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Plant species with the capacity to tolerate heavy metals are potentially useful for
phytoremediation since they have adapted to survive and reproduce under toxic
conditions and to accumulate high metal concentrations. Gomphrena claussenii Moq., a
South-American species belonging to the Amaranthaceae, is found at a zinc (Zn) mining
area in the state of Minas Gerais, Brazil. Through soil and hydroponic experiments, the
metal tolerance and accumulation capacities of G. claussenii were assessed and the
effects on physiological characteristics were compared with a closely related non-tolerant
species, G. elegans Mart. G. claussenii plants grown in soil sampled at the Zn smelting
area accumulated up to 5318 1 1μg g− of Zn and 287 μg g− of cadmium (Cd) in shoot dry
biomass after 30 days of exposure. Plants were grown in hydroponics containing up to
3000 μM of Zn and 100 μM of Cd for G. claussenii and 100 μM of Zn and 5 μM of Cd
for G. elegans. G. claussenii proved to be an extremely tolerant species to both Zn and
Cd, showing only slight metal toxicity symptoms at the highest treatment levels, without
significant decrease in biomass and no effects on root growth, whereas the non-tolerant
species G. elegans showed significant toxicity effects at the highest exposure levels. Both
species accumulated more Zn and Cd in roots than in shoots. In G. elegans, over 90% of
the Cd remained in the roots, but G. claussenii showed a root:shoot concentration ratio
of around 2, with shoots reaching 0.93% Zn and 0.13% Cd on dry matter base. In G.
claussenii shoots, the concentrations of other minerals, such as iron (Fe) and manganese
(Mn), were only affected by the highest Zn treatment while in G. elegans the Fe and
Mn concentrations in shoots decreased drastically at both Zn and Cd treatments. Taking
together, these results indicate that G. claussenii is a novel metallophyte, extremely
tolerant of high Zn and Cd exposure and an interesting species for further phytoremediation
studies.
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INTRODUCTION
In many parts of the world, soils have become polluted with high
levels of heavy metals mainly due to industrial activities (Ernst,
2006). Most plant species are sensitive to these contaminated con-
ditions whilst certain species have evolved the ability to survive
and reproduce in such toxic environments. Such ability can be
attained by plants mainly through two strategies: avoidance and
tolerance. While species belonging to the first group invest in exter-
nal mechanisms to keep metals chelated outside, metal tolerant
plants developed a physiological machinery adapted to accumu-
late these high metal concentrations inside the root and/or shoot,
dealing with the enhanced stress this will cause (Baker, 1987).

Exposure to high levels of metals is likely to cause alterations in
plant physiology. Stunted growth, leaves chlorosis, iron (Fe) defi-
ciency, water unbalance, and reduction of photosynthesis rate are
symptoms usually displayed by non-tolerant species when exposed
to high levels of zinc (Zn) and cadmium (Cd; Clemens, 2006;

Broadley et al., 2007; Gallego et al., 2012). While sensitive species
present phytotoxic symptoms with concentrations of Zn from 100
to 400 μg g−1 and of Cd from 5 to 30 μg g−1 in shoots, hypertol-
erant plants can complete their life cycle accumulating more than
3000 μg g−1 of Zn and/or 100 μg g−1 of Cd (Kabata-Pendias and
Mukherjee, 2007a; van der Ent et al., 2012).

To overcome this stress condition, hypertolerant plants have
selected physiological strategies to remove the toxic ions from
the most sensitive subcellular parts, such as the cytosol and var-
ious organelles (Clemens, 2001). Metal surplus chelation and
sequestration into the vacuole or excretion to the apoplast, are
mechanisms widely used by hypertolerant species to reduce inter-
nal metal bioavailability (Clemens, 2006; Ernst, 2006). Whereas
some hypertolerant species accumulate most of the heavy metals
inside the root, a particular group, defined as metal hyperaccumu-
lators, have evolved the strategy to translocate and store the metals
preferably in the shoot (Brown et al., 1995).
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In the last few decades, hyperaccumulator species have received
substantial attention because of their interesting metal homeosta-
sis physiology and potential application in phytoremediation, a
technology based on the ability of plants to extract or stabilize
pollutants in the environment and thus contribute to functional
restoration of contaminated areas (Marques et al., 2009).

