (Table 4), 
where the model M2 was more efficient than M1 in esti-
mating the EBLUPs. According to our results, differences 
in the mean of subpopulations (estimated by model M2) 
were always large enough to guarantee the superiority 
of the mixture model (Table 2). Given our results and 
previous studies, we expect larger differences in subpopu-
lation means being a rule in Coffea arabica for the yield trait 
(Bertrand et al., 2005; Sakai et al., 2015). This reinforces 
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the justification of modeling population heterogeneity in 
these data. In addition, it is worth highlighting that even 
when the difference between the mixtures means are not 
evident, our REML estimation for variance components 
and EBLUE for mixture means are robust, showing the 
model’s ability to identify bimodality.

In general, the mixture model was able to identify 
biennial growth as a latent variable in the yield data for coffee 
progenies and to cluster the different progenies in a coherent 
way. This model considerably improved the estimation of 
the evaluated parameters, showing statistical superiority 
over the models reported so far to address this agronomic 
phenomenon. In addition, changes to the EBLUP rankings 
of the best progenies selected and an increased expected GS 
indicate that the biennial effects must be taken into account 
in the evaluation of coffee progenies.
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File S1: Tables S1 to S5 

 

Table S1. Residual co(variances) estimated using the model M3 (repeated measures mixed models). 

Harvest 1 2 3 4 5 6 7 8 

1 50.48 69.23 6.17 66.45 3.03 80.84 -1.89 64.26 

2 - 239.85 -44.19 192.89 -20.38 211.35 -21.98 171.82 

3 - - 62.44 -55.09 29.89 -51.41 17.52 -30.53 

4 - - - 207.65 -31.08 208.12 -23.79 168.65 

5 - - - - 27.96 -22.71 15.81 -18.99 

6 - - - - - 293.80 -25.01 182.98 

7 - - - - - - 16.63 -25.05 

8 - - - - - - - 208.37 

 

 

Table S2. Residual co(variances) estimated using the model M4 (repeated measures mixture mixed models). 

Harvest 1 2 3 4 5 6 7 8 

1 12.61 9.77 5.67 9.95 -0.61 7.79 0.35 10.88 

2 - 58.02 -1.62 37.59 -8.01 42.67 -6.62 29.76 

3 - - 13.03 0.32 2.34 3.45 2.54 3.14 

4 - - - 64.30 -9.37 56.67 -6.28 33.00 

5 - - - - 9.89 -11.07 2.75 -8.27 

6 - - - - - 95.66 -7.72 32.72 

7 - - - - - - 5.35 -4.12 

8 - - - - - - - 47.62 

 

 

Table S3. Genetic co(variances) estimated using the model M3 (repeated measures mixed models). 

Harvest 1 2 3 4 5 6 7 8 

1 13.71 13.08 10.71 10.95 3.99 19.35 0.65 31.62 

2 - 92.39 6.22 65.73 -4.10 128.42 1.42 144.37 

3 - - 19.09 12.70 8.49 29.60 1.40 42.15 

4 - - - 87.04 -5.19 161.36 -5.97 189.45 

5 - - - - 9.73 -1.92 4.64 3.84 

6 - - - - - 310.37 -6.06 363.69 

7 - - - - - - 3.51 -5.86 

8 - - - - - - - 436.86 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S4. Genetic co(variances) estimated using the model M4 (repeated measures mixture mixed models). 

Harvest 1 2 3 4 5 6 7 8 

1 9.77 16.03 4.53 17.04 -0.90 27.83 -0.10 29.51 

2 - 96.73 15.35 64.56 0.03 150.72 0.75 153.66 

3 - - 6.63 1.47 1.69 6.25 1.88 6.36 

4 - - - 94.95 0.90 177.96 -3.17 188.99 

5 - - - - 4.60 -0.21 1.86 2.11 

6 - - - - - 358.76 -5.71 375.49 

7 - - - - - - 1.14 -5.36 

8 - - - - - - - 394.97 

 

 

 

Table S5. Prediction error variance estimates (PEV), expected selection gain for the five best progenies (SG%), Bayesian 

information criterion (BIC), Spearman correlation between BLUPs estimated using the models M3 (repeated measures mixed 

models) and M4 (repeated measures mixture mixed models) and means (Mean1 and Mean2) estimated by the model M4 

considering the data grouped in biennials. 

Biennium 
M3 M4 

PEV PEV Mean1 Mean2 

1 9.099 6.717 33.545 48.940 

2 4.374 4.212 27.591 37.522 

3 9.049 7.427 32.024 47.941 

4 13.439 7.730 42.839 53.118 

SG(%) 13.582 14.460   

BIC 902.730 670.605   

cor_Spearman(%) 0.84    
 

 

 

 

 

 

 



File S2: Mixture model justification 

Consider iy  as the phenotypic observation related to i-th individual whose observed likelihood is 

given by:  
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Where 1 1θ = +Zuμ +Xβ  and 2 2θ = +Zuμ +Xβ and 1μ and 2μ are the mean parameters related 

physiological phase, 2 is the residual variance and is the prior probability of iy  being a random  

realization of kP . For a vector 
( 1)nxy the observed-data likelihood is given by:
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where 1  and 2 are the posterior probability P of iy  being classified into the first or second 

mixture component. However, the EM algorithm makes use of a latent random variable j given as 

missing information. The joint likelihood of observed data y and the missing information related 

to classifier j is called of complete likelihood (Sorensen and Gianola, 2002) where the classifier j 

is a missing Bernoulli random variable.  Thus, the complete log-likelihood can be described as 

following: 
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Here, it is evident that 1-  ( 1) ( 0)k iI j I j= = = . Taking the expectation in relation to the missing 