Phytoextraction theoretically is the ideal remediation tech-
nique, capable to reduce soil metal concentrations, at a low
cost, to non-toxic levels (Dickinson et al., 2009). To achieve such
in an economically viable way, it is crucial to combine traits
like high biomass and high metal tolerance and accumulation
in the phytoextraction plants (Chaney et al., 2007). At moder-
ately contaminated sites phytoextraction has proved to be feasible
using hyperaccumulator species (Rascio and Navari-Izzo, 2010;
Hanikenne and Nouet, 2011), however, because such species usu-
ally have low biomass production, phytostabilization may be the
appropriate technique for severely contaminated soils (Zhao and
Mcgrath, 2009). In such a case, plants are used to prevent leaching
of pollutants from the soil and provide cover vegetation to improve
the soil quality and reduce wind contamination, to further min-
imize the risk of erosion and leaching leading to contamination
of ground and surface waters (Dickinson et al., 2009; Zhao and
Mcgrath, 2009).

Hypertolerance has likely evolved independently within dif-
ferent angiosperm families (Ernst, 2006) and often this is a trait
present only in one genus or even one species. Some families, such
as the Brassicaceae, show a higher occurrence of Zn, Cd, or nickel
(Ni) hyperaccumulators species, like the hyperaccumulator mod-
els Noccaea caerulescens and Arabidopsis halleri (Broadley et al.,
2001; Assunção et al., 2003b; Hanikenne and Nouet, 2011).

Researches with hypertolerant and hyperaccumulator species
from tropical environments falls far short of what is known about
temperate taxa (Baker et al., 2010). Latin America is the least
studied continent, with few metallophyte (metal tolerant and/or
hyperaccumulator plants) species reported: only 172 species
among which 89% are related to Ni. So far no Zn or Cd hyper-
accumulator species have been described (Ginocchio and Baker,
2004). Nevertheless, there is no clear geographic reason that Latin
America is so poorly represented, as it has a uniquely diverse flora
(8 of the 25 biodiversity hotspots in the world are in Latin Amer-
ica) but also due to the presence of countless sites rich in metal
ores as well as metal smelter areas (Ginocchio and Baker, 2004;
Reeves et al., 2007; Baker et al., 2010).

Plants naturally growing in metal-enriched soils are in general
metal tolerant, which makes the vegetation native to contami-
nated areas an important potential source of metal tolerant and
accumulator species (Baker and Brooks, 1989). One example is
the Zn mining site near Vazante in the state of Minas Gerais
(MG), Brazil, where almost all of the Zn extraction in Brazil takes
place (Filho and Viana, 2011). One species at this site, Gomphrena
claussenii Moq. (Figure 1) has the ability to grow and thrive at the
locally high Zn and Cd levels, making it a potentially interesting
species for phytoremediation. G. claussenii is a perennial species,
belonging to the Amaranthaceae family, and native to Brazil (Mar-
chioretto et al., 2010). G. elegans Mart. is a related species, which
is widespread in South America, but not reported to be tolerant to
excess metal exposure (Mussury et al., 2006). It is used as a metal

FIGURE 1 | Gomphrena claussenii Moq. plants growing at a Zn mining

site at Vazante, Minas Gerais, Brazil.

sensitive species for this study. The work presented here aims to
evaluate the physiological effects of high Zn and Cd on G. claussenii
when compared with G. elegans. Consequently, we assess the metal
tolerance capacity of G. claussenii to toxic metals and evaluate its
potential for use in phytoremediation.

MATERIALS AND METHODS
PLANT MATERIAL AND GROWTH CONDITIONS
Gomphrena claussenii Moq. plants were collected from a Zn mine
area at Vazante, in the state of MG, Brazil. G. elegans seeds were
collected in the field at Antônio João, in the state of Mato Grosso
do Sul, Brazil, and provided by Dr. Rosilda Mara Mussury from the
Federal University of Grande Dourados, Dourados, Brazil. Seeds
could not be used as starting material for G. claussenii since field
access was limited and seeds are only mature at restricted periods
during the year. Instead, seven individual plants were collected at
the site and vegetatively propagated. After a pilot experiment and
confirmation of the high Zn and Cd tolerance of all plants, one line
was brought into in vitro tissue culture and taken to The Nether-
lands for further experiments. G. elegans seeds were sterilized and
germinated as start material.

Both species were vegetatively propagated through tissue cul-
ture using half-strength Murashige and Skoog (MS) medium
containing, 2% sucrose and 0.8% agar at pH 5.8. Plant material
were cultured in a growth room (24◦C, 250 μmol m−2 s−1 light at
plant level and a 16-h light/8-h dark cycle). Two-week-old tissue
culture-grown cuttings were used as starting material for soil and
hydroponics experiments.