Bernoulli variable  ( 1)iE I j =  and the random genetics effects u ,  the complete-data likelihood 

becomes: 
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In likelihood inference the E-step process can be given using two step: The first one is given using 

only the joint (complete) likelihood expectation in relation to j in which is given by: 
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Given that for iy  the summation of the expectation is equal to 1, the joint likelihood of (y,j) can 

be rewritten as following: 
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Thus, iJ u describes the linear combination of expectation of ith plant be in the j-th physiological 

state with its corresponded mean k  where in the i-th line   ( )1

1 2

2

1 1i j j j j
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 The P elements can be obtained as follow: Assuming  j as a Bernoulli random variable 

indicating the physiological phase of the plants and using the expectation function the complete 

likelihood in relation to (y,j) we have:  
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used to build the matrix P  as following: 
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However, since 1 1iP + 2(1 ) 1iP−  , the following normalization is necessary to ensure that the 

sum of probabilities be equal to one: 1 = 1
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normalized matrix P is now given by:  
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Since the others fixed and random effects are constant across the mixtures, their effects are 

invariants in the complete-data likelihood. In short, if the biennial stage is known the two mean 

mixture model can be described by:  

( )1 21 

+

− + +

y = Jμ+Xβ+Zu e

y = j + j Xβ+Zu e
  

where Jnx2 is a 0’s and 1’s matrix relating mean to each mixture component. The X and Z are 

incidence matrices for fixed and random effects and β  and u  fixed and random effects, 

respectively. 

 Since the expectation in relation to j is obtained, the next step is to take the expectation in 

relation to u . Then, the objective function Q becomes: 
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For REML estimates an additional expectation in relation to fixed effects becomes necessary: 
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where { , }=φ μ β . It is evident here that after to take the expectation in relation to Bernoulli random 

variable the EM step is equal to that used in classical EM-REML mixed models and the parameter 

derivation becomes equivalent. 

 

Derivation of Mixed model effects 

 

 The solution for the fixed and random effects can be done using the objective function: 

   
2

2 2 2 2

2
1 1

1
( , , | , ) log( ) ( 1) ( ) ( 1) log log ( | 0, )

2 2

n

k i k k k g

i k

n
l E j y E j N     

 = =

 
= − = − + = − 

 
θ y j u  

In matrix notation we rewrite the likelihood as: 
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Deriving partially in relation to 1  and 2 we have we an equivalent least square estimator: 
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Now, we can plug it in the mean estimator: 
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Where u
E= − −y* y Z (u)Xβ  

 In order to facility the notation we used u
E = ˆ(u) u . 

This result is the same classical EM solution for mixture models found, for example, in (Bishop, 

2006) chapter 9. Now, consider that the marginal solution for  1  and 2  could be given by: 
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Here, the off-diagonal elements   1 2, ` 0E =   =j 1- j in order to ensure the marginal mean 

allowing the least square estimation since  , (1 ) 0i iE  = − j 1- j  
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This is the exactly marginal solution for mixture means in classical likelihood estimation. 

In order to facility the notation, it will be adopt that ( ` ) `jE =J J P P and  ( `)jE =J P .Then, the 

marginal solution for μ is given by: 

1 ˆ( ` ) `( )y−= − −μ P P P ZuXβ  

 Since the fixed and random effects ( , )β u are constant across
jE , using the objective 

function one have: 
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However, the EM-REML requires the joint solution of fixed and random effects and in 

order to ensure that the marginal likelihood be free from nuisance parameters. Therefore, the joint 

solution for 1  and 2 must be take into account the joint expectation among j and (1-j). A initial 

condition is that if the binary indicator 1=j then it is necessary that ( ) 0− =1 j . If so, for the ith 

observation we have   1,0i =j  with probability [  ,1 − ] and ( )  1 0,1i− =j and probability [  ,

1 − ] if the bienallity state was known. Therefore, the joint expectation for first diagonal element 
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Note that the joint expectation is very different from the marginal one as given above.  

The off-diagonal elements in this scenario can emerge from the assumption that the mixtures are 

independent. For ensure this, it is necessary that  ( ) ( ), 0COV − =  j 1 j . This assumption can be 

obtained using the following equality ( ) ( ) ( ) ( ),1` 1 ` 0j jE E E −− = −   j j j 1 j . In other words, given 

j and 1-j are replaced by its joint expectations the vectors are not more orthogonal. To see this 

consider that  if  1,0i =j , the necessary condition for ( )  1 0,1i− =j  in the sense that  `(1 ) 0i i− =j j

. However, since the indicator j variable is not observed, but, instead, it is replaced by their 

expectation, the joint expectation of square form becomes:
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Then the new matrix of the joint expectation becomes: 
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Then, the joint solution for fixed and random effects in EM-REML is given by: 
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which is equivalent to a non-linear estimator for 1μ and 2μ . Thus, as described in (Xu, 2013) 

(chapter 7), the EM likelihood solutions for mixture models could be obtained as regular system 

of equations as in classical linear models.  

 An alternative is to use the stochastic EM (SEM) where the J matrix is sampled from a 

Bernoulli distribution with probability   and the solutions for fixed and random effects are taken 

as those in classical mixed models and the orthogonal properties of j and 1-j are ensured . The 

consistency of the estimator was tested and compared with mixtools library available in R. We 

showed that our REML method is more efficient that ML methods. As given on tables S1 and S2: 

 

 

 

Table S1- Comparing our proposed model with the mixtool considering 1000 runs on data simulation. 



 

1μ  2μ    2  

REML/Mixture 4.6615 10.1322 0.2986 1.2028 

Mixtools 6.4140 9.3386 0.3987 1.8731 

True values 5.0000 10.0000 0.3000 1.4142 

 

 

Table S2- Comparing our proposed model with the mixtool example data available in the library.  