Zn AND Cd TOLERANCE
Soil assay
Zinc ore extracted at Vazante is processed in the metal smelter
at Três Marias, MG, Brazil. Soil samples were collected at
four different sites around the Zn smelter, three contami-
nated sites and one non-contaminated control site at some
distance from the smelter (control: 18◦12′16′′S/45◦14′02′′W; site
1: 18◦11′25′′S/45◦14′10′′W; site 2 18◦11′08′′S/45◦14′07′′W; site 3
18◦11′06′′S/45◦14′24′′W). Pre-cultured G. claussenii plants were
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planted in the four different soils in 250-ml pots. The experiment
was performed with three repetitions, each represented by one pot
with one plant, during the winter season in a glass greenhouse,
at Lavras Federal University, Lavras, MG, Brazil,. After 30 days,
shoots were harvested and washed with demi-water for biomass
and mineral concentration measurements.

Hydroponic assay
Gomphrena claussenii and G. elegans in vitro cuttings were trans-
ferred to 600-ml polyethylene pots (one plant per pot and three
replicate pots per treatment) containing a modified Clark’s full
strength nutrient solution (Clark, 1975): 1.3 mM KNO3, 2.53 mM
Ca (NO3)2, 0.9 mM NH4NO3, 0.6 mM MgSO4, 0.5 mM KCl,
34.5 μM Ca (H2PO4)2, 19 μM H3BO3, 2 μM ZnSO4, 7 μM
MnCl2, 0.5 μM CuSO4, 0.086 μM (NH4)6Mo7O24, and 38μM
Fe(Na) ethylenediaminetetraacetic acid (EDTA). The pH buffer
2-(N-morpholino)ethanesulfonic acid (MES) was added at 2 mM
and the pH was set at 5.5 using potassium hydroxide (KOH). After
3 weeks growing on quarter-strength Clark’s solution, plants were
exposed to half-strength solution with normal Zn (2 μM) or excess
Zn/Cd: 100, 1000, and 3000 μM of ZnSO4 or 10, 50, and 100 μM
of CdSO4 (at 2 μM ZnSO4) for G. claussenii and 100 μM of ZnSO4

or 5 μM of CdSO4 (at 2 μM ZnSO4) for G. elegans. The applied Zn
and Cd concentrations were chosen to be in the range of bioavail-
able concentrations at the site of collection and based on pilot
experiments. The solutions were replaced once a week and plant
culture was performed in a climate chamber [20/15◦C day/night;
250 μmol m−2 s−1 light at plant level; 12 h day length; 70% rel-
ative humidity (RH)]. After 3 weeks of metal exposure or control
treatment, the plants were harvested. Roots were first desorbed
with ice-cold 5 mM PbNO3 for 1 h. Solubility of minerals was
calculated using the solution speciation software Visual MINTEQ
3.0 (Gustaffson, 2007).

Root elongation
The ability of G. claussenii and G. elegans to tolerate excess metal
exposure was tested through root elongation measurements (Schat
and Ten Bookum, 1992). Plants were grown in the same hydro-
ponic conditions as described above, at normal (2 μM of Zn)
or the highest metal exposure (3000 μM ZnSO4 or 100 μM
CdSO4/2 μM ZnSO4 for G. claussenii and 100 μM ZnSO4 or 5 μM
μM CdSO4/2 μM ZnSO4 for G. elegans). Before metal exposures,
roots were stained with active coal powder to allow the measure-
ment of the longest unstained root (Schat and Ten Bookum, 1992).
Roots were measured after 3 and 6 days of exposure.

ASSESSMENT OF MINERAL CONCENTRATIONS
Shoot samples from G. claussenii plants were collected for mineral
analyses from plants sampled at six different locations at the Zn
mining site (Vazante). Plant materials were digested in a CEM�

Mars-5 microwave oven system (CEM Corporation, Matthews,
NC, USA), following the USEPA 3051 method (USEPA, 1995). For
the soil experiment, both plant and soil materials were digested
as mentioned before. Metal bioavailability (water-soluble frac-
tion) was estimated from soil solution extracts obtained by the
saturated-paste technique (Raij et al., 2001). Filtrates were passed
through 0.22-μm cellulose membranes to determine the total

dissolved metals. The concentrations of Zn and Cd in all extracts
were determined by using either flame or graphite-furnace atomic
absorption spectrophotometry (PerkinElmer�AAnalystTM800).
NIST standard reference materials (SRM 1573a Tomato Leaves,
SRM 2710 Montana Soil, SRM 1640 Trace Elements in Natural
Water) were used to check the accuracy of elemental determina-
tions, which was found satisfactory, i.e., metal recoveries ranged
from 78 to 122%. For the analysis of total metal concentrations in
plant samples of the hydroponic experiments, 50–90 mg of each
sample was wet-ashed in 2 ml of a 4:1 mixture of HNO3 (65%)
and HCl (37%), in Teflon bombs for 7 h at 140◦C and there-
after had their volume adjusted to 5 ml with demineralized water.
Metal concentrations (Zn, Cd, Fe, and Mn) were determined using
flame atomic absorption spectrophotometry (PerkinElmer AAn-
alyst 100; PerkinElmer Nederland, Nieuwerkerk a/d IJssel, The
Netherlands).

STATISTICS ANALYSES
Data was statistically evaluated through analysis of variance
(ANOVA) tests following the Tukey’s test used to compare mean
values.

RESULTS
MINERAL ANALYSES FROM THE FIELD
As expected for metal mining areas there is considerable variation
in the soil metal levels at the site and consequently also the plants
collected at different locations at the site showed variation for Zn
and Cd concentrations in shoots. Plants contained between 230
and 10434 μg g−1 of Zn and 6 and 96 μg g−1 of Cd in shoot dry
weight samples. Concentrations were correlated with soil levels
meaning that higher levels were found in plants growing in more
contaminated sites whereas the lowest levels were found in plants
collected in an area close to the mine but were mining was not
conducted.

SOIL AND PLANT Zn AND Cd ANALYSIS
Soil samples were taken from the Zn smelter at four different
points. Total metal concentrations varied when comparing the dif-
ferent sampling sites and they showed extremely high Zn and Cd
levels compared to the control sample (Table 1), as was expected
for soil sampled at a Zn smelting area. Although slightly higher
than metal concentrations normally found in non-contaminated
soil, the metal concentrations of the control sample are within
the range for non-contaminated soil, even though the sample was
taken not far from the industrial area. The highest levels of both
metals are found in sample 3, which is taken at the Zn smelter ore
waste deposit site, while the other two samples are taken slightly
more distant from this site. Comparing to the total levels, the
water-soluble (available) metal concentrations were always much
lower, except for site 3, at which they were above what is con-
sidered to be within the normal range for plants (Kabata-Pendias
and Mukherjee, 2007a; Table 1). G. claussenii plants taken from
the site grew well in a greenhouse in pots containing this soil and
accumulated up to 5318 μg g−1 of Zn and 287 μg g−1 of Cd in
their shoots after 30 days of exposure (Table 1). Since air contam-
ination was excluded once plants were grown in a greenhouse far
away from the Zn smelter, the high metal concentrations can only
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Table 1 | Zinc (Zn) and cadmium (Cd) concentrations (μg g–1) in soil samples from the Zn smelting area atTrês Marias, MG, Brazil, and in shoots

of Gomphrena claussenii plants after growing for 30 days in control and metal contaminated soil collected at four sites around the Zn smelter.

Sample site Soil (μg g–1) Shoot (μg g–1 DW)

Total concentration Available concentration

Zn Cd Zn Cd Zn Cd

Control 117.7 (2.1) 3.6 (0.4) 0.2 (0.1) 0 22 (1.2) 1 (0.1)

Site 1 3830.1 (62.9) 73 (2.2) 0.6 (0.01) 0.06 (0) 237.9 (1.4) 7.5 (0.1)

Site 2 960.2 (104.3) 12 (1.7) 4.9 (0.1) 0.08 (0) 241.2 (1.1) 7.3 (0.03)

Site 3 15212.9 (580.3) 147.4 (4.4) 168.2 (18.4) 4.63 (0.1) 5318.36 (10.33) 287 (8)

Mean total and water-soluble (available) soil and shoot metal concentrations are shown, with standard errors between brackets. n = 3. DW, dry weight.

be caused by high uptake and root to shoot translocation of metals
from the soil.