 
1μ  2μ    

2  

REML/Mixture 54.0019 80.4695 0.361667 5.32482 

Mixtools 54.6161 80.0917 0.3609 5.869 

 

The R code for the simulation is given below: 

 

########## comparing mixtool with our model##### 

###### simulation ####### 

for(i in 1:nsim){ 

   

  mix_data <- rnormmix(n=n, lambda=lamb, mu=med, sigma=sig)###generate the data 

   

  ours<-GMM(y=mix_data) 

   

  out<-normalmixEM(mix_data, arbvar = FALSE, epsilon = 1e-04, 

                   ECM = FALSE) 

   

  meds[i,]=c(ours[[2]],out$mu) 



  mix[i,]=c(ours[[1]], out$lambda) 

  sig2[i,]=c(ours$sigma, out$sigma[1]) 

} 

 

mmed=matrix(c(apply(meds,2, mean),med), ncol=2, byrow = TRUE) 

mixm=matrix(c(apply(mix,2, mean)[c(1,3)],lamb[1])) 

sig2m=matrix(c(apply(sig2,2, mean), sig[1]), nrow = 3) 

resul=cbind.data.frame(mmed, mixm, sig2m) 

 

 

colnames(resul)=c("M1","M2","pi","sig2") 

rownames(resul)=c("ours","Mixtools", "simu") 

 

 

write.csv(resul,"mixtool.csv") 

 

####### mixtool data ###### 

rm(list=ls()) 

data(faithful) 

attach(faithful) 

 

GMM<-function(y, mu, ve, conv.crit){ 

   



  y=y 

  y=as.matrix(y) 

  n=length(y) 

   

  P=matrix(0.5,n,2) 

   

  if(missing(ve)){ve=var(y)/4} 

   

  if(missing("mu")){ 

    mu=c(0,0)   

    mu[1]=quantile(y,0.4) 

    mu[2]=quantile(y,0.6) 

  } 

   

  if(missing("conv.crit")){conv.crit=1e-04} 

   

  P1=dnorm(y,mu[1],sqrt(ve)) 

  P2=dnorm(y,mu[2],sqrt(ve)) 

  P[,1]=P1/(P1+P2) 

  P[,2]=P2/(P1+P2) 

   

   

  iter=0 



  maxiter=300 

   

  repeat{ 

    W1=P 

    JJ=crossprod(P,P) 

    Jy=crossprod(P,y) 

    C1=JJ 

     

     

    C2=solve(C1) 

    sol=C2%*%Jy 

     

    m1=sol[1] 

    m2=sol[2] 

     

     

    ma=m1 

    mb=m2 

     

    pred=P%*%c(m1,m2) 

    e=y-pred 

     

    dd=W1%*%C2%*%t(W1) 



     

    ve1= (t(e)%*%e+sum(diag(dd*c(ve))))/n ####duvida aqui 

     

     

    dif=max(abs(ve-ve1)) 

     

    ve=ve1 

    iter=iter+1 

     

    pi=sum(P[,1])/n 

    P1=pi*dnorm(y,ma,sqrt(ve)) 

    P2=(1-pi)*dnorm(y,mb,sqrt(ve)) 

     

    P[,1]=P1/(P1+P2) 

    P[,2]=P2/(P1+P2)   

     

    ###print(c(m1,m2,iter)) 

     

    ##if (iter>maxiter) dif=0 

    if((dif<var(y)*conv.crit)|(iter==maxiter)) break 

  } 

   

  colnames(P)<-c("prob_subP1","prob_subP2") 



  prop<-c(pi, (1-pi)) 

  med<-c(m1,m2) 

   

  saida<-list(lmabda=unlist(prop), mu=unlist(med), sigma=unlist(sqrt(ve))) 

  return(saida) 

} 

 

 

out1<-normalmixEM(waiting, arbvar = FALSE, epsilon = 1e-03) 

out2<-GMM(waiting) 

 

summary(out1) 

out2 
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Abstract 

Recent studies have shown the potential of genomic selection (GS) in increasing the genetic gain 

per unit of time in Coffea spp.. Biennial growth behavior is a well-known characteristic of these 

species. It imposes great challenges for breeders to select coffee bean progenies and, potentially, 

it can generate strong bias on estimated breeding values (EBV) for genomic selection. Therefore, 

the aim of this study was to propose a gaussian mixture genomic selection (GMGBLUP) model 

and compare its efficiency with the genomic best linear unbiased prediction (GBLUP) model in 

terms of parameter estimates and prediction accuracy. One thousand three hundred nineteen 

robusta coffee (Coffea canephora) individuals were genotyped using Coffee Axiom chip – 26K 

and their coffee beans data were evaluated in three harvests or years. The models were also 

compared using two simulated data sets: data set 1, which considers no genetic control for biennial 

growth; and data set 2, which assumes that biennial growth is controlled by one gene. Different 

values of heritability and biennial growth intensity (subpopulation mean difference) were 

simulated for both data sets. Specifically for data set 1, distinct levels of subpopulation mixture 

(pi)were also simulated. For real data, the GBLUP model showed higher efficiency for prediction 

accuracy. However, GMGBLUP generated higher values for heritability estimates. For simulated 

data sets, the same real data pattern was observed on low biennial intensity scenarios, 

independently of the mixture parameter (pi). For higher subpopulation mean difference, the 

GMGBLUP model was superior and it tended to be more efficient on pi values near to 0.5. On 
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data set 2, GMGBLUP was superior or equal to GBLUP in almost all scenarios. The results suggest 

that GMGBLUP could be considered as an alternative for genomic prediction in Coffea genus, 

especially for species with strong biennial growth behavior. 

Keywords: genomic selection, coffee bean breeding, biennial growth. 

Introduction 

Biennial growth patterns have been frequently reported in coffee beans (Carvalho, 1988; 

Rodrigues et al., 2014) and other economically important fruit-tree species (Monselise and 

Goldschmidt, 1982; Guitton et al., 2011; Durand et al., 2013). This phenomenon is characterized 

by strong variation on the yield of the individuals through the years and in Coffea species, it is 

undesired for farmers and industries due to difficulties in planning the following season and 

fluctuations on profit. Especially for breeders, these alternations in production impose challenges 

on progeny selection and on parameter estimates.  

Many authors have stressed that this biennial phenomenon affects accuracy to select the 

best genotypes and some strategies have been proposed to overcome the problem. One attempt is 

to group the data on biennials (consider the pair of consecutive years) (Oliveira et al., 2011). 

Accordingly, it would be possible to reduce the discrepancy between the considered years and 

perform standard statistical procedures. Linear mixed models have become popular in plant 

breeding to analyze multi-year data and some researchers have proposed to model the residual 

covariance matrix and the genetic covariance matrix over harvests to capture the serial 

correlations between successive observation for an individual (Andrade et al., 2016; Pereira et 

al., 2018). According to them, mixed models were more efficient for parameter estimates, 

prediction error variance of genotypic values, rankings and coincidence index in selecting the 

best progenies. 