Zn AND Cd TOLERANCE IN HYDROPONIC SOLUTION
Exposing plants to hydroponic solutions with high concentrations
of metals can be misleading if metals precipitate upon preparing
the solution and thus become unavailable to plants. Therefore,
we calculated solubility of Zn and Cd in the half-strength Clark’s
solution we used as growing medium. Even at the highest Zn and
Cd concentrations, both metals were completely soluble and avail-
able for uptake (Table 2). The main ion forms for those elements
in solution are Zn2+and Cd2+. These forms are expected to be
readily available for plant uptake.

Root elongation measurements confirmed the strong metal tol-
erance properties of G. claussenii, especially when compared to
G. elegans. Upon Zn (3000 μM) and Cd (100 μM) treatments
G. claussenii plants showed no significant effects in root growth
(P < 0.001; n = 6) compared with plants grown under control
conditions (Figure 4). Instead, roots seemed to grow even longer
under high Zn and high Cd. G. elegans plants presented a dras-
tic reduction in root growth, already after 3 days of exposure to
100 μM of Zn or 5 μM of Cd (Figure 4B). With increased expo-
sure time G. claussenii showed no reduction in growth while G.

Table 2 | Zinc (Zn) and cadmium (Cd) speciation in half-strength

Clark’s solution containing the highest Zn or Cd concentrations which

were used in exposure experiments (3000 μM Zn or 100 μM Cd), as

calculated according to Visual MINTEQ 3.0.

Component % of total

concentration

Speciation

Cd2+ 93.1 Cd2+

1.9 CdCl+

3.7 CdSO4(aq)

Zn2+ 82.4 Zn2+

16.6 ZnSO4(aq)

Speciations with less than 1% were not included. aq, aqueous.

elegans plants after 6 days of exposure displayed an even higher
reduction in root growth.

Zn and Cd tolerance was evaluated in G. claussenii and G. ele-
gans plants based on three parameters: toxicity symptoms, growth
rate (dry weight), and root elongation. The G. claussenii plants
only exhibited slight metal toxicity symptoms, and exclusively
at the highest treatment levels (3000 μM Zn or 100 μM Cd;
Figures 2A,B), confirming their extreme tolerance to both Zn
and Cd treatments. G. elegans plants already developed visual
toxicity symptoms when exposed to 100 μM of Zn and 5 μM
of Cd (Figures 2C,D). They also showed a reduced growth
rate and strong leaves chlorosis, starting in the first week of
metal exposure, The toxicity symptoms became more severe with
increasing exposure time. In the third week, the oldest leaves
started to fall off.

Growth responses to high Zn and Cd concentrations were
different for G. claussenii and G elegans. As expected for a non-
metal-tolerant species, G. elegans biomass production decreased
notably and significantly (P < 0.05; n = 3) for shoot and roots
when comparing plants grown at high metal exposures with the
ones grown in control conditions. Such was not the case for G.
claussenii, for which an increase in Zn or Cd concentration did
not reduce root or shoot dry weight, not even at the highest metals
concentrations (Figure 3). In fact, the concentration of 2 μM Zn,
which is considered to be sufficient for plants in general, may be
suboptimal for G. claussenii plants, which produce a higher, shoot
biomass at elevated Zn concentrations, although the difference
was not statistically significant with the low number of plants we
tested (P > 0.05; n = 3).

MINERAL CONCENTRATIONS
Mineral concentrations were measured from plants growing in
hydroponic conditions after 3 weeks of exposure to elevated
Zn/Cd conditions. Zn and Cd concentrations increased signifi-
cantly for both studied species in roots and shoots with increased
Zn or Cd exposure levels (Figure 5). G. claussenii and G. elegans
showed higher Zn and Cd concentrations in roots than shoots
at all treatment levels. For G. claussenii the metal concentrations
increased nearly proportional with increasing exposure. In con-
trast to the non-metal-tolerant species, G. claussenii was able to
store extremely high concentrations of these elements in shoots,
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FIGURE 2 | Gomphrena claussenii (A,B) and G. elegans (C,D) plants after

3 weeks of exposure to different concentrations of zinc (Zn) (A,C) and

cadmium (Cd) (B,D). Plants are grown hydroponically in half-strength Clark’s

solution, containing 2 μM Zn, and supplemented to 100, 1000, or 3000 μM
Zn, respectively 10, 50, or 100 μM Cd for G. claussenii and 100 or 1000 μM
of Zn, respectively 5 or 50 μM of Cd for G. elegans.