Recently, a different approach considering the biennial growth as latent variable was 

proposed. In this case, a Gaussian mixture model was used to capture the physiological stage of 

each individual to correct it in the model (Vieira Junior et al., 2019). The authors modeled 

biennial growth considering a mixture of two gaussians with different means and the biennial 

growth as latent variable. They reported a significant increase in the heritability estimates and a 

higher expected genetic gain using the new approach when compared with previous proposals. 
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Traditionally, breeders have relied only on phenotypic information to make genetic 

progress. The technological development in the last years allowed the use of dense genotyping 

information which opened the doors to genomic selection (GS). Meuwissen et al., 2001 proposed 

to apply the complete available genomic information to predict the genetic merit of individuals. 

Nowadays, this is known as GS. Many studies in the literature have addressed the use of this 

methodology in different plant species (Robertsen et al., 2019; Tsai et al., 2020). Most of them 

have achieved good results in applying GS techniques to increase the efficiency of plant breeding 

programs, especially in perennial species, where it is possible to greatly reduce the time per cycle 

(McClure et al., 2014; Ferrão et al., 2017; Kwong et al., 2017; Sousa et al., 2018; Stejskal et al., 

2018). 

There are few studies attempting to apply GS in the coffee bean and the results are 

promising. Genomic selection enabled early selection in Coffea arabica progenies allowing a 

reduction of 50% in the cycle time (Sousa et al., 2018). However, the authors mentioned that 

most of the analyzed traits showed high complexity and low genomic heritability.  

The models tested until now for GS in genus Coffea and other species showing biennial 

growth have not considered this phenomenon for training the markers. For phenotypic data, it 

was shown that ignoring this phenomenon could cause strong bias on variance components and 

on BLUPs estimates (Vieira Júnior et al., 2019). Therefore, we hypotheses that ignoring the 

effects of this phenomenon during the marker training process can impose strong bias and 

decrease the prediction accuracy of GS. This paper is an extension of our previous work where 

we proposed gaussian mixture models to circumvent the biennial growth problem in coffee bean 

progenies (Vieira Júnior et al., 2019). The objective here is to propose and study a gaussian 

mixture model for genomic prediction in Coffea canephora progenies. 

 

Material and Methods 

Real data 

The genotypes used in this study are from EMBRAPA Cerrados (Planaltina -DF, Brazil). 

Coffee beans yield from 1319 individuals, measured in liters, was obtained in three consecutive 

harvests or years (2012, 2013 and 2014). There was no replication in this experiment and each 
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individual was a plot. Each individual was originated from a “pool” of seeds harvested in a field 

of open pollination with 48 parents. 

Those individuals were genotyped using Coffee Axiom chip – 26K platform developed 

and adapted for C. canephora (Andrade et al., 2017). After the quality control, there were 16685 

single nucleotide polymorphic markers (SNPs) with minor allele frequency (MAF) and call rate 

equal to or higher than 1% and 90%, respectively. 

Genomic prediction models 

Two different genomic prediction models were compared: GBLUP and Gaussian Mixture 

GBLUP (GMGBLUP).  

 

Gaussian Mixture GBLUP (GMGBLUP) 

For this model, the biennial effect (physiological state) was modeled as a latent variable 

using a gaussian mixture model. Taking the latent variable as missing information, the following 

linear model was used for each harvest analysis: 

y = Jμ + Zu +e  (1)  

where ( 1)ny  is the phenotypic observation vector and (2 1)μ is a fixed effect vector (means related 

to biennial status). ( 1)nu  is the random effect (genotype) vector, and ( 1)ne  is the error vector. 

( 2)nJ  is the missing Bernoulli random variable related to the biennial status. Each element of the 

J matrix ( ilp ), in this work, will be replaced by its expectation i.e., the probability that the ith 

observation has been taken from the lth biennial state as described by Vieira Júnior et al., 2019. 

( )n nZ  is the random effect incidence matrix (genotypes). Because the matrix for the two-year 

means (μ ) is unknown, the expected Bernoulli variable was used as an indicator of the genotype 

stage in the mixture.  

As demonstrated by Vieira Júnior et al., 2019, since the latent Bernoulli random variable 

is unknown, it is replaced by its expected value of the complete data likelihood. In other words, 

1 ~ ( )n iBernoulli ps ; therefore, ( 1)i iE s = = , where i  is the ith element of J and represents the 

expectation of an individual assuming any state in the mixture. 



5 
 

The following assumptions were made for random vectors: 

2
gN u ~ (0, G)   

2
eN e ~ (0, I)    

Where 
2

gσ  and 2σe
 are the genetic and residual variance, respectively. I is an identity 

matrix. G is the VanRanden genomic kinship matrix as described as follows: 

´

2 (1 )i ip p
=

 −

WW
G  

where W is a 0, 2 and 1 minor allele counts centralized matrix with rows as individuals and 

columns as markers, and pi is the allele frequency of the ith marker (VanRaden, 2008). For this 

method, the function “mixed.solve” implemented on rrBLUP package was used (Endelman, 

2011). 

Given the above assumptions, the observed data likelihood can be given by: 

2 2 2, ) (1- )| , , (e e eNN     1 2u Zu, I + ( Zu, I)y μ ~ μ + μ +   (2) 

However, in an expectation-maximization (EM) algorithm, the observed data (y) and the 

missing information (u, s) must be jointly modeled using the expectation of the complete log-

likelihood (Sorensen and Gianola, 2007), whose objective function is given by:   

2 2
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2 2
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
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y μ β u y j μ + Xβ Zu, I
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 (3) 

where 2| , ey
E

u
is the expectation in relation to the random effect of genotypes, 

2

gσ  and 2σe
 are the 

genetic and residual variance, respectively,   is the unknown mixture parameter, 1  and 2  are 

scalars representing the means related to physiological states 1 and 2, and J is the expectation of 

the 1ns  indicator binary vector relating each mean to its subpopulation. In the model described 

above,   is the a priori probability of genotypes being in the high- or low-production stage, 

which was assumed to be unknown in the present study. For REML estimates of variance 
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components, the expectation must be taken in relation to random and fixed effects as already 

shown by Vieira Júnior et al., 2019. 