eventually reaching 9.3 g Zn kg−1 dry weight (Figure 5A) and
1.3 g Cd kg−1 dry weight at the highest exposure levels (Figure 5B).
The root:shoot accumulation ratios for Zn and Cd in G. claussenii
averaged around two (Figure 5). G. elegans was clearly not tolerant
to Cd, not even at the modest exposure level of 5 μM. Although
the plants managed to keep Cd out of the shoot, the root concen-
trations at this exposure level already exceeded those found in G.
claussenii at 10 μM Cd exposure (Figure 6D). At this concentra-
tion, more than 90% of the Cd was found in the roots of G. elegans.
Although the shoot Cd concentrations were high, they remained
significantly lower than those in G. claussenii shoots at 10 μM Cd
exposure (P < 0.01; n = 3) (Figure 6C). At exposure to 100 μM Zn,
the Zn concentrations in G. elegans roots and shoots were about 2,
respectively 2.5 times lower than in G. claussenii (Figures 6A,B).

The exposure to elevated Zn and Cd concentrations was also
expected to affect the concentrations of other minerals, such as Fe
and manganese (Mn), for which homeostasis mechanisms often
interact with those for Zn. G. claussenii and G. elegans Fe con-
centrations in roots increased with an increase of Zn and Cd
supply (Figures 7BI,BII,BIII). Fe concentrations in G. claussenii
shoots were statistically similar (P > 0.05; n = 3) at all Zn and
Cd exposure levels, even though at the highest Zn exposure,
the Fe concentration appeared to be lower (Figures 7AI,AII).
In G. elegans, the shoot Fe concentrations decreased significantly
(P < 0.01; n = 3) at both Zn and Cd treatments (Figure 7AIII).

Mn concentrations were also affected by the Zn and Cd treat-
ments (Figure 7C). Although the Mn concentration in roots of
Zn-exposed G. claussenii plants seemed to decrease at the high-
est exposure level, this was statistically not significant (P > 0.05;
n = 3). The Mn concentration in shoots decreased significantly
(P < 0.05) with increasing Zn exposure levels (Figure 7CI). When
exposed to Cd, Mn decreased drastically in roots but stayed similar
in shoots (Figure 7CII). There was no difference between metals
treatment in G. elegans, both Zn and Cd treatments significantly
reduced the Mn concentrations in roots and shoots (P < 0.01;
n = 3; Figure 7CIII).

DISCUSSION
The results we present here demonstrate that G. claussenii is indeed
a novel metallophyte, extremely tolerant to high Zn and Cd expo-
sure. This is the first report of a species of this kind from South
America. Field results, together with pot experiments using soil
from contaminated sites, present clues about the high Zn and
Cd tolerance. These results also give an indication of the poten-
tial of this species for phytoremediation purposes under field-like
conditions (Chaney et al., 2007), where mixed contaminations
are more rule than exception (Kabata-Pendias and Mukherjee,
2007b). While the high metal tolerance is not unexpected, given
the abundance of the species at the Zn mining site, the high lev-
els of accumulation are surprising. The reported shoot Zn and
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FIGURE 3 | Root (light gray bars) and shoot (dark gray bars) biomass

of G. claussenii (A,B) and G. elegans (C). G. claussenii plants were
exposed to different zinc (Zn; 2–3000 μM) and cadmium (Cd; 0–100 μM)
concentrations and G. elegans plants were exposed to normal Zn (2 μM),
high Zn (100 μM) and Cd (5 μM), for 3 weeks. Data points and error bars
represent mean values (n = 3) and standard errors, respectively. DW, dry
weight. Asterisks denote significant differences of control (2 μM Zn) from
treatments as found upon Tukey’s testing (P < 0.05).

Cd concentrations of G. claussenii plants grown on contaminated
soil collected at the site (maximum 5300 and 280 μg g−1 for Zn
and Cd, respectively; Table 1) clearly exceed the recently proposed
threshold levels to classify species as metal hyperaccumulators,
which are 3000 μg Zn g−1 dry weight and 100 μg Cd g−1 dry
weight (van der Ent et al., 2012). This means G. claussenii is not
only a metallophyte, but also a Zn/Cd hyperaccumulator species,
again the first one known from the South American continent.

FIGURE 4 | Increase in root length of G. claussenii plants after 3 days

(light gray bars) and 6 days (dark gray bars) of exposure to 2 μM zinc

(Zn; control), 3000 μM Zn (zinc), and 100 μM Cd (cadmium) (A); and of

G. elegans plants after exposure to 2 μM Zn (control), 100 μM Zn

(zinc), and 5 μM Cd (cadmium) (B). Mean values and standard errors are
shown (n = 6). Asterisks denote significant differences of control (2 μM Zn)
from treatments as found upon Tukey’s testing (P < 0.05).

The hydroponic metal exposure experiments we performed
subsequently provided an excellent way to evaluate the maximum
levels of Zn/Cd tolerance and accumulation. A crucial point to
consider when using extremely high levels of metals in hydro-
ponic solutions is the metal availability (Baker and Whiting, 2002).
We preferred to use half-strength Clark’s nutrient solution (Clark,
1975) for hydroponics, which is different from the more often used
half Hoagland’s solution (Hoagland and Arnon, 1940), mainly
because it allowed us to expose plants to higher Zn concentrations
without precipitation of metals (Table 2).

To evaluate metal tolerance and accumulation of G. claussenii,
we used the closely related species G. elegans as comparison, which
is common in many South American countries (Mussury et al.,
2006) and not known to be adapted to heavy metal exposure.
Although both species are taxonomically close, they are clearly sep-
arate species, with different plant morphologies. Also our attempts
to cross both species have not been successful. For the evalua-
tion, we considered the effect of metal exposure on both roots
and shoots, which was possible when using hydroponic condi-
tions. Upon metal exposure, root growth is more rapidly affected
than that of other plants parts, therefore root elongation has pre-
viously been suggested to be an efficient parameter to evaluate
metal tolerance (Macnair et al., 1993). The treatment effects on
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FIGURE 5 | Zinc (Zn) (A) and cadmium (Cd) concentrations (B) (in

mg kg–1 dry weight; mean ± SE) of G. claussenii shoots (�) and roots (•)

upon growth in hydroponic nutrient solutions. Plants were grown for 3

weeks in a hydroponic solution containing 2 μM ZnSO4 before exposure to
elevated ZnSO4 (100, 1000, and 3000 μM) or CdSO4 concentrations (0, 10,
50, and 100 μM).

FIGURE 6 | Comparison between G. elegans (black bars) and G.

claussenii (white bars) zinc (Zn) and cadmium (Cd) concentrations

(mg kg–1; mean ± SE) in shoots (A,C) and roots (B,D) of plants exposed

to comparable Zn (A,B) or Cd treatment levels (C,D). Zn treatment

concentrations were 2 and 100 μM of ZnSO4 (Zn2, Zn100). Cd treatment
concentrations were either no exposure (Cd0) or 5 and 10 μM of CdSO4 to G.
elegans and G. claussenii, respectively (high Cd). Plants were grown for 3
weeks on control solution (2 μM Zn) before 3 weeks of treatments exposure.
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FIGURE 7 | Iron (Fe) (A,B) and manganese (Mn) (C) concentrations

(mg kg–1; mean ± SE) in G. claussenii (I,II) and G. elegans (III) shoot

(dark gray bars) and root (light gray bars). Plants were grown for 3 weeks
on control solution (Zn 2 μM) before exposure to Zn (2, 100, 1000, and

3000 μM) and Cd (0, 10, 50, and 100 μM) treatments for G. claussenii and to
Zn (2 and 100 μM) and Cd (5 μM) treatments for G. elegans. Asterisks denote
significant differences of control (Zn 2 μM) from treatments by Tukey’s test
(P < 0.05).

root elongation easily distinguished both species in the highly
Zn and Cd tolerant G. claussenii and the non-tolerant G. elegans
(Figure 4).

Gomphrena claussenii not only adapted to high metal exposure
by evolving metal tolerance traits, but it also evolved the capacity
to store substantial amounts of Zn and Cd within the plant. The
concentrations of Zn and Cd accumulated in root and shoot tis-
sues (Figure 5) were approximately 10 times higher than what is
reported to be toxic for most plant species (Kabata-Pendias and
Mukherjee, 2007a). The differences in Zn accumulation between
G. claussenii and G. elegans, when exposed to the same Zn level,
were not as prominent as would be expected based on comparisons
of other hypertolerant species with their closest non-tolerant rela-
tives (Lasat et al., 1996; Ni et al., 2004). This may be a consequence
of the natural high Zn concentration which is found in shoots of
Amaranthaceae species. From 48 studied families, Amaranthaceae
species have in average the second highest Zn concentration in
shoots, 108 mg Zn kg−1 dry weight, while the average over all fam-
ilies was 77 mg Zn kg−1 dry weight (Broadley et al., 2007). Thus
this plant lineage may be more prone to evolve Zn/Cd tolerance
than other families.