 

 

GBLUP 

This model was used for each harvest and corresponds to classical GBLUP (Habier et al., 

2007; VanRaden, 2008). Therefore, the latent parameter related to biennial growth is absent. It is 

described as follow: 

λ1ny = + Zu + e  (4) 

where ( 1)gy  is the phenotypic observation vector, λ  is the intercept , ( 1)nu is the random effect 

(genotype) vector, and ( 1)ne  is the residual vector. 
( )n nZ is the random effect incidence matrix 

and 1n is a vector g-vector of 1´s. The subscript n represents the number of genotypes which is 

the number of observations. The following distribution assumptions were made for the random 

effects: 

2

gN u ~ (0, G)  

2

eN e ~ (0, I)  

2λ1n eN y ~ ( + Zu, I)  

Where 
2

gσ  and 2σe
 are the genetic and residual variance, respectively. Matrices G and I are as 

described on the previous model. 

Prediction accuracy 

On simulated data sets, the models were compared between them in terms of prediction 

accuracy using the k-fold (five-fold) methodology considering the correlation between the 

estimated BLUP with the simulated breeding values and the simulated phenotype. For the real 

data set, prediction accuracy was assessed correlating estimated BLUPs with observed 

phenotypes. 
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Phenotype Prediction 

If the biennial state has genetic control, it is possible to predict this trait and to get a 

prediction for the phenotype: the subpopulations means plus the genetic effect. Specifically, for 

the GMGBLUP there was an extra step to get the predicted phenotypes (
predy ).   After 

converging the model (GMGBLUP), the logit of the expected values of the J matrix was used as 

a phenotype and a GBLUP model was run to get an estimate of the biennial status for the 

unobserved genotypes. It was as follows: 

log λ1n

 
= 

 

p
+ Zl + e

1-p
  (5) 

Where 
1gxp  is a vector taken from the expectation of the J matrix, λ  is the intercept, 1nxl is 

the random effect (genotype) vector, and ( 1)ne  is the residual vector. 
( )n nZ is the random effect 

incidence matrix and 1n is a vector of 1´s. The subscript n represents the number of genotypes 

which is the number of observations. The following distribution assumptions were made for the 

random effects: 

2

gN l ~ (0, G)  

2

eN e ~ (0, I)  

2log (λ1 , )n eN 
 

+ 
 

p
Zl I

1-p
 

where 
2

gσ  and 2σe
 are the genetic and residual variance, respectively. Matrices G and I are 

as described on previous models. 

The phenotypic prediction ( predy ) was as follow: 

pred =y Lμ+Zu  (6) 
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Where: 
predy  is the vector of predicted phenotypes, 

nx2L  is the matrix of predicted 

biennial state estimated in the second stage with columns p and (1-p), 2x1μ is the vector of 

subpopulation means estimate (estimated with GMGBLUP) and Z incidence matrix for random 

effects, as described before and u is the vector of EBLUPs estimated by GMGBLUP model. The 

vector p was obtained as follow: 

e−
=

+ Zl

1
p

1
 (7) 

 

For the GMGBLUP model, the mixture of two subpopulation was evaluated using the 

bimodality test according to Holzmann and Vollmer (2008) following the same steps described 

by Vieira Júnior et al. (2019). 

 

Simulation Study  

Data set 1 – No genetic control for physiological state 

In this data set, sixteen scenarios were evaluated. Each one varying the degree of mixture 

of the subpopulations, namely the mixture parameter (pi), heritability (h2) and biennial growth 

levels. The biennial growth levels were taken as the ratio between the higher and lower 

subpopulation means. The lower mean was fixed at five and the higher subpopulation mean 

assumed values: 10; 15; 20 and 30. Thus, the biennial levels were (from softer to stronger) 0.5; 

0.33; 0.25 and 0.17. There were two heritability levels: 0.3, 0.8 and two mixture parameters: 0.2 

and 0.5.  

In all scenarios, the phenotypes of 119 individuals were simulated. The genotypic data 

was the same used by Ferrão et al. (2018) from the “intermediate population” including the 

quality control for SNPs. A total of 100 markers were randomly selected as causal loci and their 

effects (l) were independently sampled from a normal distribution, i.e. ~ (0, )nNl I . Here, I is an 

identity matrix and the subscript “n” is the number of loci controlling the trait. From these 

values, the true parameter values were obtained, namely breeding values (TBV) and 
2

g . 

The phenotypic values were simulated as 
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y = Jμ + Za + e  (8) 

where μ  is the vector of means of each subpopulation indicating the physiological state 

(its values varied according to the scenario), J  is the matrix of  0 and 1 indicating the 

physiological state (it varied according to the scenario in order to meet the mixture parameter), a 

is the vector of TBV as described above, and e represents the residual effects vector, which were 

sampled from a Gaussian distribution, i.e., 2~ (0, )eN e I , where 

2
2 2

2

1
e g

h

h
 

−
=  , 

2h  is the 

heritability. 

A trait controlled by 100 genes showing only additive effects was assumed. Markers were 

randomly sampled as causal loci and each scenario was run 100x varying the sampled markers. 

This process was used to compare the models in terms of parameter estimation. Therefore, all 

individuals were kept on a data set to estimate the genetic variance (gv), heritability (h2) and the 

EBLUPs.  

In order to verify the prediction ability of the tested models, we performed a cross-

validation using the k-fold (five-fold) method (Crossa et al., 2010). For the GMGBLUP, there 

was a second stage to estimate the biennial state of the individuals belonging to the validation set 

and obtain the predicted phenotypes, as described for real data. 