Throughout the metal exposure treatments, G. claussenii
showed hardly any signs of metal toxicity, not only in roots but
also not in shoots, confirming its exceptional Zn and Cd toler-
ance. Only few other Zn and Cd hypertolerant species have been
reported so far, such as A. halleri (Küpper et al., 2000), Noccaea
(Thlaspi) caerulescens (Assunção et al.,2003a), N. praecox (Pongrac
et al., 2009), Sedum alfredii (Yang et al., 2004), and Viola baosha-
nensis (Wu et al., 2010). However, different from these species
that accumulate high levels of metals in shoots when exposed to
low concentrations, G. claussenii presents an almost constant ratio
between exposed and accumulated metal concentrations, typical
of a metal bioindicator species (van der Ent et al., 2012). Thus, G.
claussenii appears to have evolved another tolerance mechanism.
The adaptive mechanism which evolved in classical hyperaccumu-
lators is focused on preferentially accumulating metals in leaves
to deter herbivores (Boyd, 2007; Fones et al., 2010). Instead, G.
claussenii accumulates metals at approximately twice the concen-
trations in roots than in shoots (Figure 4), which indicates the
ability to use shoots to store metals if storage capacity in roots is
not adequate. This adaptation would probably require less modi-
fications to the metal homeostasis mechanism than the evolution
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of metal hyperaccumulation. Releasing the barrier to prevent Zn
and Cd translocation to the shoots, allowing the metals to fol-
low the concentration gradient, would be sufficient. This is likely
to involve genes of the heteroduplex mobility assay (HMA)-like
P-type ATPase metal transporters, which are involved in loading
metals into the xylem (Wong and Cobbett, 2009). Of course an
increased metal flux from roots to shoots should be dealt with by
providing sufficient apoplastic and vacuolar metal storage capac-
ity in shoots, otherwise plants will accumulate metals in shoots,
but not tolerate them and succumb to the toxic consequences. The
mechanism for this can be similar for root or shoot tissues, and
does not require the tight tissue-specific regulation of metal trans-
porter gene expressions as found in hyperaccumulators, where
roots appear to be actively involved in transporting metals to the
vascular system and up into the shoots to keep root concentrations
relatively low and shoot levels high, against the concentration gra-
dient (Verbruggen et al., 2009). Such could simply be achieved by
increasing expression of transporters exporting metals from the
cytoplasm, either to the apoplast or to the vacuoles.

The effects of Zn or Cd exposure on Fe and Mn homeosta-
sis were clearly higher in G. elegans than in G. claussenii. The
decrease of Fe concentration in G. elegans shoots is a common
effect of Zn and Cd toxicity in metal sensitive plants. In contrast,
tolerant species like G. claussenii are able to keep shoot Fe concen-
trations unaffected (Shanmugam et al., 2011), avoiding the drastic
symptoms that disturbance of Fe homeostasis will cause on pho-
tosynthesis. Root Fe concentrations in both species increased with
increasing Zn or Cd exposure. For G. elegans, the increase of Fe in
roots can be explained as a consequence of Fe deficiency in shoots,
due to competition for uptake of Fe with Zn or Cd. The effect is
much more pronounced for G. claussenii than for G. elegans. Metal
hyperaccumulator species like S. alfredii and N. caerulescens also

show an increase of root Fe concentration in response to high Zn
or Cd exposure (Zhou and Qiu, 2005; van de Mortel et al., 2006).
However, even though the solution speciation analysis showed that
more than 90% of the Zn and Cd are available as free ions, the pos-
sibility that the high Fe concentration in roots of G. claussenii is a
consequence of apoplastic Fe precipitation, rather than symplastic
uptake, cannot be discarded (Chaney et al., 2007).

The combination of high metal tolerance and high metal
accumulation along with high biomass production makes plants
suitable for phytoextraction. Two major strategies have been
considered to achieve these properties: to breed or genetically
engineer hyperaccumulator species to increase their biomass or to
genetically engineer high-biomass species to increase their metal
accumulation and tolerance capacity (Chaney et al., 2007). These
are not trivial challenges, but the main reason for this is the
scarcity of natural metal hypertolerant and metal accumulating
species that are high biomass producing. G. claussenii is a Zn/Cd
accumulating species, which produces considerable biomass in
the field, and we believe that domestication of this species
can be a promising approach to consider for non-GMO-based
phytoextraction.
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