  

Data set 2 – Genetic control for physiological state 

In order to understand how the prediction prediction accuracy of the models can be 

influenced in the biennial growth (or physiological state) genetic control, a second data set was 

simulated assuming that the biennial growth was controlled by one gene. For that purpose, a 

homozygous marker was chosen along the individuals. The genetic allele effect for it was 

changed in order to produce a different biennial growth in the same intensity as mentioned 

before, that is 0.5; 0.33; 0.25 and 0.16. For this data set, a fixed mixture parameter (pi) was 

considered, equal to 0.4621 and three heritability values: 0.3, 0.5, 0.8. The other simulated 

parameters such as heritability and genetic variance were the same as in data set 1 and the 

phenotypes were obtained as described in equation (4).  
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RESULTS 

Real data 

Contrasts of subpopulation means, estimated using the GMGBLUP, were significant in 

all harvests (Table 1) suggesting the presence of biennial growth. As expected the biennial 

intensity was lower when compared with Coffea arabica yield data, as reported previously 

(DaMatta, 2004). For example the highest mean difference found in is this work is about 14 and 

for Coffea arabica yield data the lowest mean difference was about 13 (Vieira Júnior et al., 

2019).  

 

 

Table 1: Estimates for the means, in liters, of subpopulation 1 (m1) and 2 (m2) and mixture parameter (pi) 

considering the Mixed Mixture Model and the estimates for genetic variance (
2

g ), residual variance ( 2σe
) 

and heritability (h2) for the two models used in this work. Estimates obtained using the real data. 

 Gaussian Mixed Mixture Model - GMGBLUP   GBLUP 

Harvest m1 m2 Contrast* pi 
2

g  
2σe
 h2 

2

g  
2σe
 h2 

1 7.565 13.809 6.2446*** 0.532 3.6939 2.7031 0.577 1.4697 11.7298 0.1113 

2 6.963 21.044 14.082*** 0.956 3.4211 10.868 0.239 5.1667 16.7653 0.2355 

3 5.703 16.684 10.9806*** 0.673 11.914 7.0996 0.627 8.8384 32.5877 0.2133 

*Bimodality test. ***Rejected the Unimodality. 

 

Comparing the studied models between them, residual variance estimates were lower for 

GMGBLUP in all years, which explains the same pattern observed for heritability estimates. 

Genetic variance estimates were higher for GBLUP only on harvest 2, which presented the 

highest mixture parameter (pi) (0.956) and was closer to a homogeneous population. This 

elucidates why the heritability estimates were similar for both models in this harvest. For 

harvests 1 and 3, the mixture parameter estimates were near 0.5 and 0.7, respectively (Table 1), 

reinforcing the evidence for the presence of a hidden variable (or biennial growth).  

We used two measures of prediction ability to compare the models: the correlation of the 

estimated BLUPs with phenotype and specifically for the GMGLUP model the correlation of the 

predicted phenotypic value ( predy ) with the observed ones (Table 2). In all cases, GMGBLUP 
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showed the lowest prediction accuracy independently of the year (Table 2) for both prediction 

accuracy method. As expected, there was a substantial increase when considering the predicted 

phenotype, since we are including the biennial state prediction. These results suggest that 

directly correlating EBLUPs with phenotype may not be suitable to verify the prediction 

accuracy when the mixture of subpopulations is present. 

 

Table 2: Prediction ability for GMGBLUP (Gaussian Mixture Model) and GBLUP, considering the 

correlation between predicted genomic value on the validation population and observed phenotypic values 

(rây), the correlation between predicted genomic values and the predicted phenotypes values (rpredy) in 

the training population. Estimates obtained using the real data set. 

GMGBLUP 

  Harvest 1 Harvest 2 Harvest 3 

rây 0.0932 0.3062 0.2357 

rpredy 0.1523 0.3676 0.2703 

GBLUP 

rây 0.1948 0.3891 0.3025 

 

Simulated data 

Data set 1 – No genetic control for physiological state 

Overall, the GMGBLUP estimated genetic variance closer to the simulated values and the 

GBLUP model tended to overestimate it, especially for higher biennial intensity scenarios and 

mixture parameter (pi) equal to 0.5 (Figure 1). The GMGBLUP tended to overestimate the 

heritability in scenarios where the simulated value for this parameter was low, which shows that 

this model tends to underestimate residual variance in these conditions (Figure 1). The GBLUB 

underestimated it as the ratio lower/higher subpopulation mean decreased. The only exception 

was for low heritability and pi equal to 0.5 scenario. For higher simulated heritability scenarios, 

the GMGBLUP generated estimates closer to the simulated value and its efficiency increased for 

higher biennial intensity scenarios. In those situations, the GBLUP showed high bias for 

parameter estimates (Figure 1). 
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Figure 1: Genetic variance and heritability estimates for simulated data without genetic control of biennial 

growth (data set 1) considering the models GMGBLUP (Mixture), GBLUP (Standard) and the simulated 

values (Simulated). 

 

In terms of prediction accuracy for the correlation between the EBLUPs and the 

simulated phenotype, the GBLUP model showed the highest values in all scenarios (Figure 2). 

Interestingly the GMGBLUP decreased the prediction accuracy increasing the biennial level. 

When it is considered the predicted phenotypes in mixture model, accuracy significantly 

increased and in some scenarios it was near to or higher than GBLUP model (Figure 2). 
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Figure 2: Prediction accuracy considering the correlation of the EBLUPs for GBLUP (Standard), 

GMGBLUP (Mixture) and the predicted phenotypes by the GMGBLUP (Mixture_pred). Correlation 

estimated using the simulated phenotypes without genetic control for biennial growth. 

 

When the prediction ability was assessed by correlating the EBLUPs with simulated 

genetic values (TBV) the GBLUP quickly decreased its prediction accuracy as the biennial 

intensity increased. In addition, for some scenarios, the GMGBLUP was about three times more 

efficient in predicting breeding values. This can be observed when the simulated heritability and 

pi were, respectively equal to 0.8 and 0.5 and low/high mean ratio of 0.17 (Figure 3). These 
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results suggest that correlating the EBLUPs with phenotypes leads to mistakes when choosing 

the best model for prediction accuracy.   

 

Figure 3: Prediction accuracy considering the correlation of the EBLUPs for GBLUP (Standard) and the 

GMGBLUP (Mixture). Correlation estimated using the simulated genetic values without genetic control 

for biennial growth. 
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Data set 2 – Genetic control for physiological state  

In all scenarios, the GBLUP model overestimated the genetic variance. For heritability 

estimates, the GMGBLUP was more efficient in all cases, except for higher biennial intensity 

scenarios (Figure 4).  

 

Figure 4: Genetic variance and heritability estimates for simulated data with genetic control of 

biennial growth (data set 2) considering the models GMGBLUP (Mixture), GBLUP (Standard) 

and the simulated values (Simulated). 

  

When considering genetic control for biennial status, the GMGBLUP was again worse 

than the GBLUP for prediction accuracy considering the correlation between simulated 

phenotypes and EBLUPs. However, for the predicted phenotypes, the GMGLUP was equal to or 

slightly better than the GBLUP in terms of prediction accuracy. This suggests that the 
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GMGBLUP was able to predict the biennial status based only on genotypic information (Figure 

5) and it also suggests that measuring the performance of mixture models using correlation 

between phenotypes and EBLUPs may not be the best alternative. 

 

 

 

 

 

 

Figure 5: Prediction accuracy considering the correlation of the EBLUPs for GBLUP (Standard), 

GMGBLUP (Mixture) and the predicted phenotypes by the GMGBLUP (Mixture_pred). Correlation 

estimated using the simulated phenotypes with genetic control for biennial growth.  

 

For prediction of true genetic value, the GMGBLUP model was more efficient in most of 

the scenarios and, as expected, its prediction accuracy significantly increased for higher biennial 

intensity scenarios (Figure 6). The results observed in this data set show that genetic control of 
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the biennial growth has strong influence on the prediction ability of the genomic prediction 

models.  

 

 

 

 

 

Figure 6: Prediction accuracy considering the correlation of the EBLUPs for GBLUP and the GMGBLUP 

(Mixture). Correlation estimated using the simulated genetic values with genetic control for biennial 

growth. 

    

DISCUSSION 

 

According to our hypothesis, the influence of biennial growth in the species of genus 

Coffea can interfere on the prediction accuracy of the genomic selection models. Therefore, the 
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presence of the phenomenon on the studied population is fundamental. As shown in Table 1, 

there is strong evidence in favor of the existence of biennial growth in this population.  

The GBLUP model was more efficient in predicting phenotypes (Table 2). In all harvests 

it could deliver the highest correlation between the estimated BLUPS and the phenotypes. These 

correlations were higher even when the physiological state was considered on the prediction 

accuracy for the GMGBLUP. Despite the apparent advantage of the GBLUP, the prediction error 

variance estimates for this model were always higher (Table 2), which implies in higher error for 

predictions. As shown in previous works (Gianola et al., 2007; Vieira Júnior et al., 2019) , when 

there is a hidden stochastic process generating the data which is not considered in the model, the 

variance components are biased and consequently the EBLUPs too. Thus, the error associated 

with the BLUPs estimates will be higher in the GBLUP model. 

It should be emphasized that Coffea canephora is an allogamous species that presents 

gametophytic incompatibility, caused by an S allelic serial in a single locus (Conagin and 

Mendes, 1961). The individuals from this population were planted on a field without taking this 

information into account. Probably, some of them were side by side with others that were 

incompatible between them, which negatively influence the performance of those genotypes. If 

that is the case, parameter estimates and prediction accuracy will be biased independently of the 

model. 

 Gaussian mixture models are able to recognize distinct types of hidden patterns (Murphy, 

2012). If this reproductive characteristic is not considered on this model, it will directly influence 

mixture parameter (pi) and biennial state estimates, which strongly affect the model´s 

performance and can be more harmful for GMGBLUP comparing with GBLUP.  

An important question is if biennial growth (in Coffea canephora) has genetic control or 

its expression is mainly due to environmental variations. As far as we know, there is no research 

in the literature elucidating the genetic control (if there is any) of this phenomenon on genus 

Coffea. Thus, we simulated two scenarios: no “genetic control” and a single gene controlling the 

biennial growth. As shown above, for “no genetic control” scenarios the prediction accuracy for 

Gaussian mixture model (considering the correlation with phenotypes) was lower in all 

scenarios, except in those with the higher biennial intensity and mixture parameter equal to 0.2 

(Figure 2). Correlating EBLUPs with phenotypes has been the standard method to compare 

genomic selection methods (Montesinos-López et al., 2018; Brauner et al., 2019; Howard et al., 
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2019). For gaussian mixture models, this method may not be the best way. As observed before 

on simulated data, the prediction accuracy estimates for those models is downward biased if the 

biennial state is not considered (Figures 2 and 5). Correlation estimates presume linearity 

between two variables (Casella and Berger, 2002), and this is not true when variables come from 

two different distributions. Actually, the best method to compare prediction ability between 

models would be correlating EBLUPs with the true breeding value (TBV). However, for real 

data this is not feasible.  

For the simulated data with genetic control, in most of the scenarios, the prediction 

accuracy for mixture model, considering the predicted values, was equal to or higher than the 

GBLUP. However, correlations of the EBLUPs estimated by GMGBLUP with the phenotype 

always generated lower prediction accuracy (Figure 5). These observations suggest that, not only 

including the effects of a hidden variable (here the biennial status) but also the genetic control of 

the trait is fundamental for the behavior of the GMGBLUP in terms of prediction and this is in 

accordance with the genomic prediction theory, since this methodology uses relatedness to 

predict non-phenotyped individuals (Meuwissen et al., 2001; Habier et al., 2007). The 

performance of the GMGBLUP was better in most of the scenarios. When correlating the 

EBLUPs with TBV and for a mean ration equal to or lower than 0.33, it was better than the 

GBLUP in almost the all the heritability scenarios (Figure 6). When considering no genetic 

control data set, this happened only with mean ratio of 0.25 or lower, therefore in higher biennial 

intensity scenarios. These results reinforce the influence of genetic control of biennial growth on 

prediction accuracy and shows that choice of prediction model is conditioned on the intensity of 

biennial growth and on its genetic control. 

The genetic control of biennial growth is not well understood, we tried to simulate some 

scenarios in order to verify the behavior of the tested models assuming or not genetic control for 

this phenomenon. It was expected that, considering a hidden variable on the model, the variance 

component estimates and the prediction accuracy would be higher independently of the genetic 

control. However, the results do not confirm that. In order to make good predictions, it is also 

necessary to predict the biennial state and this task is conditioned to the presence of genetic 

control of the phenomenon as confirmed by the simulated results. 

As pointed out by other authors ignoring that the data originating from a mixture of 

gaussians can lead to strong bias on the estimates (Henderson, 1975; Gianola et al., 2007; Vieira 
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Júnior et al., 2019), specially for the variance components. In addition, it is clear from the 

simulation study that the biennial growth levels (or subpopulation´s means rate) are more 

important for quality of the estimates (and predictions) than the genetic control of biennial 

growth by itself. 

Previous works have discussed estimation bias and convergence problems of gaussian 

mixture models under some conditions (Sun and Wang, 2011; Naim and Gildea, 2012; Lourens 

et al., 2013). Overall, when the mixture components highly overlap themselves themselves and 

the mixing coefficients (mixture parameters) assume extreme values, the EM algorithm 

significantly decreases the rate of convergence and tends to stop poor local optima (Xu and 

Jordan, 1996; Naim and Gildea, 2012). As a consequence, the parameters estimates are biased 

and the classification accuracy is highly affected. As pointed out by Lourens et al. (2013), if the 

distributions have large overlap it will be difficult to identify the group membership of 

observations and to estimate each component´s parameters, in those cases severe bias might 

result on the estimates. 

These observations are in accordance with the obtained results. The GMGBLUP always 

performed better on extreme biennial intensity scenarios, independently of the genetic control. In 

those situations, there was the lowest overlapping of the mixture components. Using the index 

(H) proposed by Hosmer Jr (1973) as a measure of separation between mixture components on 

simulated data, it is clear that, as we increase the mean difference there, the separation between 

the two mixtures is larger (Table S1). For example, considering the lowest biennial intensity 

(mean rate of 0.5) when the heritability is 0.8, H = 2.33 and for the highest, H=11.65. These 

estimates corroborate the previous results found by other authors about the influence of 

overlapping in the accuracy of the estimates (Naim and Gildea, 2012; Lourens et al., 2013). In 

scenarios of higher H values, the GMGBLUP tended to be better. 

In the GMGBLUP model, the estimator for random effects is directly dependent on the 

right classification group, as pointed out in the materials and methods section and showned 

analytically by Gianola et al. (2007). Intuitively, the bias on model´s estimates becomes larger as 

this misclassification increases. This is illustrated on figures 1 and 4, the GMGBLUP model 

estimates more accurately the genetic variance and heritability in scenarios with less overlapping 

of the two gaussians. Conversely, the GBLUP model consistently increased the estimates bias in 

those scenarios (Figures 1 and 4) and was the worst model. As discussed before by Gianola et al. 
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(2007), the regression of genotype on phenotype is not linear on the observations in the presence 

of the Gaussian mixture. Therefore, when there is reasonable differentiation on the mixture 

components, standard linear models give less than optimal prediction of genetic effects.  

The mean difference is not the only factor that can influence on mixture components 

overlapping. As the heritability decreases, the residual variance assumes higher proportion on 

phenotypic variance and the area of gaussians tends to be larger due to increase in parameter´s 

uncertainty. Mathematically, this can be viewed below by the Hosmer Jr, 1973 equation for 

mixture disparity: 

𝐻 =
|𝜇1 − 𝜇2|

𝑚𝑖𝑛(𝜎1, 𝜎2)
 

 

Our results agree with Lourens et al. (2013) and in general for higher heritability 

scenarios, there were higher prediction accuracy and better parameter estimates for the 

GMGBLUP .  

As shown by other authors, this phenomenon in Coffea canephora is not intense as in 

Coffea arabica (Ferrão et al., 2018). As a consequence, the mean of the two subpopulations 

tends to be closer. This helps to explain the performance of the GMGBLUP compared to 

GBLUP model for prediction accuracy in the real data. As mentioned before, the information 

about genetic control of biennial growth is scarce or null in the literature. In any case, our 

simulated results suggest that independently of the genetic control of this phenomenon, having 

subpopulations mean ratio equal to or less than 0.15 GMGBLUP model is better, for genomic 

prediction or genetic parameters estimation. If biennial growth has a genetic control, this 

information can be recovered by molecular markers and the ability of the model to predict 

phenotypes is increased (Figure 6). 

The advantages of the genomic selection on genus Coffea have been studied and 

discussed before by Ferrão et al. (2018) and Sousa et al. (2018). The biennial growth 

phenomenon still represents a challenge for breeders and more research is required. Our results 

support that the GMGBLUP model has a great potential to be applied on species with strong 

biennial growth behavior, such as Coffea arabica and apple trees (Guitton et al., 2011; Durand et 

al., 2013; Andrade et al., 2017; Vieira Júnior et al., 2019). Thus, considering this phenomenon 

for genomic prediction in such species is a powerful tool to increase the breeding efficiency. We 
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believe that more research is required, specially expanding the GMGBLUP to incorporate 

genotype by environment (GxE) and dominance effects in the case of Coffea canephora.  

The GMGBLUP model is more efficient than the GBLUP for intermediate to high 

subpopulation´s mean difference. Specially in this last scenario, it highly improved the prediction 

accuracy and showed higher statistical efficiency for parameter estimation. Therefore, we believe 

that it should be considered as an alternative model for genomic prediction in species that show 

biennial behavior. 
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SUPPLEMENTARY MATERIAL 

 

Table S1: Estimates of mixture disparity (H) considering different heritabilities and Biennial intensity 

(mean differences). 

Heritability Biennial intensity H 

0.3 
0.5 0.7629 

0.17 3.8147 

0.8 
0.5 2.3308 

0.17 11.654 

 

 

 

 

 


